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Abstract

Communications problems that involve frequency interference, such as the channel assign-
ment problem in the design of cellular telephone networks, can be cast as graph coloring
problems in which the frequencies (colors) assigned to an edge’s vertices interfere if they are
too similar. The paper considers situations modeled by vertex-coloring d-regular graphs with
n vertices using a color set {1,2,...,n}, where colors i and j are said to interfere if their
circular distance min{|7 — j|,n — |[¢ — j|} does not exceed a given threshold value a. Given a
d-regular graph G and threshold «, an interference-minimizing coloring is a coloring of vertices
that minimizes the number of edges that interfere. Let I,(G) denote the minimum number of
interfering edges in such a coloring of GG. For most triples (n, a, d) we determine the minimum
value of I,(G) over all d-regular graphs, and find graphs that attain it. In determining when
this minimum value is 0, we prove that for r > 3 there exists a d-regular graph G on n vertices
that is r-colorable whenever d < (1 — 1)n — 1 and nd is even. We also study the maximum
value of I,(G) over all d-regular graphs, and find graphs that attain this maximum in many

cases.



1. Introduction

This paper is motivated by telecommunication problems such as the design of planar regions
for cellular telephone networks and the assignment of allowable frequencies to the regions. In
our graph abstraction, vertices are regions, edges are pairs of contiguous regions, and colors
correspond to frequencies. We presume that every region has the same number d of neighbors,
which leads to considering degree-regular graphs. Interference occurs between two regions if
they are neighbors and their frequencies lie within an interference threshold. We adopt the
simplifying assumption that the number of colors available equals the number n of regions, and
let o denote the threshold parameter so that colors ¢ and j in {1,2,...,n} interfere precisely
when their circularly-measured scalar distance is less than or equal to . Precedents for the
use of circularly-measured distance in graph coloring include Vince (1988) and Guichard and
Krussel (1992).

Our formulation leads to several interesting graph-theoretic problems. One is to determine
for any given d-regular graph G and threshold « the minimum number I,(G) of interfering
edges over the possible colorings of G. Another is: given parameters n, o, and d, determine
the minimum and maximum values of /,(() and find graphs G that attain these values. We
focus on the latter problem. More specifically, let G(n, d) denote the set of undirected d-regular
graphs on n vertices, which have no loops or multiple edges, but may be disconnected. We
wish to determine the (global) minimum interference level {(n, a,d), which is the minimum of
I, (G) over G(n,d). For comparison purposes, we also wish to determine the (global) minimax
interference level L(n, o, d), which is the maximum of I,(G) over G(n,d). This latter problem
measures how badly off you would be if an adversary gets to choose G' € G(n, d), and you can
then color G to minimize interference.

Our graph-theoretic model is an approximation to the frequency assignment problem for
cellular networks studied in Benveniste et al. (1995). In that paper the network of cellular
nodes is viewed as vertices of a hexagonal lattice A in B2, and the graph G is specified by a
choice of sublattice A’ of A, with n = |V(G)| being the index of the sublattice A’ in A. More
precisely, the vertices of GG are cosets of A/A’ and we draw an edge between two cosets if the
cosets are “close” in the sense that they contain vectors v, v’ respectively with ||[v — v/|| < z,
where || - || is a given norm on R? and z is a cutoff value. Such graphs® G are d-regular for

'The graph G represents a fundamental domain of A/A’. In the cellular terminology a fundamental domain for
A/A"is called a “reuse group.” More generally a “reuse group” is a collection of contiguous cells that exhausts
all frequencies, with no two cells in the group using the same frequency.
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some value of d; the usual nearest-neighbors case gives d = 6: see Bernstein et al. (1995).
The frequency spectrum is also divided into cosets (modulo n), and nodes in the same coset
(mod A’) are assigned a fixed coset of frequencies (mod n). In cellular problems the graph G
is fixed (depending on A’). Typical parameters under consideration are 10 < n < 30, d = 6,
and n/a about 2 or 3. From this standpoint the quantities {(n, @, d) and L(n,a,d) represent
lower and upper bounds for attainable levels of interference.

Related coloring problems motivated by the channel assignment problem are studied in Hale
(1980), Cozzens and Roberts (1982), Bonias (1991), Liu (1991), Tesman (1993), Griggs and
Liu (1994), Raychaudhuri (1994), Troxell (1996) and Guichard (1996) among others. Roberts
(1991) surveys the earlier part of this work. Factors that distinguish prior work from the
present investigation include our focus on regular graphs and the inevitability of interference
when certain relationships hold among n, o and d.

Our main results give near-optimal bounds for ¢(n,a,d) and L(n,a,d) and identify d-
regular graphs and colorings that attain extremal values. Many interference-minimizing designs

use only a fraction of the available colors or frequencies. The most common number of colors

|+
7_05—1—1’

which is the maximum number of mutually noninterfering colors from {1,2,...,n} at threshold

used in these optimal designs is

«. Detailed statements of theorems for f(n, «,d) and L(n,a,d) appear in Section 2. Proofs
follow in Sections 3 to 7.

In the course of our analysis we derive a graph-theoretic result of interest in its own right,
which is a condition for the existence of a d-regular graph having chromatic number < r.

THEOREM 1.1. Ifr > 3, then G(n,d) contains an r-colorable graph if nd is even and

(1-Ln—1 ifrdividesn+1,

d <

(1-"1Ln otherwise .

This result is proved in Section 5, and the proof can be read independently of the rest of the
paper. Note that if nd is odd then G(n,d) is the empty set.

We preface the results in the next section with a few comments to indicate where we are
headed. The case a = 0 corresponds to no interference because the number of available colors
equals the number of vertices, and therefore ¢(n,0,d) = L(n,0,d) = 0. We assume that o > 1

in the rest of the paper.
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For degrees near 0 or n, namely d = 0,1,n — 2 or n — 1, the set G(n,d) contains only one

unlabelled graph, so these cases are essentially trivial. We note at the end of Section 4 that

(nyan—1) = L{n,a,n—1) = [%J <n - %y(L%J + 1)) . (1.1)

Our first main result in the next section, Theorem 2.1, applies to degree 2 and shows that
most values of £ and L for d = 2 equal 0. A notable exception is that L(n, 2,2) is approximately
n/3.

Subsequent results focus on d > 3, where we use the maximum number of noninterfering
colors v to express the results. The case v = 1 is trivial because then all colors interfere with

each other, so that { = L = #(edges of G) = nd/2. For v > 2, {(n, a,d) for most values of

(nd. n? (’y—l) )
max | ——-—|——], 0] .
2 2 0%

Moreover, L(n,a,d) = 0 whenever v > d, whereas if n is much larger than d, and d is

(n,a,d) is approximately

somewhat larger than ~, then L(n,a,d) is approximately nd/(27).

Extremal graphs which attain £(n, o, d) when £ > 0 are usually connected, and the associ-
ated coloring can often be achieved using v noninterfering colors. On the other hand, graphs
that attain L(n,a,d) when L > 0 are usually disconnected and contain many copies of the
complete graph Kgiq. There are exceptions, however.

Our results imply that there is often a sizable gap between the values of £ and L. The
smallest instance of [ < L occurs at (n,a,d) = (6,2,2) where [ = 0 and L = 2. Figure 1.1

shows the two graphs in G(6,2) with interference-minimizing colorings for o = 2.

