Mathematical Quasicrystals and the Problem of Diffraction
Jeffrey C. Lagarias

ABSTRACT. This paper studies three mathematical idealizations of quasicrys-
tals which embody a notion of perfectly sharp diffraction spectrum. These
idealizations consist of Delone sets that satisfy additional conditions. The first
concept (Patterson set) is based on having a pure point diffraction spectrum.
To each Patterson set which is a Delone set of finite type there corresponds a
summation formula, which can be viewed as generalizing the Poisson summa-
tion formula. The second and third concepts (Bohr almost periodic Delone set
and Besicovitch almost periodic Delone set) are based on almost-periodicity
conditions imposed on their Fourier transform. The latter two concepts are
proposed to extract “phase information” for quasicrystals. The paper con-
cludes with a list of open problems.

1. Introduction

The discovery of quasicrystalline materials in 1982 by Schechtman (published
two years later, [SBGC]) led to extensive theoretical and empirical efforts to un-
derstand their structure, see [Jan],[Sen]. The intuitive notion of a quasicrystal is a
(very large) discrete set of atoms in space whose X-ray diffraction pattern exhibits
sharp spots. This condition requires that the interatomic distance vectors exhibit
long-range order under translations, in a statistical sense. This paper considers
mathematical idealizations of such structures which are infinite discrete sets which
have perfect diffraction patterns (pure delta functions), rather than the slightly
diffuse spots of actual X-ray diffraction patterns. These structures could model
pure point diffractive quasicrystalline materials. In this framework we view ideal
crystals as a special kind of pure point diffractive quasicrystal.

The basic mathematical object is a set in R” which models an infinite limit of
a physical structure consisting of a discrete set of atoms.

DEFINITION 1.1. A Delone set A in R™ is a set with the properties:

(1) Uniform Discreteness. There is r > 0 such that each ball of radius r
contains at most one element of A.

(2) Relative Denseness. There is R > 0 such that each ball of radius R
contains at least one element of A.

Such sets are sometimes called (r,R)-sets. These sets are named after the Russian
crystallographer and number theorist B. N. Delone [D].
1



2 JEFFREY C. LAGARIAS

We consider Delone sets that usually satisfy additional conditions. Recently
Lagarias [La99a] formulated the notion of Delone set of finite type as a model for
Delone sets having weak translational order.

DEFINITION 1.2. (i) A Delone set of finite type is a Delone set A such that
A — A is a closed discrete set.
(ii) A Meyer set is a a Delone set A such that A — A is a Delone set.

Delone sets of finite type are exactly those Delone sets that have a “finite num-
ber of local patterns”, see [La99a, Thm. 2.2]. This property is also called “finite lo-
cal complexity” , see [BH],[S99]. Meyer sets are an important subclass of these sets,
introduced much earlier, whose properties are given in detail in Moody [Mo97].
They have several equivalent definitions, the one above being formulated in [La95].

DEFINITION 1.3. An ideal crystal (or perfect crystal) in R™ is any set A that
consists of a finite number of translates of a full rank lattice L in R"®. That is
A =L+ F, where F is a finite set.

Note that ideal crystals are Meyer sets, and we view them as a special kind of
quasicrystal.

We consider three different concepts of pure point diffractive quasicrystal, all
for Delone sets. The first concept, of Patterson set, is based on a mathematical
analogue of X-ray diffraction developed by Hof ([H92]-[H97]). The second and
third concepts, of Bohr almost periodic set and its extension to the concept of
Besicovitch almost periodic set, are based on Fourier analysis, and each gives a
notion of “spectrum” assigned to the Fourier transform of point masses at the
points of A. These two concepts add “phase information” to the X-ray diffraction
data.

The concept of Patterson set is studied in §2. It is based on the notion of auto-
correlation measure (or Patterson function) associated to the difference set A — A of
the set A. The diffraction measure is the Fourier transform of the autocorrelation
measure, and a Patterson set is a Delone set which has a unique diffraction measure
which is a pure discrete measure. Our main new observation in §2 is to show that
this concept has a precise relation with summation formulae in Fourier analysis
(Theorem 2.9).

There are two general constructions of Delone sets of finite type A that are
known to yield Patterson sets in special cases: model sets, which include as a
special case cut-and-project sets, and certain Delone sets defined by self-similarity
properties, which we call self-replicating Delone sets. A general method of proof
that certain such sets are Patterson sets uses dynamical system methods described
at the end of §2.

Cut and project sets are Delone sets in R™ constructed from a full rank lattice L
in R**™ for some m > 0, together with a compact set B in R™ which has nonempty
interior. The space R™ is the “internal space” of the construction, and the set B
in the “internal space” is called a mask or window. View R*™™ = R” x R™
with orthogonal projections ) and 7, onto the first n coordinates and last m
coordinates, respectively. The cut and project set A = A(B, L) is defined by

(1.1) A= {7T||(y) :y€e€L and wi(y)€ B} .



MATHEMATICAL QUASICRYSTALS AND THE PROBLEM OF DIFFRACTION 3

Cut-and-project sets are always Meyer sets. Whenever a cut-and-project set is a
Patterson set, its spectrum is contained in a finitely-generated Z-module in R”,
related to the dual lattice L* of L.

Model Sets are Delone sets in R" which generalize cut-and-project sets, and
include them as a special case. The concept of model set was introduced in 1972 by
Y. Meyer [Me72, p. 48]. They are produced by a similar construction in which the
“internal space” is allowed to be an arbitrary locally compact Abelian group, see
Schlottmann [S98] and Moody [M099]. The window set B is required to be a com-
pact set with nonempty interior. A model set is said to be regular if the window B
has a boundary 0B := B\Int(B) of (Haar) measure zero. Schlottmann [S99] shows
that regular model sets have a well-defined pure point diffraction measure. Model
sets using a p-adic internal space occur in certain self-similar tiling constructions,
see Baake, Moody and Schlottmann [BMS] and Lee and Moody [LM]. Model sets
are always Meyer sets. The spectrum of a regular model set is not always contained
in a finitely-generated Z-module, as indicated by the example studied in [BMS].

Self-replicating Delone sets describe “control points” of associated self-affine
tilings, see Géhler and Klitzing [GK] and Solomyak [S097, Sec. 5]. These sets are
studied in Lagarias and Wang [LaWa3], and have a theory analogous to that for
self-replicating tilings. At this point we observe only that such sets are Delone sets
A that have a partition A = U;A; in which the subsets A; satisfy a system of
functional equations

(1.2) Ai=J@0) +Dji), 1<i<m,
j=1

in which

(1.3) ¢(x) =Ax+Db

is an expanding affine map , i.e. the matrix A has all eigenvalues |\| > 1, and the
digit sets D;; are finite sets. The matrix A is called the inflation matriz. Associated
to the functional equation (1.2) is a substitution matriz S which is a nonnegative
integer matrix defined by

(1.4) Sij :==1|Dsjl, 1<4,j<m.

We suppose that the substitution matrix is primitive, which means that some power
S* has strictly positive entries. Only special choices of the data {¢, D;;} yield func-
tional equations (1.2) that have solutions which are self-replicating Delone sets of
finite type. For example, the real matrix A must have algebraic integer eigenvalues,
and if S is primitive then the largest eigenvalue of S must equal | det A|. There exist
self-replicating Delone sets which are Delone sets of finite type but are not Meyer
sets. Some self-replicating Delone sets are Patterson sets, while others are not.
All known examples of primitive self-replicating Delone sets that have been proved
to have pure point diffraction spectrum are Meyer sets. The diffraction spectrum
results in the literature are generally proved for the associated tiling models, as in
Solomyak [S097], but Delone sets are explicitly considered in Solomyak [So98b].
For various results concerning self-affine and self-replicating tilings, see Grochenig,
Haas and Raugi [GHR], Kenyon[Ke92]-[Ke96], Lagarias and Wang [LaWal],
[LaWaz2], Solomyak [S097], [S098a] and Vince [Vinl], [Vin2].

The concepts of Bohr almost periodic set and Besicovitch almost periodic set are
presented in §3. We view these concepts as supplying “phase information” about fa
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which is lost in passing to the autocorrelation measure. We associate to a Delone
set A the Radon measure whose density function fp consists of delta functions at
the points of A. A Bohr almost periodic set is defined to be a distribution fa whose
Fourier transform is in a suitable weak sense a countable set of weighted delta
functions. We formalize this concept using uniformly almost periodic functions
and distributions, see Appendix B. However the concept of Bohr almost periodic
set seems too narrow to include many sets regarded as quasicrystalline (including
most cut-and-project sets), so we formulate a relaxed concept of Besicovitch almost
periodic set, whose definition uses a wider class of almost periodic functions. This
concept is expected to include cut-and-project sets; see the open problems in §4.
We define more generally B-almost periodic sets, where B is a suitable class of
almost periodic distributions, and it remains to determine a good class B that gives
a reasonable theory.

The inclusion relations between these three concepts of pure point diffraction
quasicrystal are not known, except that Bohr almost periodic sets are Besicovitch
almost periodic sets, which follows from the definition. It is natural to hope that
a suitable class of B-Besicovitch almost periodic sets will all be Patterson sets and
have the consistent phase property given in (3.9), but this is an open question.

It is known that the information contained in the diffraction spectrum is not
sufficient to reconstruct the set, up to translation. If A is a Patterson set and A is
a Delone set such that the symmetric difference

AAA:=(A/A)U(A'/A)

is a set of density zero, then A is a Patterson set with the same spectrum. For
similar reasons, the “ phase information” obtained in a Besicovitch almost periodic
set (of type B?) is generally insufficient to reconstruct the set, because the “Fourier
coefficients” are also unchanged by sets of density zero, see §3. However the nar-
rower class of Bohr almost periodic sets (which include ideal crystals) are uniquely
reconstructible from the “Fourier coefficients” of their spectrum.

The final section §4 lists a large number of open problems raised by the topics
above.

There are several other concepts of mathematical quasicrystal not considered
here. The first models proposed for quasicrystalline structures were based on tilings
of R” using a finite number of different tile shapes, see Duneau and Katz [DuKa]
and Levine and Steinhardt [LSt]. Later Lunnon and Pleasants [LuP] introduced a
notion of quasiperiodic tilingin which R™ is tiled by tiles of a finite number of shapes
Py, ..., Py, all polytopes, with the property that if any set of continuous functions
fi, fo, ..., fr are assigned to these polytopes, and used to construct a function f on
L*°(R™) by replicating fi(z+v) on each tile P;+v, then the Fourier transform f (in
a suitable space of distributions) consists entirely of delta functions supported on a
finitely-generated additive subgroup of R™ (a quasilattice ), see also Le, Piunikhin
and Sadov [LPS]. There are also notions of quasicrystals as consisting of a collection
of an uncountable number of tilings viewed as a dynamical system under the action
of the group of translations of R?. These are called tiling dynamical systems. The
eigenvalues of the R™-action of translation on tilings then play a role analogous to
diffraction spectra, see Dworkin [Dw], and Hof [H97, p. 254]. Analogous dynamical
systems for Delone sets play a role in proving certain sets are Patterson sets, see
Section 2. A discussion of other mathematical concepts related to quasicrystals
appears in Cahn and Taylor [CT] and Baake [Ba].
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The final §4 lists a number of open problems.

Notation. The Euclidean inner product on R" is
n
(Saw) = Z&xz .
i=1

The Schwartz space of rapidly decreasing smooth functions on R” is S(R"). The
(normalized) Fourier transform f of f € S(R™) is

(1.5) f© = [ el fayia.

The Fourier transform is defined for tempered distributions f € S'(R") in the usual
fashion: (f,v) = (f, ) for test functions 1) € S(R™). The definition of spectrum in
this paper removes a factor of 27 from the standard one, due to the 27 appearing
in the definition of Fourier transform (1.5), see Appendix B.

2. Patterson Sets and Summation Formulas

The fundamental notion of a “quasicrystal” is a physical structure whose X-ray
diffraction measure pattern consists of sharp spots. The concept of Patterson set
is based on a mathematical concept of diffraction measure developed by A. Hof
([H92], [H95a], [H95b], [HI7]).

We will model sets of atoms® located at a discrete set A by the pure point
measure pup which consists of unit masses at the points of A. The measure pp can
be regarded either as a regular Borel measure on R™, or alternatively as a positive
Radon measure (by the Riesz representation theorem). However we shall generally
regard it as a distribution, also denoted up, and written

(2.1) pa = b,
®EA

which is associated to the measure by

(2.2) urg) = [ g@dun(@) = X gla).

zCEA

for test functions g. If A is a Delone set, then pp is a tempered distribution. Given
a distribution of the general type

(2.3) g= Z n(x)dz ,

@zEA
in which A is a discrete set the weights n(x) are complex numbers with |n(z)| < C,
the associated regular Borel measure is uniquely defined via (2.2).

DEFINITION 2.1. A complex-valued regular Borel measure g on R™ is called
translation-bounded if there is a constant C' such that

(2.4) lp|(z+10,1]") < C, forall zeR".
L An atomic structure may be more accurately represented as a measure obtained by convolv-

ing pa with a compactly supported nonnegative “bump function”, see Hof [H95b]. Here we are
concerned with the perfect idealization.
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A. Hof developed a mathematical formalization of a diffraction measure associ-
ated to an arbitrary translation-bounded measure . To define it we first need the
notion of an autocorrelation measure.

DEFINITION 2.2. Given a translation-bounded measure p an autocorrelation
measure v of p is any measure that is a limit point in the vague topology of a
sequence of measures {vj.,; : j = 1,2,3,...}, where

1 .
(2.5) VTw = (“|w+T[0,1]n*”|w+T[0,1]n) g

in which i is the complex-conjugate measure to u, with the space direction reversed.
Here convergence v; — v as n — oo in the vague topology means that for each
compactly supported continuous function ¢ : R* — C one has fR,, o(z)dv; —

fR" o(x)dv.

A translation-bounded measure p has at least one autocorrelation measure; in
general it has many autocorrelation measures. We mainly consider cases where pp
has a unique autocorrelation measure.

For a discrete measure pp an autocorrelation measure encodes information
about the “two-point correlation function” of A, i.e. the difference set A — A,
with elements counted with multiplicity. The notion of autocorrelation measure
is translation-invariant: for each translate A + x of a set A the measure puyp + x has
the same autocorrelation measures as p, .

LEMMA 2.3. Let p be a positive measure that is translation-bounded with con-
stant C, and let v be any autocorrelation measure for u. Then:

((1)) v is a positive measure that is translation-bounded with constant C.

((2)) v is a positive-definite measure (in the sense of tempered distributions).
That is, the Fourier transform 4 is a distribution of positive type.

((3)) The Fourier transform 4 is a translation-bounded positive measure.

PROOF. Properties (1) and (2) hold for all measures vy 5 and are inherited by
v. Part (3) follows from Hof [H92, Proposition 3.3], and is a result of Argabright
and de Lamadrid [AL, Thms. 2.5 and 4.1]. The translation-boundedness constant
C' for 4 generally differs from that of 7. See Appendix A for a discussion of
positive-definite measures. |

DEFINITION 2.4. A diffraction measure for a Delone set A is the Fourier trans-
form 4 of an autocorrelation measure vy of up regarded as a tempered distribution.

The tempered distribution 4 is identified with a translation-bounded positive
measure by Lemma 2.3. We mainly consider cases in which the set A has a unique
autocorrelation measure y,; in this case we call v the autocorrelation measure of
A and A4 the diffraction measure of A.

A diffraction measure ¥4 is a mathematical analogue of X-ray diffraction in the
sense that values of the measure 4 evaluated on “bump functions” (“pixels”) are
analogues of physical X-ray diffraction pictures, see Gahler and Klitzing [GK].