Figure 1.1 about here

A qualitative comparison of the regions where £ and L equal 0 and are positive is given in

Figure 1.2, where the coordinates are d/n and v/n.

Figure 1.2 about here

2. Main Results

An undirected graph is simple if it has no loops or multiple edges. Let G(n,d) denote the
set of d-regular graphs on n vertices which are simple but which are not necessarily connected.

Let [n] = {1,2,...,n} be a set of n colors with circular distance measure

D(z7j):m1n{|z—j|,n— |Z_.7|}7
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and let @ € {0,1,...} be the threshold-of-interference parameter. A coloring of the vertex
set V(G) of graph G = (V(G), E(G)) in G(n,d) is a map f : V(G) — [n]. The interference
I,(G, f) of coloring f of G at threshold « is

(G, f) = {{z,y} € E(G): D(f(2), f(y)) < a}] .
The minimum interference in G at threshold « is

I,(G) = f:VfrCl}l)I;[n] I,(G, f) .

We study the (global) minimum interference level
l(n,a,d):= min [,(G) (2.1)
and the (global) minimaz interference level

L(n,a,d) := Gg}?z(d) 1,(G) . (2.2)

We first note restrictions on the parameter space. Since all graphs in G(n, d) have ”2—d edges,
it follows that
n and d cannot both be odd . (2.3)

We restrict attention to the threshold range

1<a<——1, (2.4)

n
2
because o > % implies that all colors interfere. Thus

n

y=l 2 (2.5
Our first result concerns £ and L for degree 2.
THEOREM 2.1. Letd = 2.
(a) For all v > 2,

ln,a,2)=0. (2.6)
(b) For all v > 3,

L(n,a,2)=0. (2.7)

(c) If y=2, and n = 3M + j with 0 < j < 2, then



M if 7=0, or j =2 with

a> (2n—-4)/5
L(n,a,2) = (2.8)

M—-1 if =1, or j =2 with

a< (2n—-4)/5.
This is proved in Section 3.
We now consider d in the range
3<d<n-3

for the minimum interference level £. The cases of v = 2 and v > 3 are treated separately. We
obtain an almost complete answer for v = 2.
THEOREM 2.2. Suppose that v = 2.

(a) If n is even, then

((n,a,d)=0 if dgg,
and
nd _ o2 if d> 2 and
5 is even, or 5 and d are both odd
(n,a,d) = (2.9)

M_n2_|_1 if d> % and % is odd
and d 1s even .

[}
*|

(b) If n is odd, then
ln,o,d)=0 if d<n-2a,

and
nd n?

1
Emm@:7—1+zﬁd>g. (2.10)

(c) If n is odd and in the remaining range n—2a < d < 7, then £(n, o, d) < %. Furthermore:

(i) £(n, a,d) = 0 if there is an integer 2s +1 > 5 such that

oz§< 5 )n—l and d§< 2 )n;
2s+1 2s+1

(ii) £(n,a,d) < % —1ifd>8, % is even, and there is an integer 4s+ 1 > 5 such that

oz§< 25 )n—l and d:<i>(n—|—1);
4s + 1 4s + 1

(iii) £(n,a,d) = £ for a = (n — 3)/2.

Case (c) above is the only case not completely settled. Instances of it are illustrated in

Figure 2.1. The number beside each vertex clump gives the color assigned to those vertices, and
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the number on a line between noninterfering clumps is the number of edges between them. Case
analyses, omitted here, show that no improvements are possible in part (c) of the theorem when
n < 21. Given n < 21, (i) has three realizations, namely £(15,5,6) = £(21,7,8) = £(21,8,6) =

0, (ii) has only the realization at the bottom of Figure 2.1, and £ = d/2 for all other cases.

Figure 2.1 about here

We remark that the bounds on £(n, o, d) for d > % are obtained using a variant of Turan’s
theorem on extremal graphs (Turdn, 1941; Bondy and Murty, 1976, p. 110). Theorem 2.2 is
proved in Section 4.

We now consider the minimum interference level £ when v > 3. To handle this case we use
Theorem 1.1, which is proved in Section 5. Let p and ¢ be the unique nonnegative integers
that satisfy

n=py+q with 0<¢<7,
that is
n n
p=12) and g=n-s12]. (2.11)
Our bounds for v > 3 are given in the next two theorems for ¢ = 0 and ¢ > 0, respectively,
and are proved in Section 6. The ¢ = 0 case is somewhat simpler.
THEOREM 2.3. Suppose that v > 3 and that v divides n, i.e. ¢ = 0.
(a) If d < n —p, then
l(n,a,d)=0.

(b) If d > n— p then
n{d=n+p) if n—disoddorif
C(n, 0, d) = n — d 1s even and p 1S even

n(d—n+p) +

5 3 if n—diseven and p is odd .

THEOREM 2.4 Suppose that v > 3 and v doesn’t divide n, i.e. ¢ > 1.
(a) If d < n —p, then

0 ¢fd<n—-p—-1,ord=n—p-1

U, o, d) = and g <y —1
£ ifd=n-p-landg=v-1.
b) Ifd > n — p, then
(b) If P,
g(n7a7d)zw+g

2



where

9t f o — d is odd

0= q(p2—+2) i1f n—dis even and p 1s even (2.12)

@ if n—diseven and p is odd .

We turn next to results for the minimax interference level L. We first distinguish cases
where L = 0 from cases where L > 0.

THEOREM 2.5. Suppose that 3 < d < n — 2. Then:

(a) L(n,a,d) =0 whenever v > d and also when v =d and n < 2(d + 1);

(b) L(n,a,d) > 0 for v < d whenever n > 2(y + 1).

The only cases in the parameter range 1 < o < 7 —1 and v > 2 not settled by this theorem

are those with
y=d—a and n=2(d—-a)or 2(d—a)+ 1, where a >0 . (2.13)

Both L = 0 and L > 0 occur in this exceptional case, e.g. for @ = 1, L(8,1,5) = 0 while
L(7,1,4)=1.

Our final main result provides bounds for L. Set

Q=d+1-2L
and
n
W/:n—(d—l-l)[d_l_lj .

In view of Theorem 2.5 we consider only the range that 2 < v < d.
THEOREM 2.6. Suppose that 3 < d <mn —1 and that 2 <~y < d. Then

1 n
L d) > —

J+ D) +1 =) +Q( — Q) — WA+ 1),

and

L(n,a,d) < % <nf 1) (n(n =) +4(v ) .

In the special case that d + 1 divides n, these bounds can be written more simply as

nd n(y-1) nQ(y-Q) nd nd(y-1)  dq(y—-q)
S L CE S I e S e e e

This applies in particular when d = n — 1, in which case the upper and lower bounds coincide,

yielding (1.1). If n is substantially larger than d, and d is somewhat larger than v, then L is
closely approximated by %.

Theorems 2.5 and 2.6 are proved in Section 7.
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3. Elementary Facts: Theorem 2.1

We derive general conditions that guarantee £ = 0 or L = 0, and then analyze degree-2

graphs (Theorem 2.1).
LEMMA 3.1. If1 < a < 5, then
(a) £(n,a,d)=0 whenever d<n-—2a, (3.1)

and

(b) £(n,a,d) =0 whenever d < g and n is even. (3.2)

ProOOF. (a) Given d < n —2a, let V(G) = {1,2,...,n} and consider the coloring f(i) =1

for every i. We construct a suitable G starting with the edge set
E={{i,j}:i,j€[n], t #£7, with D(i,7) > (n+1-d)/2} .