DEFINITION 2.5. A Patterson set or perfectly diffractive Delone set is a Delone
set A that has a unique autocorrelation measure y5 whose associated diffraction
measure 45 is a pure discrete measure. That is, there is a countable set op(X)
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such that
(2.6) =Y p(y)dy,
yEop (A)
with all p(y) > 0 for y € op(A). We call op(A) the Patterson spectrum of A.

The name ‘Patterson set’ reflects the fact that the autocorrelation is termed
the Patterson series in X-ray crystallography, see Azdroff [Az, p. 307], or [Cow,
Ch. 5.3] for general background.

We note some elementary facts about Patterson sets. The positive-definiteness
of the autocorrelation measure v, guarantees that op(A) = —op(A) and

(2.7) p(y) =p(-y) >0.

Furthermore p(y) < C' follows from the translation-boundedness of pp with con-
stant C'. In interesting examples the Patterson spectrum Y = op(A) is a dense
set. However, for each € > 0 the set

(2.8) Ye:={yeY:p(y) > €},

is a closed discrete set, as a consequence of the translation-boundedness of d5. In an
actual X-ray diffraction spectrum only sufficiently large intensities will be detected
above background levels, and the discreteness of Y; in (2.8) justifies how a Patterson
set produces a pattern of discrete “bright spots.”

The property of being a Patterson set is not affected by “small” changes in the
set A. If A is a Delone set with a unique autocorrelation and A’ is any Delone set,
such that
(2.9) AAAN:=(A\A)U(A"\A)
has density zero, in the sense that

1
2.10 lim ——#(A A A ~T,TI"=0
(2.10) Jim_ A NN T T =0,

then A’ has the same autocorrelation measure as A. (See Hof [H95a].)
Many constructions of Patterson sets are based on the Poisson summation
formula, which we state in the following form.

THEOREM 2.6. (Poisson summation formula). For a full rank lattice L in R™
the tempered distribution

(2.11) pr=Y 0a,

xel
has Fourier transform

L 1 _ 1
1) = T = e 2,

in which L* is the dual lattice
(2.13) L"={yeR':(y,x) €Z forall xecA}.

The formula is equivalent to the assertion that for a Schwartz function g €
S(R™) one has

(2.14) Y gx) = m 3 i) -

®EL yEL*
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The Poisson summation formula is often stated in a more general form explicitly
exhibiting the action of a translation t e R,

(2.15) > gz -t) d Z )e2riwit)
ecl | t yeL*

For a proof of the validity of (2.14), which applied to a wider class of test func-
tions than the Schwartz class, see Katznelson [K68, p. 129] and Gréchenig [Gr].
A generalization of the Poisson summation formula to a class of unbounded mea-
sures on a general locally compact Abelian group appears in Argabright and de
Lamadrid [AL, Thm. 3.3].

Using this formula it is easy to verify that all ideal crystals are Patterson sets.

THEOREM 2.7. An ideal crystal A = L+ F, in which L is a full rank lattice in
R™ and F is a finite set, has a unique autocorrelation measure

(2.16) A = |det Z > <Z 5m+f1—fz>

_fleF fo€F \mel

Its Fourier transform 4, is given by

(217) ’?A |det Z Z Z 627ri(f1_va£) 5y

yeL* F1€F fo€F
Thus A is a Patterson set with spectrum op(A) contained in the dual lattice L*.
Proor. To obtain (2.16) we use (2.5) and count elements of (L+ F) — (L + F))

on a box [T, T]™ and let T — oo. These points fall in L+ (F — F') and the density
yields a weight Idetlw; we omit the estimates. The Poisson summation formula

yields (2.17). O

In the special case that A is a lattice L, its autocorrelation measure «yy, is equal
to the measure pur up to a scale factor, namely

1
(2.18) = @y T |det |Z‘S

In this case the Patterson spectrum op(L) = L*. For a general ideal crystal A =
L + F one can have op(L) # L*. For the one-dimensional example

AN=ZU(Z+a)U(Z+b)U(Z+c)
one can find irrational a, b, ¢ such that
14+ 627rina + e27r'inb + eZﬂinc =0

holds only for n = £1, in which case op(A) = Z\ {£1}.

There is a strong connection between Patterson sets and summation formulas.
Recall that a Delone set of finite type is a Delone set A such that A — A is a closed
discrete set.

LEMMA 2.8. If A is a Delone set of finite type then any autocorrelation measure
v of pa s a pure discrete measure of the form

(2.19) v= n(y)dy,
yeEA—A
in which n(y) = n(—y) > 0.
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PROOF. Each measure pr ., in (2.5) is pure discrete, and has the form (2.19)
with n(y) =n(—y) > 0. Since A — A is a closed discrete set, any limit point in the
vague topology of ur ., inherits these properties. a

Thus we deduce:

THEOREM 2.9. (Quasicrystal Summation Formula). Suppose that A is a Delone
set of finite type in R™. If A is o Patterson set then its autocorrelation measure v
and Fourier transform 4 have the form

(2.20) YA = Z n(y)dy and Ay = Z p(2)dz .

yEA-A zeop(A)

Both yA and A are translation-bounded measures on R™. For each function g in
the Schwartz space S(R™),

(2.21) > Wiy = Y p)y(z) -

yeEA-A z€op(A)

ProOOF. This follows from Lemma 2.3 and the definition of Patterson set. For
a test function g € S(R™), the left side of (2.21) is (ya, §) while the right side is

<$’Aag>‘ O

The quasicrystal summation formula (2.21) may be valid for wider classes of
functions g(y) than just those functions in the Schwartz space S(R™). This is
the case for the Poisson summation formula, see for example Grochenig [Gr] and
Kahane and Lemarié-Rieusset [KLR]. There are nontrivial limits to the range of
validity of the Poisson summation formula, however. Katznelson ([K67], [K68,
p. 155]) gives an example of a function g € L!(R) such that § € L*(R) and both
sides of (2.21) converge absolutely but do not agree.

Theorem 2.9 applies more generally to sets A that are not Delone sets but
retain the “finite local complexity” property that A — A is a discrete closed set 2.
An interesting example of such a set having a pure point diffraction spectrum is
the set of visible lattice points in Z2, as was recently shown by Baake, Moody and
Pleasants [BMP)].

There exist many interesting summation formulas known which are formally of
the general type

=y nd and A= Y p@),

yey z€Z(A)

where Y and Z are countable sets, n(y) and p(z) are weights, which the formula
applies to specific spaces of test functions (usually different from the Schwartz
space), see Guinand [Gu, Sec. 10].

We now consider examples of Patterson sets. The most general method found
so far for proving that certain Delone sets A in R" are Patterson sets uses properties
of an associated dynamical system([[A]], R™).

DEFINITION 2.10. Given any Delone set A of finite type, the set [[A]] is the
collection of all Delone sets A’ which are pointwise limits of some sequence of
translates {A + x; :4=1,2,3,...} of A.

23uch sets must be uniformly discrete, but need not be relatively dense.
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The natural topology on [[A]] defines two sets A and A’ as being within distance
€ if there is a translation ¢ with ||¢|| < e such that A + ¢ agrees with A’ on a ball of
radius 1/e around O; the set [[A]] is compact in this topology. More generally, for
any Delone set one can define [[A]] as the closure of the set of translates of A+ in
an appropriate topology, and [[A]] is a compact set in this topology, see Solomyak
[So98b]. The set [[A]] is closed under translations, and we let ([[A]],R") denote
the (topological) dynamical system with this R™-action.

DEFINITION 2.11. (i) A topological dynamical system X with R™-action is
manimal if every orbit of a point under translation by R™ is dense in X.

(ii) A topological dynamical system is uniquely ergodic if it has a unique in-
variant measure p; in this case we can regard it as the metrical dynamical system
with measure p.

(iii) A topological dynamical system is strictly ergodic if it is minimal and
uniquely ergodic.