If nis odd, or if n is even and d is odd, let F(G) = E. Then every vertex has degree d and
every edge has D > a, so {(n,a,d) = 0. If n and d are both even, so a < (n —d)/2 — 1,
let B(G) = (BU{{i,3} : D(i,j) = 252D\ ({13 + 1},{2,2 + 2}, ..., {2,n}}. Again, every
vertex has degree d and every edge has D > «, so {(n,a,d) = 0.

(b) Let x¢ denote the chromatic number of the graph GG. The definition implies that:
l(n,a,d) =0 if yg <~ forsome G € G(n,d) . (3.3)

If n is even and d < 7, then G(n, d) contains a bipartite graph with n/2 vertices in each part,
so X¢ = 2, and (b) follows from (3.3), since v > 2. [
We remark that the construction in part (a) uses all n colors, and when d > n — 2« this

same construction gives many interfering edges. It is natural to consider the opposite extreme,

i

47| noninterfering colors. This leads to part (b).

which is to use only a maximal set of v = |

The restriction in part (b) that n be even is crucial, because no d-regular bipartite graph
exists for odd n. Indeed there are exceptions where £(n, a, d) > 0 for some d < 5 with n odd:
see Theorems 2.1 and 2.2. These exceptions occur when v = 2, but are not an issue for v > 3.

We obtain bounds on the minimax interference level L using the following well-known

bound for the chromatic number yg of a graph G.
PrOPOSITION 3.1. For every finite simple graph G,

xa¢ <Ag+1, (3.4)
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where Ag is the mazimum degree of a vertex of G. Furthermore xg < Ag provided that no

connected component of G is an odd cycle or a complete graph.

ProoF. Brooks (1941); Bondy and Murty (1976, pp. 118 and 122). [ ]
This result immediately yields the following condition for the minimax interference level

L=0.

LEMMA 3.2. If1 < a < 3, then

L(n,a,d) =0 whenever v > d . (3.5)

Proor. The definition of L(n, a, d) gives
L(n,a,d) =0if xg < v for every G € G(n,d) . (3.6)

Since Ag = d for a d-regular graph, (3.5) follows from Proposition 3.1 via (3.6). [

ProoF oF THEOREM 2.1. (a) Since d = 2, £ = 0 follows from (3.2) if n is even, and from
(3.1)if n is odd and & < 5 — 1.

(b) follows from Lemma 3.2.

(c) Given d = 2, every graph in G(n,2) is a sum of vertex-disjoint cycles. Suppose v = 2, so
n/3—1 < a <n/2—1. Then an even cycle has minimum interference 0, a 3-cycle has minimum
interference 1, and an odd cycle with five or more vertices has minimum interference 0 or 1.
It follows that L = M if n = 3M (M 3-cycles), L= M —1if n=3M +1 (M — 1 3-cycles,
one 4-cycle), and L € {M — 1, M} if n = 3M + 2. The last case uses M — 1 3-cycles and one
5-cycle. When the 5-cycle’s vertices are colored successively as 1, o+ 2, 2aa+ 3, n — 20 — 1
and n — «, it has no interference if [n — (2a4 3)] 4+ [n — 2a— 1] > o, ie., if @ < (2n — 4)/5,
so L = M — 1 in this case. More generally, suppose one vertex of the 5-cycle is colored 1.
Its neighbors must have colors in [ 4+ 2,7 — «] to avoid interference. Then their uncolored
neighbors, which are adjacent, must have colors in 2o+ 3,...,n,1,...,7n — 2a — 1] to avoid
interference. This set has max D = [n+ (n—2a—1)] — (2a+3), whichis < aif (2n—4)/5 < a.
Hence L= (M —-1)+1forn=3M+2if 2n—4)/5 < a. [

4. Minimal Interference Level: Theorem 2.2

We prove Theorem 2.2 in this section. The ranges stated where {(n, a, d) = 0 follow from

Lemma 3.1, so the main content of parts (a) and (b) of Theorem 2.2 concerns the values
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{(n, o, d) for d > 5. To obtain these we use a variant of Turan’s theorem (Turdn, 1941; Bondy
and Murty, 1976, p. 110), which we state as a lemma. An application of the lemma at the
end of the section yields the exact value of L(n,a,n — 1) as well as £(n,a,n — 1). Recall that
an equi-t-partition of a vertex set V' is a partition {Vj,...,V;} with ||Vi| — |V}|| < 1 for all

i, €41,...,t}.

LEMMA 4.1. The mazimum number of noninterfering edges in the complete graph K, with
vertex set V and threshold parameter o is attained only by a coloring f : V. — [n] that has

D(f(z), f(y)) > a whenever x and y are in different parts of an equi-y-partition of V.

PrOOF. Suppose that a coloring f of the complete graph K,, has f; vertices of color
and f;f; > 0 for some ¢ # j with D(7,j) < a. Let m,, denote the number of vertices of
colors other than ¢ and b that interfere with ¢ and not b. If all color-i vertices are recolored
J, the net increase in interference is f;(m;; — m;); if all color-j vertices are recolored i, the
net increase in interference if f;(m;; — m;;). Hence at least one of the recolorings does not
increase interference. Continuing this recoloring process implies that noninterference in K, is
maximized by a vy-partite partition of V such that D(f(z), f(y)) > a whenever z and y are in
different parts of the partition. Turan’s theorem then implies that maximum noninterference
obtains only when the partition is an equi-vy-partition. [ |

We can assume without loss of generality that the coloring f found in Lemma 4.1 is constant
on each part of an equi-y-partition, with f(V) = {(i — D)+ 1)+ 1 : ¢ = 1,...,v}. If
interfering edges are then dropped from K, we obtain a complete equi-y-partite graph with
zero interference and chromatic number +. This graph is regular if and only if + divides n and

each part of the partition has n/y vertices.

ProOOF OoF THEOREM 2.2. Throughout this proof v = 2, so that
n/3—-1<a<n/2-1. (4.1)

We consider first (a) and (b). The ranges given where £(n, o, d) = 0 come from Lemma 3.1.

So assume now that d > 7. Let (g be a complete bipartite graph {A, B} such that
Al =[5] and |B|=|3].

Lemma 4.1 implies that two-coloring GGy using noninterfering colors for A and B uniquely

maximizes the number of edges with no interference when v = 2. Therefore £ > nd/2—|A||B] .
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(a) Suppose n is even. If n/2 and d are odd, the number of edges needed within each part
of Gy to increase all degrees to d is (n/2)(d —n/2)/2, which is an integer since d —n/2 is even.
It follows that if n/2 is even, or if n/2 and d are odd, then £ = (n/2)(d — n/2) = nd/2 — n?/4.

If instead n/2 is odd, and d is even, then (n/2)(d — n/2) is odd, Gg is not part of any
graph in G(n,d), and £ > nd/2 — n%/4. We obtain £ = nd/2 — n?/4 + 1 by replacing Gy with
a complete bipartite graph Gy with bipartition {A’, B'}, |A’| = n/2+ 1 and |B'| = n/2 — 1.
Beginning with (G, each vertex in A’ requires d — n/2 + 1 more degrees to have degree d, and
each vertex in B’ requires d — n/2 — 1 more edges added to have degree d. Both d — n/2+ 1
and d —n/2 — 1 are even, so edge additions as needed can be made within A’ and B’ to obtain
G € G(n,d). Therefore { = nd/2— (n/2+1)(n/2—1) = nd/2—n?/4+ 1 in this case; and (2.9)
is proved.