In the case of a topological dynamical system X = ([[A]], R™) these concepts
have the following characterizations. X is minimal if and only if A is repetitive,
which means that for each T-patch ANB(x,T) of A there is a radius 7" (depending
only on T') such that A contains a translate of this patch inside any ball of radius
T'. Such an X is uniquely ergodic if and only if any T-patch has a uniform limiting
frequency of occurrence inside T'-patches, as T — oo. Such an X is strictly
ergodic if and only if it is uniquely ergodic and every T-patch has a uniform limiting
frequency that is positive.

To any metrical dynamical system ([[A]], R, u) we associate a family of com-
muting unitary operators U(t) : L([[A]], u) — L?([[A]], 1) indexed by t € R", given
by

Ut)f(A") = f(A"=1¢) for A’ € [[A]].

DEFINITION 2.12. (i) A measurable eigenfunction f € L?*([[A]],R",p) with
eigenvalue A € R™ is one that satisfies

Ut)f(A) = 62”i<)"t>f(A), forall teR".

(ii) A continuous eigenfunction f € C(([[A]],R™) is an eigenfunction which is
continuous in the natural topology on [[A]].

DEFINITION 2.13. (i) The spectrum of ([[A]], R™, ) is the joint spectrum of the
family of commuting operators {U(t) : t € R"}.

(ii) A dynamical system ([[A]], R™, u) has pure discrete spectrum or pure point
spectrum if the set of measurable eigenfunctions spans L?([[A]], p).

THEOREM 2.14. If A is a Delone set of finite type such that the dynamical
system ([[A]], R™) is strictly ergodic and has pure discrete spectrum, then every set
A" in [[A]] s a Patterson set.

PROOF. The essential idea of this result appears in Dworkin [Dw]. A proof is
sketched in Hof [H97, pp. 253-257]. O

It is known that if the dynamical system ([[A]], R") is strictly ergodic and has
purely continuous spectrum, then no set A’ in [[A]] is a Patterson set. If it has
mixed spectrum — some discrete and some continuous — it is not known whether
some A’ in [[A]] can be a Patterson set.
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Essentially all model sets with a reasonable window set B have been proved to
be Patterson sets by this method. The following result is due to Schlottmann [S98]
[S99, Thm. 4.5].

THEOREM 2.15. (Schlottmann) If A is a model set in R" whose window set B
is compact, with non-empty interior and with o boundary of Haar measure zero,
then A is a Patterson set, whose spectrum op(A) has

(2:22) op(A) Cm(L7)
where L* is the dual lattice of L.

Schlottmann proves that the associated dynamical system has a pure point
spectrum, and Theorem 2.15 then follows from Theorem 2.14. That a result like
this should hold was suggested by Meyer [Me95], and this result improves on an
earlier result of Hof [H97, Sec. 4.4], whose proof did not use dynamical systems.

A number of self-replicating Delone sets have been proved to be Patterson sets
using the associated dynamical system. For self-replicating Delone sets, Solomyak
[S097] gives an algorithmic method for testing whether the dynamical system asso-
ciated to a primitive self-replicating Delone set A of finite type in R? has pure point
spectrum. He applies this to several examples in §7 of his paper. His example 7.2
implies that the set A of vertices of the “sphinx tiling” of Godreche [Go] gives a
dynamical system with purely discrete spectrum. Thus all elements A’ of [[A]] are
Patterson sets. In this example the spectrum of the associated dynamical system
([[A]], R?) is not contained in any finite-dimensional Z-module. This spectrum is
contained in Z[5] x Z[3], and involves rationals with arbitrarily high powers of 2
in the denominator. This indicates that there is some set A’ in [[A]] which has
a Patterson spectrum op(A’) which is not contained in any finite-dimensional Z-
module. This would happen if A’ had the same spectrum as that of the dynamical
system, i.e. no coefficients were “extinguished.” Note that this sort of spectrum
differs from that of any cut-and-project set, because such sets have spectra op(A)
contained in a finite-dimensional Z-module by (2.22). However the sets constructed
by this type of dynamical system may be model sets. The chair tiling in in R? yields
model sets based on a p-adic “internal space”, as is shown in Baake, Moody and
Schlottmann [BMS]. A similar result was established for the n-dimensional chair
tiling by Lee and Moody [LM], who also showed that the sphinx tiling is a union
of 36 model sets using such an “internal space.” The dynamical systems associated
to self-similar structures can be viewed as a generalization of substitution dynam-
ical systems, the spectral properties of which have been extensively studied, see
Queffélec [Q].

We say that a strictly ergodic dynamical system acting with an R™-action on
a compact space ) with invariant measure p is homogeneous if L?(Q, u) has a
basis of continuous eigenfunctions, see [R0o94, p. 494]. Such a dynamical system
necessarily has pure discrete spectrum. Many of the constructions above yield A
such that ([[A]], R™) is a homogeneous dynamical system. The potential relevance of
such dynamical systems to the problem of defining “Fourier coefficients” for certain
Delone sets A is discussed at the end of §3.

3. Fourier Quasicrystals

For an ideal crystal A it is well-known that the Fourier transform fis is the
density function of a measure which contains “phase information” that is lost in
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the X-ray diffraction measure. Indeed, if

k
(31) A:U(L+fg)a

=1

where L is a full rank lattice on R” having dual lattice L*, then the Poisson sum-
mation formula gives

(3.2) fin =Y c(y)dy
yeL*
in which
1 k
(3.3) c(y) = Tdet(D)] j;exp(%i(fj,y)) .

By Theorem 2.7 the autocorrelation measure y5 of A has Fourier transform given
by

(3.4) =Y le@)sy
yeL*
because
, 1 E K .
(3.5) le(y)|” = [det(Z)P Z:ZI ;eXP@m(fi - fiu) -

Knowledge of the Fourier coefficients {¢(y) : y € L*} suffices to uniquely recon-
struct A, but it is well-known that knowledge of the intensities {|c(y)|? : y € L*}
does not always uniquely determine the translation-equivalence class of A. This
ambiguity is an important obstacle to the reconstruction of crystal structure from
X-ray diffraction data.

This raises the problem:

Phase Problem. For which Patterson sets A can one define “phase informa-
tion” {c(y) : y € op(A)} such that the distribution fip has a “formal §-function
expansion”

(3.6) fir ~ > c(y)dy

yey
in which Y = op(A) and for which

(3.7) =Y, )Py,
yEop(A)
both hold?
The phase problem can be divided into two subproblems. The first problem
is that of defining a “formal d-function expansion” (3.6) for the distribution jis,
for some countable spectrum Y. The second problem is obtaining conditions on a

Patterson set A such that the coefficients p(y) of the diffraction measure 45 given
by

(3.8) =Y py)dy -
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are related to the coefficients ¢(y) of the formal §-function expansion by

(3.9) p(y) = le(¥)
We call (3.9) the consistent phase property.

We first deal with the problem of defining a “formal d-function expansion” (3.6).
Here we do not assume that A is a Patterson set. The narrowest such definition is
the following.

DEFINITION 3.1. A Delone set A is a strongly almost periodic set if the tempered
distribution jia is a translation-bounded measure that is a pure point measure.

In this case the Fourier transform of pua can be written
(3.10) fin =) cy)dy
yey

in which Y is a countable set. All such sets can be classified using the following
result of Cordoba [Co89].

THEOREM 3.2. (Cordoba) Suppose that A = UE_| A; is a uniformly discrete set
in R™, and let gp denote the tempered distribution

k
(3.11) gr = sz (Z 5m>

xEA;
in which {wi,...,wi} are complex numbers. If the Fourier transform ga is a
translation-bounded measure which is pure point, i.e.
(3.12) gr =y my)dy
yeY
with

Z Im(y)| <C, forall zeR",
yez+[0,1]"
then A and each set A; are a finite union of translates of some full rank lattice L
m R™.