(b) Suppose n is odd, so d is even by (2.3). Beginning with Gy, each of the (n + 1)/2
vertices in A requires d — (n —1)/2 more incident edges added to have degree d, and each of the
(n—1)/2 vertices in B requires d — (n+1)/2 more incident edges added to have degree d. Each
of {(n+1)/2,d—(n—1)/2} and {(n—1)/2,d — (n+1)/2} contains an even integer, so we can
make the required additions of edges within A and B. Hence { = nd/2—[(n+1)/2][(n—1)/2] =
nd/2 — (n? —1)/4, and (2.10) is proved.

It remains to prove (c), which has three parts (i)—(iii). Assume henceforth that n is odd
and n — 2a < d < n/2, with d even because n is odd. Augmented equi-bipartite graphs,
illustrated at the top of Figure 2.1, show that ¢ < d/2 since they require d/2 edges within the
(n 4 1)/2-vertex part to obtain degree d for every vertex. Sometimes ¢ = d/2. A case in point
is o = (n — 3)/2, the largest possible a for v = 2 and odd n.

Suppose & = (n — 3)/2. Then d >n —2a0=3=d € {4,6,...,n— 1}. Each vertex in the
color set [n] has exactly two others for which D > «, and the graph of noninterfering colors is
an n-cycle whose successive colors are 1, (n+3)/2,2, (n+5)/2,3,...,(n+1)/2. If every color
were assigned to some vertex in G € G(n, d), there would be at least n(d — 2)/2 interference
edges. But n(d —2)/2 > d/2, so f must avoid at least one color to attain £. Deletion of one
color from the n-cycle of noninterfering colors breaks the cycle and leaves the noninterference

graph

*——o — 0 —— 0 — - ——o (n —1 CO]OI’S) .

z1 n L2 Y2 Tn-1 Yn=1



- 12 -

Because all z; colors interfere with each other, and all y; colors interfere with each other, we
can presume that f uses only one z; and an adjacent y;. This yields the augmented bipartite
structure of the preceding paragraph, and it follows from maximization of between-parts edges
that £ = d/2. This completes the proof of (iii).

For (i) and (ii), assume o < (n — 3)/2 and consider an odd r > 5 sequence of colors ¢y,
€2y, ¢ with ¢; = 1and D(ciq1,¢) > (a+1) fore =1,...,r—1. The tightest such sequence
has¢; = (i—1)(a+ 1)+ 1 fori=2,...,r, where color jn+k, 1 < k < n, is identical to color

k. It follows that the final color ¢, can be chosen not to interfere with ¢y =1 = jn+ 1 if
1
== (r = (0t 1) > (a4 1),

ie., if

<<r_1) 1 <= r> i (4.2)
=\ )" r_n—Q(oz—}—l)' '

We usually consider the smallest such odd r > 5 because this allows the £ = 0 conclusion for
the largest d values. Our approach, illustrated on the lower part of Figure 2.1, is to assign
clumps of vertices to the ¢; in such a way that all edges for G € G(n,d) are between adjacent
clumps on the noninterference color cycle ¢y, ..., ¢, c;.

Suppose (4.2) holds for a fixed odd r > 5. We assume that r < n because the ensuing

analysis requires this for d > 3. Let @ and b be nonnegative integers that satisfy
n=—ar+b, 0<b<r.

We prove (i), then conclude with (ii). The analysis for (i) splits into three cases depending on
the parity of a and [r/4].

Case 1: @ odd

Case 2: a even, |r/4] odd

Case 3: a even, |r/4] even.

Because n is odd, Case 1 requires b to be even and Cases 2 and 3 require b to be odd.

Cask 1. Given an odd a, we partition the n vertices into b clumps of @ + 1 vertices each
and r — b clumps of a vertices each. The clumps are assigned to colors in the noninterference
cycle ¢1,..., ¢, cq so that the clumps of each type are contiguous. Cases for b =0 and b =4
are illustrated at the top of Figure 4.1. We begin at the central (top) a clump and proceed
symmetrically in both directions around the color cycle, assigning between-clumps edges as

we go so that all vertices end up with degree 2a. The required edges into the next clump
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encountered are distributed as equally as possible to the vertices in that clump. When we get
into the clumps with a4 1 vertices, the number of between-clumps edges needed will generally
be less than the maximum possible number of (¢ + 1)2. Numbers of between-clumps edges
used to get degree 2a for every vertex are shown on the noninterference lines between the ¢;

on Figure 4.1.

Figure 4.1 about here

The preceding construction yields ¢(n,«,d) = 0 for d = 2a = 2(n — b)/r. If even d is less
than 2a, say d = 2d’ with ¢’ < a, we modify the procedure by using fewer between-clumps
edges for the required vertex degrees: clump sizes are unchanged. Because n/r < d/2 = a

yields the contradiction that n < ra, it follows for Case 1 that £ =0if d < (2/r)n.

Cask 2. With a even and |r/4| odd, we have b odd and r € {5,7,13,15,21,23,...}. In this
case we assign @ — 1 vertices to ¢; and proceed in each direction around the ¢; cycle, assigning

a,a+1,a,a—1,a,a+1,a,a—1,...,a°

, @ vertices to the next (r — 1)/2 ¢; in order. The
penultimate number @° equals @ if r € {5,13,21,...} and is e + 1 if r € {7,15,23,...}. The
ultimate number ¢* in chosen so that there are [n — (@ — 1)]/2 vertices (excluding the a — 1 for
c1) on each side of the color cycle. If a® = a then a* = a + (b+1)/2, and if a® = a+ 1 then
a* =a+ (b—1)/2. The two cases are shown on the lower left of Figure 4.1 with numbers of

between-clumps edges that give degree d = 2a for every vertex. If even d is less than 2a, fewer

edges are used, as needed, down the two sides. Asin Case 1, we get £ =01if d < (2/r)n.

Caste 3. With « even and [r/4] even, we have b odd and r € {9,11,17,19,25,27,...}.
Here we assign a4 1 vertices to ¢; and proceed with a,a —1,a,a+1,a,a—1,a,a+1,...,d°,
a* vertices assigned to the next (r — 1)/2 ¢; in each direction away from ¢;. We get ¢ = a
and ¢* = a+ (b4 1)/2 if r € {9,17,25,...}, and a® = a+4+1and a* = a + (b-1)/2if
r € {11,19,27,...}. The two cases are shown on the lower right of Figure 4.1. As before, £ =0
if d < (2/r)n.

This completes the proof of (i), after defining s by r = 2s 4+ 1. We have also checked that
the construction used here cannot yield / = 0 unless the conditions of (i) hold.

There is however one other set of circumstances where this construction yields a value of
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< % for some d > %n, and these circumstances are exactly the hypotheses of (ii), namely:

8, d/2 is even

4s+ 1 for some integer s > 1

r(d/2) —1 (nis odd since d/2 is even)
satisfies (4.2) .

v

(4.3)

203 I X

In this case we partition the vertices into (r+1)/2 clumps of d/2 — 1 vertices each and (r—1)/2
clumps of d/2 + 1 vertices each. The clumps (-1 for d/2 — 1, +1 for d/2 + 1) are arranged
around the noninterference color cycle ¢y, ¢o,...,¢. as —1,—1,—1,+1,+1,—1,—1,+1,+1,
.o,—1,—1,41,41. We use all possible between-clumps edges. This gives degree d for ev-
ery vertex except those in the ¢y clump, which has 2(d/2 —1)% = d?/2 — 2d + 2 incoming edges
from ¢; and 3. The degree total for ¢ should be d(d/2 — 1) = d*/2 — d, so we need to add
(d—2)/2=d/2 -1 edges within ¢y to get degree d for each ¢y vertex. Prior to the additions,
each cq vertex has degree d — 2 by our equalization construction, so the additions can be made
by a complete cycle within the clump. It follows that ¢ < d/2 — 1, proving (ii). [ |
We conclude this section by noting that the modified Turdn’s theorem (Lemma 4.1) easily

allows us to completely settle the case of degree d = n — 1.

COROLLARY 4.2. Ford=n—1,

tnyan—1) = Lin,a,n— 1) = | ] <n— %7 <L%J +1)) . (4.4)

Proor. Write

n=py+q, 0<¢<7v,
sop= L%J An equi-y-partition of an n vertex set has
q parts, each with p + 1 vertices,

~ — ¢ parts, each with p vertices.

Now the unique graph G' € G(n,n — 1) is K,,, so applying Lemma 4.1, we have
ln,a,n—1) = L(n,a,n — 1) :q( p—;l ) +(v—q) ( ]2) ) ;
which is (4.4). [
5. Chromatic Number Bound: Theorem 1.1

This section gives a self-contained proof of Theorem 1.1. We first recall two preliminary
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facts, stated as propositions.

ProposiTioN 5.1. (Dirac (1942)) Let G be a simple graph. If every vertex of G is of degree
at least |V (G)|/2, then G is Hamiltonian, that is, G has a cycle of length |V (G)|.

ProoF. See Bondy and Murty (1976), p. 54. [ ]

Recall that a matching in a simple graph G is a subset of mutually vertex-disjoint edges of
G. A matching is perfect if every vertex in G is on some edge of the matching. The following
is a consequence of a well-known theorem of Hall (1935).

ProposiTION 5.2. (Marriage Theorem) If G is a d-reqular bipartite graph with d > 0, then
G has a perfect matching.

ProoF. See Bondy and Murty (1976), p. 73. [ ]

We study the function ¢(n,d;r) defined by

1 if there exists an n-vertex d-regular r-colorable graph,
¢(n,d;r) =

0 otherwise .
When ¢(n,d;r) = 1 we let G(n,d;r) denote such a d-regular r-colorable (that is, r-partite)
graph having n vertices. We consider only values in which nd is even.

Our first observation is that because an r-colorable graph is also (r 4 1)-colorable,
o(n,d;rm) < o(n,d;re) if 1y <1y . (5.1)

The purpose of the next two lemmas is to prove that ¢(n,d;r) is monotone when r > 3 is

held fixed and d varies over values where nd is even.

LEMMA 5.1 (a) If d < 5 and if either r > 3 or r = 2 and n is even, then

¢(n,d;r)y=1. (5.2)
(b) If d > %, then
¢(n,d;r) =1 implies ¢(n,d—2;r)=1. (5.3)
If in addition n is even, then
¢(n,d;r) =1 tmplies ¢(n,d—1;r)=1. (5.4)

ProOF. (a) Suppose that n is even. The inequality (5.1) implies that it is enough to show

¢(n,d;2)=1for d <

, M even . (5.5)

N3
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We use reverse induction on d < n/2. For the base case d = n/2, the complete equi-2-partite
graph gives ¢(n,n/2;2) = 1. For the induction step, suppose we know that ¢(n, d;2) = 1. Then
a d-regular bipartite graph G(n,d;2) exists, and by Proposition 5.2 it has a perfect matching
M. Remove all edges in M from G to obtain a (d — 1)-regular bipartite graph G(n,d — 1;2).
Hence ¢(n,d —1,2) = 1.

Suppose n is odd. Then (5.1) implies that it is enough to show

¢(n,d;3)=1ford < g, n odd . (5.6)

Now d must be even by (2.3),and d < (n—1)/2. Because n—1 is even, we have ¢(n—1,d;2) =1
by (5.5). Consider G := G(n — 1,d;2) with |V(G)| = n — 1. By Proposition 5.2 we may find a
perfect matching of G, say M = {{z1,11},..., {2k, yx}}, with k = (n — 1)/2 > d/2. Remove
from G the edges {z1,11},.. ., {mg, yg}, and add to G' a new vertex z and the edges {z, z;} and
{z,y;} for 1 <7 < d/2. Then it is easy to see that the resulting graph is a d-regular 3-partite
graph with n vertices, which proves (5.6).

(b) Let G = G(n,d;r), which exists by hypothesis. Since d > %, Proposition 5.1 guarantees
that G has a Hamilton cycle C'. Removing all edges from C' yields a G(n,d — 2;r), so ¢(n,d —
2;r) = 1. If moreover n is even, then C has even length and we get a perfect matching M
by taking alternate edges in C'. Removing all edges in M from G yields a G(n,d — 1;r), so
¢(n,d —1;7) =1 in this case. [ |

LEMMA 5.2. If r > 3, then

d(n,dy;r) > d(n,dyr) if dy <dg (5.7)

provided that nd, and ndy are both even.
ProoF. Suppose dy < n/2. Then by Lemma 5.1(a), ¢(n,dy;r) = 1 for all r > 3 and we
are done.

Suppose d; > n/2. For even n, Lemma 5.1(b) used inductively on decreasing d gives
o(n,dyr)=1=¢(n,de— ;) =1=...= ¢(n,dy;r)=1.

For odd n, since nd; and nd; are both even, both d; and dy must be even. Now Lemma 5.1(b)
gives

o(n,dyr)=1= ¢(n,dy —2;7)=1= ... = ¢(n,dy;r) =1,

o (5.7) follows. [
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Proor oF THEOREM 1.1. To commence the proof, we define p and ¢ by
n=pr+q with 0<g<r, (5.8)

that is p = || > 1. Note that r divides n 4 1 if and only if ¢ = 7 — 1. In terms of p and ¢ the
assertions of the theorem then become:

(i) If ¢ = 0, then ¢(n,d;r)=1ifd <n —p.

(i) f 1 < ¢ <r—2,then ¢(n,d;r)=1ifd<n-p—1.

(ii) If g =r — 1 then ¢(n,d;r)=1ifd <n—p-2.

To prove (i)-(iii), we use the complete equi-r-partite graph G"(n) defined as follows. The

graph G"(n) has vertices V = {vy,v3,...,v,} and for 1 < 7 < r we define the vertex sets
X;=A{vi:i=7 (mod r)} . (5.9)
The edge set of G"(n) is
B(GT () = {{us, 05} 1 # j(mod 1)}
Here {X1,..., X, } is an equi-r-partition of V' with
Xi| = [ Xal = = (X, = p+ 1, [Xpm| = ... = [ X, =p. (5.10)
For1<a<b<rwelet G;b denote the induced subgraph of G"(n) on the vertex set
Vap i= U?Zan .
To prove (i), if ¢ = 0 then G"(n) is an (n — p)-regular graph, hence
o(n,n—p;r)=1. (5.11)

Lemma 5.2 implies ¢(n,d;r)=1if d < n — p, and (i) follows.