Cordoba’s theorem as stated in [Co89] only concludes that each A; is a finite
disjoint union of translates of n-dimensional lattices. However the union of two such
translates (L; + a1) U (L + a2) cannot be uniformly discrete unless the lattices
L, and Ly are commensurable, i.e. unless both can be written as a finite union of
cosets of a common full-rank lattice L. This follows from Kronecker’s theorem in
Diophantine approximation. Since A is uniformly discrete, there must be a common
refining lattice L for all these lattices simultaneously, which gives Theorem 3.2.

We immediately obtain:

COROLLARY 3.3. A strongly almost periodic set is an ideal crystal and con-
versely.

PRrROOF. Apply Theorem 3.2 with A = Ay and w; = 1. O
The hypotheses of Theorem 3.2 cannot be relaxed to merely requiring that

both go and g be translation-bounded pure discrete measures. Indeed, de Bruijn
([dB86], Theorem 11.1) gives examples of measures

B= Z n(y)dy

yEA
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in which A is a Delone set, and p and its Fourier transform fi are both translation-
bounded pure discrete measures, but A is not contained in a finite union of translates
of a lattice. These examples are obtained from cut-and-project sets by a smoothing
operation. In these examples the coefficients m(y) necessarily assume infinitely
many values.

For general Delone sets A the distribution jip need not be a measure, so we
cannot assign a direct meaning of “pure discrete measure” to fiy. As an example,
Hof [H97, p. 246] observes that any Delone set A C Z™ that is not fully periodic has
f1p not a measure. To proceed, we observe that the existence of a Fourier transform
fip satisfying (3.2) can be rephrased as saying that pua has a “Fourier series”

(3.13) pa ~ Y cly)exp(=2mi(y,-)) ,
yeL*

because the distributional Fourier transform of the function exp(—2wi(y,-)) is dy.
We therefore seek to directly define such a “Fourier series” associated to pa. To
accomplish this, we consider various classes of almost periodic functions.

H. Bohr [Bo1l] developed a theory of uniformly almost periodic functions on
the real line, which was extended to R™ by S. Bochner. Uniformly almost periodic
functions are those bounded continuous functions h(z) that can be uniformly ap-
proximated on all of R” by trigonometric polynomials. They have a well-defined
“Fourier series”

(3.14) h(m) ~ Y m(y) exp(—2mi(y, z))

yeyYy

in which Y is a countable set, and the coefficients are square-summable,

(3.15) A% =" Im(y

yey

The Fourier series data {m(y) : y € Y} permits unique reconstruction of the
function h(z). However not all countable sets Y and data {m(y) : y € Y} satisfying
(3.15) give “Fourier series” of uniformly almost periodic functions. The condition

(3.16) Z |m(y)| < oo,

yey

is known to be a sufficient condition for (3.14) to be the Fourier series of a uniformly
almost periodic function.

L. Schwartz [Sch, Sec. V1.9] introduced the following notion of uniformly al-
most periodic distribution based on uniformly almost periodic function.

DEFINITION 3.4. A tempered distribution f is a uniformly almost periodic dis-
tribution if for each compactly supported C*-function g € C°(R™) the convolution
g* f is a uniformly almost periodic function on R*. (Here g* f(y) = {f, 9—y) where
gy(z) = g(x +y).) More generally, if B is a class of almost periodic functions,
a B-almost periodic distribution f is a tempered distribution f such that for each
g € C®(R™) the convolution g * f € B.

A uniformly almost periodic distribution f has a well-defined “Fourier series”

(3.17) f~ ) m(y) exp(—2mi(y,-))

yeY
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in which Y is a countable set. To construct it, given y € R™ take g € C°(R™) to be
a test function which has g(y) # 0, and if the uniformly almost periodic function
g * f has “Fourier series”

(3.18) g* flx) ~ Y my(2)exp(=2mi(z, )
zER™
where only countably many mgy(2) # 0, then we set
my(y)
3.19 m(y) == =2 .
(3.19) w) 9(y)
It can be checked that this definition is independent of the choice of test function g

having g(y) # 0. One can prove that the coefficients m(y) are (uniformly) locally
square-summapble: there is a constant C' such that for all x € R”,

(3.20) Z Im(y)|* < C .

yEx+[0,1]”

However a drawback is that not all data {m(y) : y € Y} satisfying (3.20) are
the “Fourier series” of a (uniformly) almost periodic distribution f. Burkhill and
Rennie [BR] develop a theory of almost periodic distributions extending that of
Schwartz.

DEFINITION 3.5. A Delone set A is a Bohr almost periodic set A if its associated
measure pp is a uniformly almost periodic distribution.

We view the Fourier transform fip of a Bohr almost periodic set A as having a
“formal §-function expansion”

(3.21) in~ Y mw)dy
yey
which is its “Fourier series” (3.18).
The unique reconstructability of uniformly almost periodic functions from their
“Fourier series” has the following consequence for Bohr almost periodic sets:
(1) The “Fourier series” of a Bohr almost periodic set ua permits unique
reconstruction of A.
(2) If A is a Bohr almost periodic set and G is a nonempty finite set disjoint
from A, then A UG is not a Bohr almost periodic set.
A simple sufficient condition for f to be a uniformly almost periodic distribution
is the following.

LEMMA 3.6. If a tempered distribution f and its Fourier transform f on R™
are both translation-bounded measures that are pure discrete, then f and f are both
(uniformly) almost periodic distributions.

ProoOF. This is easy to verify using test functions g € C°(R™) because (3.18)
holds for g x f and for g * f. d

Lemma 3.6 implies that ideal crystals A are Bohr almost periodic sets. As
mentioned earlier, de Bruijn ([dB86, dB87]) constructs a large number of distri-
butions f which he calls “Poisson combs’ that apparently satisfy the hypotheses of
Lemma 3.6. (He works in the Gelfand-Shilov space 511 //g of distributions, however,
rather than with tempered distributions, see van Eijndhoven [Eij].) These sets are
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not Bohr almost periodic sets because points are assigned variable weights rather
than having weight one at all points.

The concept of “Bohr almost periodic set” is so narrow as to exclude various
Patterson sets. Hof [H92, p. 90] observes that the tempered distribution

(3.22) f=> wabn

nez

where {wy, : n € Z} is a zero-one sequence that describes a “Fibonacci quasicrystal”
is not a (uniformly) almost-periodic distribution. The same remains true even if
the type of almost-periodicity used in defining the distribution is relaxed from that
of Bohr to the wider classes of Stepanov or Wiener. The set

(3.23) Ay ={n€Z:w,=1}

is a Meyer set and is known to be a Patterson set. Other examples are given by
certain one-dimensional cut-and-project sets A do not have us being an uniformly
almost periodic measure, also due to Hof[H97, p. 257]

It seems to be unknown whether there exist any Bohr almost periodic sets that
are not ideal crystals. A strong constraint on the nature of Bohr almost periodic
sets arises from the restriction that

(3.24) pa = n(z)se

EINN
has all coefficients n(x) = 1. In regard to this property, we mention another result
of Cordoba [Co88|.

THEOREM 3.7. (Cordoba). Suppose that X and Y are discrete sets in R™, that
{p(y) : y € Y} are positive real numbers, and that the two distributions

(3.25) fi=) 6s and fo=) p(y)dy

zeX YyeY

are tempered distributions. If fo = fl, then X is a full rank lattice L in R™ and Y
is the dual lattice L*, and all p(y) = m.

This result appears in [Co88, Thm. 2], except that Cordoba asserts that
| det(L)| = 1, which is too strong a conclusion. His method appears to establish
the result above.

In Theorem 3.7 X is a discrete set, not necessarily a Delone set, while YV
is required to be a discrete set, but translation-boundedness is not required, the
growth on the sizes of the coefficients |p(y)| being sufficient to give a tempered
distribution. This result puts further restriction on any Bohr periodic set that is
not an ideal crystal.

To obtain a wider class of sets A for which fix has a well-defined d-function
expansion, we must relax the definition of “almost periodic distribution” to allow
a wider class of almost periodic functions. We would like a definition that includes
all cut-and-project sets which are Patterson sets. For this it seems that one needs a
class B C La(R™) of almost periodic functions with the following three properties.

(1) Translation-closure property. If f(x) € B with “formal Fourier series”

(3.26) f(z) ~ Z c(y)e2miwe)

yeY
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then for each translation t € R”, fiy(x) = f(x —t) € B and the “formal Fourier
series” of f; has the same spectrum Y as f with Fourier coefficients

(3.27) c(y) = c(y)e 2mw:t)
(2) Parseval property. The “formal Fourier series” (3.26) of f(x) € B satisfies
(3.28) 171 =3 lew) -
yey

(3) Riesz-Fischer property. For any countable set Y and set of coefficients
{c(y) : y € Y} that are square-summable,

(3.29) > le(y)]? < o0,

yeY

there exists a function f(x) € B which has “formal Fourier series”

(3.30) f@) ~ 3 cly)emiwe

yey

In the one-dimensional case the Besicovitch class of B2-almost periodic func-
tions has these properties, see Appendix B. Definition 3.4 yields a notion of B2-
almost periodic distribution and we then also obtain an associated notion of Besi-
covitch almost periodic set (of class B® analogous to Definition 3.5. Hof [H97,
p. 258] observes that certain one-dimensional cut-and-project sets are Besicovitch
almost periodic sets in this sense. The Besicovitch theory does not seem to have
been extended to R™ for n > 2, but Fglner [Fg] has developed a theory of almost
periodic functions on R™ which has the Parseval and Riesz-Fischer properties.

DEeFINITION 3.8. A Delone set A is a Bescovitch almost periodic set of class B
if its associated measure up is a uniformly almost periodic distribution of class B.

This definition depends on the class B, and one hopes that a suitable class B
of functions define a concept of Besicovitch almost periodic set on R® which will
include all reasonable cut-and-project sets. Such a theory has not yet been worked
out in any detail.

A price one pays in allowing larger classes of almost periodic functions with the
Riesz-Fischer property is that a B-almost periodic function cannot be reconstructed
from its “formal Fourier series”. For example, there are two B2-almost periodic
functions f and g on R which disagree on a set of infinite Lebesgue measures but
have the same B?-Fourier series. Thus we cannot hope to reconstruct a set A
uniquely from “phase information” supplied by a “formal Fourier series” of this
sort.

We conclude this section by describing results from another approach for asso-
ciating “discrete spectrum” to the tempered distribution fip, which was originally
explored by Bombieri and Taylor [BT86], [BT87]. In some circumstances a tem-
pered distribution f(x) has a limit

1 )

(3.31) mg == lim —/ e 2mi6®) £(3)da
5 T— o0 (2T)" [T, T]"+a

which is independent of the translation a € R". We can view mg as defining a

“Fourier coefficient” of the distribution f(x) at the frequency £&. Hof ([H95a])
obtained the following result.
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THEOREM 3.9. (Hof). Let p be a translation-bounded measure on R™ that has
a unique autocorrelation measure v and suppose that for some & € R™ the limit

1 .
3.32 me = lim —/ 6_2”’(£’m)du T

exists uniformly in a. Then the pure discrete component ¥({€}) of ¥ at € has
(3.33) F({€}) = Imgl* -

The conclusion (3.33) asserts that the consistent phase property (3.9) holds at
the point &. The hypothesis (3.32) above is a uniformity condition which asserts
that for each € > 0 there is a value T, such that for T > T,

— L 27ri(£,m)
(3.34) ‘mg aT) /[_T7T1n+a e du(z)| <e
holds for all @ € R™. The uniformity condition (3.32) is known to hold for all £ € R®
for cut-and-project sets with polytope masks B, see Hof [H95a, pp. 248-251] for
precise results. The uniformity condition (3.32) for all £ € R™ has also been verified
for special classes of self-repetitive Delone sets, see Gahler and Klitzing [GK, Thm.
3.1], Hof [H95a, p. 247], and Solomyak [S097, Thm. 5.1].

Hof [H97, p. 247] presents an example based on Allouche and Mendes-France
[AM-F, p. 336]) showing that some type of uniformity hypothesis is necessary for
the conclusion (3.33) in Theorem 3.9 to hold. This example takes

(3.35) fur=>_ "5,
meEZ
with @ = 52— for some integer k¥ > 1. Tt has a well-defined “Fourier coefficient”

2h+1
(3.29) at £ = 0, namely mg = 0, but 4({0}) = 1. We also note that Theorem 3.9

does not provide any information regarding a possible continuous component of the
measure 7, either singular continuous or absolutely continuous.

To conclude this section, we observe that Theorem 3.2 provides a mechanism
to define “Fourier coefficients” for a sizeable class of aperiodic Delone sets A. This
is evidenced by the examples above, and it may also apply to a class of A whose
associated dynamical system has suitably strong properties. Suppose that A is a
Delone set of finite type whose associated dynamical system ([[A]], R*) is minimal
and uniquely ergodic. It is then expected that the uniformity condition (3.32) holds
for those € not in the discrete spectrum of the dynamical system, and for those &
for which the dynamical system has a continuous eigenfunction. An analogous
theorem for a general uniquely ergodic transformation T on a compact space (with
a Z-action) was proved by E. A. Robinson, Jr. [Ro94, Theorem 1]. Assuming
that a version of Robinson’s result is valid for R™-actions, we could conclude that
whenever the dynamical system ([[A]], R*) is homogeneous, i.e. L?({2, 1) has a basis
of continuous eigenfunctions, then property (3.32) will hold for all £ € R™. Theorem
3.2 then assigns “Fourier coeflicients” at every & € R™, which satisfy the consistent
phase property. Homogeneous dynamical systems have pure discrete spectrum, so
that these “Fourier coefficients” would account for the entire spectrum. It follows
that this class of sets A , which includes ideal crystals, would have a satisfactory
definition of “phase information”.
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4. Open Problems

The first set of problems concerns Patterson sets and summation formulas.
Aside from ideal crystals, all known constructions of Patterson sets A produce a
Patterson spectrum op(A) that is a dense set in R". What constraints does the
assumption that op(A) is a discrete set put on A—A and op(A)? We first formulate
a version of this question purely in terms of summation formulas.

PROBLEM 4.1. (a) Suppose that 7 is a positive definite translation-bounded
measure in R” that is supported on a Delone set A in R”, with

(4.1) 7= n(@)a

®EA

and that its Fourier transform 4 is also a discrete measure supported as a Delone
set Y in R”

(4.2) F= p(y)dy -

yey

Is it true that there always exists a lattice L and a finite set F' such that
(4.3) XCL+F and YCUL*

holds?
(b) If (a) is true, does the weaker hypothesis that X and Y are both discrete
sets in R™ still imply that (4.3) holds?

An affirmative answer to this problem would significantly strengthen the result
of Cordoba given as Theorem 3.7.

Since Problem 4.1 may be hard, we propose the following weaker version that
involves Delone sets of finite type.

PROBLEM 4.2. (a) Let A be a Delone set of finite type in R™ that is a Patterson
set and suppose that Patterson spectrum op(A) is a Delone set. Does there exist
a lattice L such that

(4.4) op(A) CL*,

holds?
(b) If (a) is true, does the weaker hypothesis that op(A) is a discrete set still
imply (4.4)7

Next we ask a question concerning which substitution Delone sets are Patterson
sets.

PROBLEM 4.3. Suppose that A is a Delone set of finite type that is a primitive
self-replicating Delone set. If the dynamical system ([[A]], R™) has some continuous
spectrum does it follow that every element of [[A]] is not a Patterson set?

We next consider problems related to Bohr almost periodic sets.
PROBLEM 4.4. Is a Bohr almost periodic set necessarily an ideal crystal?