To prove (i), let H = G7,; .. Then (5.10) shows that H is a p(r — ¢ — 1)-regular graph
having p(r — q) vertices. Now r — ¢ > 2 implies that H has degree p(r — ¢ — 1), which is greater
than half its vertices, so H has a Hamilton cycle C' by Proposition 5.1.

If p(r — q) is even, then H has a perfect matching M obtained by taking every other edge
in C'. Removing all edges in M from G"(n), the resulting graph is (n — p — 1)-regular, hence
¢(n,n —p—1;r) = 1. Lemma 5.2 then completes the proof of (ii).

If p(r — q) is odd, then p is odd, hence so is

n=pr+q=(p+1)qg+pir—q).
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Then n—p—1is also odd, so d = n—p—1 is forbidden by (2.3). Thus it suffices to show that
¢(n,n —p—2;r) =1 in this case, for then Lemma 5.2 gives ¢(n,d;r)=1ford <n —p— 2.
Let H' := GY,. Then H'is a (p+ 1)(q — 1)-regular graph with (p+ 1)q vertices. If ¢ > 1
then
(p+1)(g—1) > (p+1)q/2,

hence H' is Hamiltonian. Since (p+ 1)q is even, H' has a perfect matching M’. Removing all
edges in M'UC from G"(n), the resulting graph is (n—p—2)-regular, hence ¢(n,n—p—2;r) = 1.
Suppose ¢ = 1. Notice that since p(r — 1) is odd, r # 3, hence r > 4. Let H” be the

induced subgraph of G"(n) on the set
{vjrr2 € Xo: (p+1)/2< i <prul X;
7=3
and
E = {{vir41,0jr42} : 0< i< (p—1)/2, i=2jori=2j+1}.
Then the number of vertices of H” is p(r — 2) + (p — 1)/2 and the minimum degree of H” is
p(r—3)+ (p—1)/2. Since

(p(r—=2)+ (p—1)/2) forr > 4,

DN | —

pr=3)+((-1)/22

Proposition 5.1 implies that H” has a Hamiltonian cycle C”. By removing all edges in C" U E
from G"(n) we have an (n — p — 2)-regular graph, hence ¢(n,n —p — 2;r) = 1.
To prove (iii) we proceed by induction on r, with an induction step from r to r + 2. There

are two base cases, r = 3 and r = 4.

Base CaAse r = 3. We have g =2,s0 n =3p+ 2. Let
By = {{vsi,vzi—2} i =1,2,...,p} and Fy = {{vs;,v3;1} 11 =1,2,...p} .

Consider the graph G obtained by removing from G*(n) all edges in 1 U Fy U {v3pt1, U3p+2}-
Then it is easy to see that G is (n — p — 2)-regular, so ¢(n,n — p—2;r) = 1. Now Lemma 5.2
gives ¢(n,d;r)=1ford <n—p-2.

Base CASE r = 4. We have ¢ = 3, and n = 4p+ 3. Suppose first that p is odd. We relabel

the vertices of G*(n) so that the sets X; in (5.9) become

X;={w;:i=j (mod 3)} for j=1,2,3, while X4={u;:1<1i<p}. (5.12)
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Let H be the subgraph of G*(n) induced on the vertex set {w; : 2p+ 1 < j < 3p+ 3}. Then
|V(H)| = p+ 3 is even and H is Hamiltonian. Thus H has a perfect matching, call it M.

Consider the edge set
E={{u,w;}:1<i<p, j=2i—1or 2i},

and form a graph G by removing all edges in F U M from G*(n). Then G is an (n — p — 2)-
regular subgraph of G*(n), hence ¢(n,n—p—2;r) =1, and ¢(n,d;r) =1ford < n—p—2 by
Lemma 5.2.

Suppose now that pis even. Then n = 4p+3is odd and n—p—2 is also odd, so d = n—p—2
is forbidden by (2.3). It suffices therefore to show that ¢(n,n — p — 3;r) = 1 in this case, for
then Lemma 5.2 gives ¢(n,d;r) =1 for d < n — p — 3, hence also for d < n —p — 2. We use
the vertex labelling (5.12), and let H be the subgraph of G*(n) induced on {w; : 1 < j < 3p}.
Then |V (H)| = 3p is even, and H is Hamiltonian, so H has a perfect matching M. Consider
the edge set

E= {{Ui, w]} 11 < ? < D, .] - 32._27 3i—1lor 37;}U{{lw3p+17 'w3p+2}7 {'w3p+27 'w3p+3}7 {'w3p+37 'w3p+1}} .

Form a graph G by removing F' U M from G*(n). It is an (n — p — 3)-regular graph, whence
Slmn—p— ) =1.

INpDucTION STEP. Fix r > 5 and define
do :=do(n,r) =max{d:d <n—p-—2, ndiseven},

sody=n—p—2orn—p-—3. It is enough to show that ¢(n,do;r) =1, for Lemma 5.2 then
yields ¢(n,d;r) =1 for d < n —p— 2,nd even.
To do this, set
n'=n-20p+1)=p(r-2)+q-2,

where ¢ = r —1s0 ¢—2 > 0. Then d; = dy(n,r) — n’ has 0 < dy < p, and furthermore we
easily check that
d':=do(n',r —2) =do(n,7) - 2(p+1) . (5.13)

Take r' = r—2, whence ¢ = ¢—2 = r'— 1. We may apply the induction hypothesis at r' = r—2
to conclude that there exists a d’-regular (r — 2)-partite graph G = G(n/,d’;r — 2). Let H be

a di-regular bipartite graph with 2(p + 1) vertices disjoint from those of GG; such a graph H
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exists by Lemma 5.1(a). Take the disjoint union of G and H and add in all edges between
V(G) and V(H) to obtain a new graph G’ on n vertices which is do(n, r)-regular, according to

(5.13). Thus ¢(n, do;r) = 1, completing the induction step for (iii). [
6. Minimal Interference Level: Theorems 2.3 and 2.4

In this section we study the range v > 3 and prove Theorems 2.3 and 2.4. The cases where
{(n,a,d) =0, i.e. for d smaller than about n — p, follow from Theorem 1.1 applied with r = ~.
For the remaining cases, the harder step in the proofs is obtaining the (exact) lower bounds
for £(n,a,d). The upper bounds are obtained by explicit construction.

We proceed to derive a lower bound for {(n, o, d) stated as Lemma 6.2 below. Let G be
any d-regular graph on n-vertices, let f : V(G) — {1,2,...,n} be a given coloring of G, and
let « also be given. We begin by partitioning the n colors into v groups {fL 11 < i<~} such
that each group A; consists of consecutive colors and the groups Aq, .. .,flv are themselves
consecutively arranged with respect to the cyclic ordering of colors (mod n), with all groups
but 1211 containing exactly o+ 1 colors, and /Nll contains the remaining o+ 1 + m colors. Here
m is given by

n=v(a+1)+m, with0o<m<a+1, (6.1)
and such a partition is completely determined by the choice of A; = {i,1+1,...,i+a+14+m}.
We now choose Ay so as to minimize the number of vertices v in G that are assigned colors
f(v)in Ay. After doing this, we have the freedom to cyclically relabel the colors (via the map
¢¢(j) = j+{£(mod n)) without affecting which edges have vertex colors that interfere. We use
this freedom to specify that

Ay ={-m,-m+1,...,a—1,a},
in which case

Ai={j:-1D(a+1)<j<i(a+1)} for 2<i<y :

see IMigure 6.1. Notice that for 2 < ¢ < v any two colors in flz interfere with each other.