This problem was discussed in §3. In a related direction, one can ask for a
classification of uniformly almost periodic measures whose Fourier transform is a
uniformly almost periodic function.
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PrOBLEM 4.5. Characterize all translation-bounded measures p in R™ that are
uniformly almost periodic measures and whose (distributional) Fourier transform
i is also a uniformly almost periodic measure.

A theory of Besicovitch almost periodic sets in R" has not been worked out
in any detail. At this point it is not clear what is the best class B of almost
periodic distributions to take in order to get a good class of B-almost periodic
Delone sets. We will assume that the class of B-almost periodic functions used
necessarily satisfies properties (1)—(3) given in §3.

PROBLEM 4.6. Define a suitable class of B-quasicrystals with the properties:

(1) Those Patterson sets that are B-quasicrystals, have the consistent phase
property (3.9).

(2) All cut-and-project sets that are Patterson sets are B-quasicrystals.

(3) All self-replicating Delone sets that are Patterson sets are B-quasicrystals.

More generally, we we may ask:

PROBLEM 4.7. Are all B-quasicrystals necessarily Patterson sets? If so, do they
all have the consistent phase property (3.12)?

We also consider the relation of the “phase information” determined by a B-
quasicrystal “formal Fourier expansion” to that determined by Theorem 3.9.

PROBLEM 4.8. Suppose that u is a translation-bounded measure on R” that is
a B-almost periodic measure with “formal Fourier series”

(4.5) pe Y e(€)ermie
139%

If for a given &£ € R™ the limit

1 )

4.6 me := lim —/ 672”'<£’”>du x
(4.6) £ 1o @T) Ji_r144a (®)
exists uniformly in @ € R™, then does
(4.7) c(§) = mg

always hold?

We have noted that the information contained in the spectrum of a Patterson
set A does not suffice to reconstruct the set A up to a translation. Could this be
done if extra information about the set A was known? Recall that a Delone set of
finite type A is repetitive if for each radius T there is a finite bound My (T) such
that inside any patch of X of diameter Mx (T') one can find a translate of each type
of T-patch of A.

PROBLEM 4.9. (i) Suppose that A is a Delone set of finite type which is repet-
itive, and suppose that A is a Patterson set. Is it true that all repetitive Delone
sets of finite type with the same autocorrelation measure as A are contained in the
translation-closure [[A]]?

(ii) As an important special case, suppose further that ([[A]], R™) is uniquely
ergodic. Is it true that the repetitive Delone sets of finite type with the same
autocorrelation measure as A are exactly the translation closure A?
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Note that reconstructing crystal structure from “phase information” is only
possible by using the extra information that an ideal crystal is a fully periodic set,
and in particular, that it is repetitive. An affirmative answer to this problem would
extend the reconstruction results for crystals to some aperiodic sets.

We next consider a problem relating Patterson sets and Meyer sets.

PROBLEM 4.10. Suppose that A is a Delone set of finite type which is a repet-
itive. If A is a Patterson set, must A be a Meyer set?

In case this problem is too hard, one can ask it for special subclasses of sets.
The following one is of particular interest.

PROBLEM 4.11. Suppose that A is a primitive self-replicating Delone set. If A
is a Patterson set, must A be a Meyer set?

Note that a primitive self-replicating Delone set is necessarily a Delone set of
finite type that is repetitive.

To conclude, a very general problem is to characterize summation formulae gen-
eralizing the Poisson summation formula. These would involve “weighted discrete
sets” whose Fourier transform is also a “weighted discrete set”, in an appropriate
framework of almost periodic functions. This question however extends far outside
the framework of quasicrystals. The “explicit formula” of prime number theory
which relates the primes to the zeros of the Riemann zeta function can be viewed
as a kind of summation formula. Guinand [Gu] has introduced a very general no-
tion of uniform almost periodicity for weighted discrete sequences, with respect to
a given family of test functions. In this framework he is able to show, for particular
weights, that the truth of the Riemann hypothesis would say that the discrete set

{mlogp : m > 0,p a prime} with weights ;)—‘,’f,% has Fourier transform supported

on {y : ¢(3 +iv) = 0} with associated weight -, see [Gu, p. 263].
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Appendix A. Measures and Distributions.

This appendix gives basic facts on measures and distributions. See also the
appendices in Hof [H97]. This approach uses a theory of measures viewed as linear
functionals on a suitable space of test functions.

DEFINITION A.1. A (complex-valued)measure p is a continuous linear func-
tional on the space K(R™) of compactly supported continuous functions on R™.
Here continuity means that for each compact K there is a constant ax such that

Iu(f)] < axl|flloo

for all f € K(R™) with support in K and ||.||oc is the supremum norm.

DEFINITION A.2. (i) A positive measure is a measure p such that f € K(R")
with f > 0= u(f) > 0.

(ii) For every measure y there is a smallest positive measure p such that |u(f)| <
p(|f]) for all f € KK(R™). This measure p is called the absolute value of p, and is
denoted |p.

(iii) A measure is bounded if |u|(R™) is finite, and is unbounded otherwise.
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Every function ¢(z) that is locally L' defines a measure u, by

pol@) = [ flao(a)de tor f € K(R).

where dz is Lebesgue measure on R”. The convolution y * v of two measures is
given by

pxv(f) = /R . f(z + y)du(z)dv(y),

and is well-defined if at least one of them has compact support.

A sequence of measures p,, converges to a limit measure v in the vague topology
if for each test function f € K(R™) the limit p,(f) — v(f). (This is the weak-x
topology on the space of measures M(R™).)

This linear functional version of measure is related to concepts in classical
measure theory via the Riesz-Markov representation theorem stated below.

DEFINITION A.3. (i) A Borel measure is a measure defined on the Borel sets B
of R® Such measures take values in C, and may be unbounded.

(i) A Borel measure is positive if it takes values in the nonnegative reals R>g.
Associated to a Borel measure p is a measure |u| which is the smallest positive
measure such that

()] < |ul(xX)
for all compact sets X.

DEFINITION A.3. A positive Borel measure p is regular if it has the two prop-
erties:

(a) (Outer regular) For each set A in R,

w(A) =inf{u(U): A c U, U open }.
(b) (Inner regular) For each y-measurable set A € R™,

w(A) =sup{u(K): K C A, K compact}.
A general Borel measure y is regular if |p] is.

If two regular Borel measures coincide on all open (resp. compact) sets, they
are equal. If a positive Borel measure p is not regular we can obtain a regularization
by defining v(A) = inf{u(U): A C U : U open}.

THEOREM A.l. (Lebesgue decomposition theorem) Any reqular Borel measure
poon R has a unique decomposition as

(A].) M= Upp + Wac + Wsc

where p,, s a pure point measure, [io. 1S absolutely continuous with respect to
Lebesgue measure and ps. is singular continuous with respect to Lebesgue measure.

PROOF. See Reed and Simon [RS, Thm. I.14]. O

Here a pure point measure is a sum of weighted delta functions on a countable
set X. There is no other restriction on the set X, which could be dense.

DEFINITION A.5. A Borel measure p is a Radon measure if for each compact
set K C R™, the measure |u|(K) is finite.

The property that |p|(K) is finite for all compact sets K in R" implies that
a Radon measure is a regular Borel measure, see Rudin [Ru74, Thm. 2.18] and
Evans and Gariepy [EG, Thm. 1.1.4].
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THEOREM A.2. (Riesz-Markov representation theorem) There is a one to one
correspondence between positive measures and positive Radon measures; for each
positive measure 1 there is a unique Borel measure p such that Y(f) = [ fdu for
each f € K(R™).

PROOF. See Dieudonne [Di, Chapter XIII] or Rudin [Ru74, p. 42] or Reed
and Simon [RS, Thm. IV.18]. O

To relate measures and distributions, note that distributions are continuous
linear functionals on the space D(R") of compactly supported smooth functions on
R™, while tempered distributions are continuous linear functionals on the Schwartz
space S of rapidly decreasing smooth functions on R™, with continuity with respect
to an appropriate topology. Since D(R™) C K(R™) we can associate to each measure
p a unique distribution, defined by

(A2) o) = / g()du(z) for g € D(R").