Figure 6.1 about here

This partition of the colors induces a corresponding partition of the vertices of G into the

color classes

Aii={veG:flv)e A}, 1<i<y. (6.2)
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Now set,

a; = |A;] .

We now count the edges in G and in its complement G = K,, — G in various ways. For any
two subsets V' and W of vertices, let e(V, W) count the number of edges between vertices in V
and those in W, and let V := V(G) \ V. Let @; ; count the number of edges between A; and

A; that are not in G, which is
a; ;= aa; —e(A;, A;), 1<4, j<y.

Along with this we define

a; = 2]752'(712'7]' = ai(n — ai) — e(AZ', AZ) , 1< <y,

The d-regularity of GG then yields
1 - 1 _
e(AZ', AZ) = §(da2 — e(AZ',AZ')) = §(a2(d—}— a; — n) + ai) . (6.3)
The potential interfering edge set B; ; between vertices in A; and those in A; is

B;; = BZ'7]‘(G, f) = {{U, w} € E(I(n) v E A, w € A]',With D(f(’U), f(w)) < Oz} .

The actual interfering edge set is E(G) N B; ; and we set
cij = |E(G)N Bl .

We clearly have
aij+ cij > |Bijl . (6.4)

Finally, let 6* and § count the potential and actual non-interfering edges in Ay, respectively,

ie.

¥ = |{{v,w} € F(K,):v,we Ay and D(f(v), f(w)) > a+ 1},

b = |{{v,w} e E(G):v,we Ay and D(f(v), f(w)) > a+1}|.
Certainly 6* > 4. Since all edges between the vertices in the same component A; interfere,

except for & edges in Ay, we obtain the bound

IQG,f) = Ei<jci7]‘—|—2?:16(142',142') -4 ( )
6.5
> Yicjei;+ X e(Ai, Ay — 6"
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To bound this further, we need the following bounds for edges connecting a vertex in the color

set Ay to a vertex in its two neighboring color sets A, and flw.

LEMMA 6.1. We have

— *
a12+ci2> 0",

and

G1y+cry> 0" .
Proor. We start with (6.6). By (6.4) it is enough to show that
|Byg| > 0" .
It suffices to show for fixed v € A; with o+ 1 —m < f(v) < & that

{w e Ay : D(f(v), f(w)) < m}| > [{w € Ay : D(f(v), f(w)) > a+1}],

(6.8)

because, using « > m, this implies that, for sums over v € A; with a4+ 1—-m < f(v) < a,

[Bia| 2 Eu{we Ag: D(f(v), f(w)) < m}|

> Y,{we A D(f(v), f(w)) > a+ 1} =5*.

To prove (6.8), given v € Ay with a+1—m < f(v) < a, we define the vertex set

Al={weV(G): fw)e {f(v)—a,flv)—a+1,....f(v)+m}} C A UA; .

This is a set of & 4+ 1 + m consecutive colors, hence |A’| > |A;| by the minimizing property of

the color set A;. Now a+1 —m < f(v) < a implies that
ANA ={weV(G): f(w) e{f(v) —a,...,a}}.

Thus
|A"\ (Ayn A > A\ (AN A

which is exactly (6.8). Thus (6.6) follows.
The proof of (6.7) is analogous.

To state the lower bound lemma, recall that the quantities p and ¢ are defined by

n=py+qgwith0<g<vy,
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sop=2].
LEMMA 6.2. If d > n — p then

tn, o d) 2 q[(p+1)(d+p+1=n)/2]+ (y—q)[p(d+p—n)/2] . (6.9)

Proor. We derive this result from the general bound
I,(G, f) > X [ai(d+ a; — n)/2] , (6.10)

where a; = | A;| for the vertex partition (6.2). To establish (6.10), we first note that Lemma 6.1
yields
1 _ x
5(01,2 +a1,)teiotey >80,
Together with (6.3), this yields
(A, A) = +eaptay, > e(AAy)— %(@1,2 + a1 )
> fai(d—a;—n).

Since the left side of this inequality is an integer,

e(A1, A) =6 +ci2tciy> [ar(d—a; —n)/2].
However, (6.3) also gives

e(Ai, A) > [ai(d+a; —n)/2], for2<i<~y.

Substituting these bounds in (6.5) yields (6.10).
To derive (6.9), we minimize the right side of (6.10) over all possible values: a; > 0 subject

to ¥7_,a; = n. It is easy to verify that this occurs when all the a;’s are as equal as possible,

i.e.
q of the a; take the value p + 1,
(6.11)
~ — g of the a; take the value p .
Thus
1(G, f) 2 q[(p+ D)(d+p+1-n)/2] + (v —q)[p(d+p—n)/2],
which gives (6.9). [

Proor oF THEOREM 2.3. (a) This bound follows from Theorem 1.1, taking r = v noting

that ¢ = 0 guarantees that r doesn’t divide n + 1.
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(b) For d > n — p we first establish the lower bounds

(d—n+p)

U(n, 0, d) > = 5 +u (6.12)

where
0 ifn—disoddorif n—dis even

= and p is even, (6.13)
3 if n—dis even and pis odd ,

using Lemma 6.2. The case ¢ = 0 is n = p7, so (6.9) simplifies to
Z(nv «, d) 2 7“)((1 -n +p)/2-‘

= 2[p(d—n+p)/2]

Now (6.12) follows on determining the cases for which p(d — n + p) is odd.

To show that this bound is attained, we simply construct the graph G with the coloring f
that makes (6.11) hold. The constructions are easy and are left to the reader. [ |

ProoFr oF THEOREM 2.4. (a) The bounds where ¢(n,a,d) = 0 follow from Theorem 1.1
with r = .

There remains the case in which d=n—p—1and ¢g=+v -1, i.e. when n = L%J’y +v-1
(where Theorem 1.1 does not apply). We must show that

K(n,a,n—p—l)zg.

For the upper bound £ < £, it suffices to construct an appropriate graph. Note first that p
must be even since if pis odd then n=py+~v—-1=(p+1)y—1lisoddandd=n—-p—1
is also odd, contradicting (2.3). Now consider the equi-vy-partite graph G7(n) defined in the
proof of Theorem 1.1. We take a perfect matching M from the induced subgraph of G"(n)
on the vertex set (X,—1 \ {v,}) U X,. We remove all the edges in M from G7(n) and add
the edges {vy—1, vay—1}, {V3y-1,Var—1}, -, {V(p=1)y=1, Vpy—1}. Then it is straightforward to
check that the resulting graph G'is (n — p — 1)-regular and it clearly has exactly & interfering
edges when the sets X; are colored with v mutually noninterfering colors.

To show the lower bound £ > %, let G be an (n — p — 1)-regular graph and f an n-coloring
of V(G) such that

I.(G, f)={4(n,a,m—p—1) .

Take the partition {4; : 1 < i < v} of V(G) associated to f constructed at the beginning of

this section. We consider cases.
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Case (i). a; > p+ 2.
The minimality property of A; implies that, for all v € V(G),

{w e V(G): f(w) = f(v)+J (mod n) with —m < j<a}>p+2.

Since d = n—p—1, for each v € V(@) there exists w € V(G) \ {v} such that |f(v) — f(w)| < a.

Thus I, (G, f) > n/2 > p/2.
Case (ii). a; > p+2 for some 2 <1 < 7.
Here the equality in (6.5) combined with e(A, A1) > § yields

Ioz(G7f) Z E?:QG(AﬁAi) .

Using (6.3) we then have

1 2
1(G, ) > oA A) > Saild+a; - n) > T22

[ las

Case (iii). Alla; < p+ 1.

(6.14)

Since n = (p+ 1)y — 1, this case requires that v — 1 of the a; equal p+ 1 and one a; equals p.

Suppose first that a; = p. Observe that (6.14) and (6.3) yield
I(G, f) > Slje(Ai, Ay)
2 %E?:ﬁi 2 %2?22@2',1 .
Now (6.2) and a; = p give

2?22@2'71 = (Ll = (al(n — al) — E(Al, Al))

> pn—p)—pd=rp.

Substituting this in (6.15) gives I, (G, f) > &.

(6.15)

Suppose finally that a; = p+ 1. Since v > 3, and only one a; = p, either a3 = p+ 1 or

a, = p+ 1 or both. We treat only the case that a; = p+ 1, since the argument for a, = p +1

is similar. Let a;, = p. Now by (6.5) and (6.3)

(G, f) > 3@ +a)+eo—6+ 53 a
i#ig
> $(2a12 + @1,y + Q) + 12— 0F + %ZL? a;

Lemma 6.1 gives @y 9 + ¢12 > 6, hence
LG, f) > 3(Sizibii,) = 30,

> t(pn—p) —pd) =%,
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completing case (iii).

(b) We start from the formula (6.9) of Lemma 6.2, which gives a lower bound. We claim
that equality occurs. This formula of #(n, a,d) splits into several cases, according to when
(p+1)(d+p+1—n)/2 and p(d+ p — n)/2 are integers or half-integers, and consideration of
the parities of n — d and p leads to the formulas for 6 in (2.12).

For the upper bound, obtaining equality in the formula for £(n, «, d) requires (6.11) to hold,
and this easily determines the construction of a suitable graph G and a coloring f. We omit

the details. [ ]
7. Minimax Interference Level: Theorems 2.5 and 2.6

We conclude by proving the bounds for L(n,a,d) stated in Section 2.

Proofr oF THEOREM 2.5. To show part (a), the condition L(n,a,d) = 0 certainly holds
if the chromatic number xg < 7 for all G € G(n, d). This holds for v > d by Brooks’ theorem
(Proposition 3.1). For the case v = d > 3 we use the strong version of Brooks’ theorem, which
states that xyg < Ag if no component of G is an odd cycle or a complete subgraph. Here
Ag = d, and d > 3 implies there are no odd cycles, while the condition n < 2(d + 1) prohibits
any connected component being the complete subgraph Ky, for any other components must
be d-regular but have at most d vertices, a contradiction.

To show part (b), suppose that n > 2(d+ 1). Let G € G(n,d) consist of a complete graph
K41 plus a d-regular graph G’ on the other n — (d 4 1) > d + 1 vertices. If d is odd then n is
even, so that n — (d+ 1) is even, and the existence of G’ is assured by a theorem of Erdés and
Gallai (1960) for simple graphs with specified degree sequences. If v < d, at least two vertices
of K441 interfere, so L > 0.

Suppose that n = 2(d+ 1 — @), @ > 1. This implies d > 2a because we presume that
n > d+ 2. Let G consist of two disjoint copies of Kjy1_,, adding edges between them that
increase every degree to d. Each vertex requires a such edges, and this is feasible because
d4+1—a>a. Ify<d- a, at least two vertices of K;41_, interfere, so L > 0.

Suppose finally that n = 2(d+1—a) + 1, a > 1. Then n is odd, so d must be even.
Moreover,n > d+2=n > d+3 = d > 2a. Let G consist of two disjoint graphs G7 = Kg41-4
and Gy = Kjy9-—, with edge additions and deletions as follows. Add a edges from each G4
vertex to (G vertices in as equal a way as possible for resulting vertex degrees in G5. Then

each vertex in (1 has degree d, = vertices in G5 have degree d + 1, and y vertices in G5 have
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degree d, where

r4+y=d+2—a,

zat+yla—1)=a(ld+1-a).
These equations imply that + = d+2—2a > 0, so z is even. We then remove z/2 edges within
(i3 so that all vertices have degree d. We thus arrive at a graph G € G(n,d). If v < d — a then
at least two vertices in G interfere, so L > 0. Thus part (b) holds. [ |

PrOOF OF THEOREM 2.6. Suppose that 3 < d <n — 1 and that v < d. Let P, @, U and

W be nonnegative integers that satisfy

d+1 = Py+Q, 0<Q<7;

no= (d+10)U+W, 0<W<d+1.

To derive the upper bound on L in Theorem 2.6, let G be any graph in G(n,d). Let S
denote the family of all partitions of the vertex set of G into v groups, with ¢ groups of size
p+ 1 and v — ¢ groups of size p. We adopt a probability model for S that assigns probability
1/|S] to each partition. Whichever partition obtains, we use ¥ mutually noninterfering colors
for the v groups in the partition. Suppose {u,v} is an edge in G. The probability that u and

v lie in the same part of a member of S, so that {u, v} is an interference edge, is

¢+ -9 _nn=1+elv—a)
(3) yn(n —1) ’

The expected number E[I] of interference edges is nd/2 times this amount, i.e.,

_dn(n—7v)+qlv—9)

so some member of S has a coloring that gives less than or equal to E[[] edges whose vertices

interfere. This is true for every G € G(n, d). Therefore we get the upper bound

4
2y(n —1)
For the lower bound, assume initially that (d+4 1) divides n,so W =0 and U = n/(d+1).

L(n,a,d) < [n(n — )+ q(v — q)] -

Let G consist of U disjoint copies of Kgy1. Then L(n,a,d) > UL(d+ 1, a), where L(d+ 1, a)
is the minimum number of interfering edges in K441 for an f : Vgy1 — [n]. The analysis in
Lemma 4.1 shows that L(d + 1, a) is attained by an equi-y-partition of V;41 with f constant

in each part. Since an equi-y-partition of V11 has

@) groups of P+ 1 vertices each,
~ — () groups of P vertices each,
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we have
Ld+1,0) = [QP+1)P+(vy-Q)P(P-1)]/2

(d+1)(d+1-7)+Q(y-Q)
2y

Since L(n,a,d) > UL(d+ 1, a), this gives

nd+1-7v)  nQ(y-Q)
2 2v(d+1)

L(n,a,d) >

when d 4+ 1 divides n.

Suppose (d+ 1) { n with n = (d + 1)U + W, where U = LZ_T_—IJ and 0 < W < d. To
form G we begin with U disjoint copies of K441 and a disjoint Kyw. Each vertex in Ky needs
d — (W — 1) more incident edges, so we add a total of W(d + 1 — W) edges between Ky and
the K41 in such a way that W(d 4+ 1 — w)/2 edges can be removed from within the K441 to
end up with degree d for every vertex. Note that W(d + 1 — W) is even, for otherwise both n
and d would be odd. We ignore possible interference within Ky and allow for the possibility

that every edge removed from the K441 is an interference edge to get the lower bound

L(n,a,d) > ULd+1l,a)-W(d+1-W)/2

= @[(H Dd+1-7)+Q(y-Q)] -

W(d+1-W)
27 '

2
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Figure 1.1.

Figure 1.2. Zero and positive regions.
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Figure 2.1. v =2, nodd, n —2a < d < n/2.

Figure 4.1.

Figure 6.1. Color set partition.