We identify the measure with this distribution, noting that any measure is uniquely
reconstructible from its associated distribution y. If the distribution associated to a
measure is a tempered distribution, we call it a tempered measure. Not all measures
are tempered.

To have a well-defined Fourier transform, some restriction on the class of mea-
sures is required. There is an elegant theory of the Fourier transform for tempered
distributions, described in Schwartz [Sch] and Rudin [Ru73, Ch. 7]. This theory
applies to tempered measures, and the following subclass of measures are suitable
for modeling diffraction questions.

DEFINITION A.6. A Radon measure g on R™ is translation-bounded if there is
a constant a such that

[)([0,1]" +y) <a foralyeR".

Translation-bounded measures are tempered measures. For tempered measures
the Fourier transform i is well-defined as a tempered distribution, but in general
it is not a measure.

DEFINITION A.7. A tempered distribution 7" on R™ is of positive type if
T(¢(—z) * ¢(x)) > 0 for all compactly supported C*®-test functions ¢ € D(R™).

L. Schwartz showed that a distribution is of positive type if and only if it is
the Fourier transform of a positive measure p of at most polynomial growth, see
Reed and Simon [RS, p. 331]. This generalizes Bochner’s theorem characterizing
positive definite functions, and we therefore call a measure y that is a distribution
of positive type a positive definite measure. Such measures satisfy

[ ft@) FC)du(z) for f € K(R")

which is the definition of positive definite measure used in [AL] below. Such mea-
sures are tempered measures.

THEOREM A.3. If p is a translation bounded positive definite measure then its
Fourier transform fi is a translation-bounded positive measure.

PRrROOF. The first part follows from Proposition 3.3 of Hof [H95a]. Finally
is a positive measure by Reed and Simon [RS, Theorem IX.10]. See also Berg and
Forst [BF, Prop. 1.4.4]. a



24 JEFFREY C. LAGARIAS

A more general subclass of measures whose Fourier transforms are measures
was introduced and studied by Argabright and de Lamadrid [AL].
DEFINITION A.8. A measure p is a transformable measure if there exists a

measure fi defined on the character space R" := {€ : Xg(w) = 627”'(5’“)} such that

[ per@in@) = [ If©Pde),

where f*(x) = f(—x) and f(&) is the inverse Fourier transform of f. The measure
it is called the Fourier transform of u,

They show that transformable measures are necessarily tempered, and that on
R™ their notion of Fourier transform agrees with that of tempered distributions,
see [AL, Thm. 7.2]. The Fourier transform j of a transformable measure is a
translation-bounded measure [AL, Thm. 2.5]. All positive definite measures are
transformable [AL, Thm. 4.1], and a transformable measure is positive definite if
and only if ji(x) is a positive measure. This class of measures is not symmetric
under Fourier transform, i.e. if p is transformable it need not be the case that
i is transformable. There exist transformable measures that are not translation-
bounded [AL, Ch. 7].

Appendix B. Almost Periodic Functions and Almost Periodic Mea-
sures. This appendix describes various notions of almost periodic functions on R”
and uses them to define various notions of almost periodic measure u. To such a
measure p one can associate a “formal Fourier series”

pe Y g
§eo(u)

in which o(p) is a countable set of frequencies is a spectrum of p. In such a case
the tempered distribution j will have a “formal J-function expansion”

p~ Y el€)de -
Eca(n)
We first describe the theory of uniformly almost periodic functions as given in
Bohr [Bol].
DEFINITION B.1. A continuous function f € L*(R") is uniformly almost peri-
odic (in the sense of Bohr) if for each € > 0 there exists a relatively dense set A.(f)
of e-almost periods of f. Here an e-almost period is a value 7 such that

(B.1) sup |f(a+7) - f(@)| <.

Let AP(R™) denote the set of uniformly almost periodic functions on R*. It
is closed under uniform limits: If {f;} C AP(R™) have ||f — fjllcc = O, then
f € AP(R™). It is well-known that a function f € AP(R™) if and only if for each
€ > 0 there exists a finite trigonometric sum

P.(x) = Z c()\,e)e2”i<)"m>
A€F.

such that ||f — Pe||e < €.
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There is a notion of Fourier series and a Parseval relation valid for uniformly
almost periodic functions. For any almost periodic function f, for & € R” the limit

(B.2) M(f) = Jim — /C S

exists, where C(z, R) = R[0,1]™+ 2. This limit is independent of , and is attained

uniformly in # as R — co. The function e 27&®) f(z) is also uniformly almost
periodic, and for £ € R” we define the Fourier coefficient (&) of f(x) by

(B.3) (&) i= M(e72 &) f(a)) .
DEFINITION B.2. For a uniformly almost periodic function the set
(B.4) ou(f) :={&:7(§) #0}

is called the uap spectrum of f or Bohr spectrum of {. (Note that Bohr’s [Bo1l]
definition of the spectrum differs slightly, being 2woy (f).)
THEOREM B.1. If f is uniformly almost periodic on R"™, then so is |f|> and

(B.5) MAP) = Y hor.
Eeou ()

This theorem implies that oy (f) is at most a countable set. Thus f has a
formal “Fourier expansion.”

(B.6) f@~ 3 v©eme

§€au(f)
in the sense of mean values (Bohr [Bol, p. 47]) and (B.5) can be viewed as a
Parseval-type relation. Any Fourier expansion of an almost-periodic function sat-
isfies

(B.7) 3 @) < o0
Ees

where S = oy(f). However not all countable sets S and sequences (B.7) are
“Fourier expansions” of some uniformly almost periodic functions. For any count-
able set S and any coefficient set {y(¢£) : € € S} the condition

> () < o0
Ees

is sufficient for there to exist a (unique) almost-periodic function f with “Fourier
expansion” (B.6).

The Fourier expansion of a uniformly almost periodic function f uniquely de-
termines f.

THEOREM B.2. If fi and fo are uniformly almost periodic functions on R" and
if

M(e2E2) £, (2)) = M(e>E fy(a))

for all £ € R™, then f1 = f5.

The “Fourier expansion” (B.6) of a uniformly almost periodic function f can
be used to reconstruct f using a Cesaro-like summation procedure.
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THEOREM B.3. Given any countable set S, there exists a family of weight
functions {8s,c(§)} depending on: the parameter € > 0, such that:

(1) 0< Bs,e(§) <11,
(2) limeJ,O ﬂS,e(‘f) =1 Zf§ € S:
(3) For each € there is a finite set Fs(e) such that Bs.(€) =0 if € & Fs(e).
(4) For every uniformly almost periodic function with spectrum contained in

S, if

Pro(@) =Y Bs () (&) E=)
Ees
then ||f — Pfelloc = 0 as € = 0.

The notion of almost periodic function was extended to measures by Schwartz
[Sch, Sect. VI.9].

DEFINITION B.3. An (unbounded) Radon measure u is a uniformly almost
periodic measure if for each compactly supported C*°-function g on R™ (g € D(R"™))
the convolution

(B3) gen(@) = | o= )duty)

is a uniformly almost-periodic function.
We assign to a uniformly almost periodic measure p the “formal Fourier ex-
pansion”

(Bg) n~ Z 0(5)627”'(&7“’) ,
Eeou(n)

in which the “Fourier coefficient” ¢(£) is defined by observing that for each g €
C(R™) the uniformly almost periodic function p * g has the Fourier expansion

(B.10) prgm Y €)i(—€)emiE)

Eeou(pxg)

and ¢(&) is determined using any g(x) such that g(—€) # 0, and is well-defined.
Here we set

(B.11) ou(p) = |J oulpxg),
geCe

and oy (u) can be proved to be a countable set.

Thus one may think of an uniformly almost periodic measure p as having a
fixed countable spectrum oy (p), which contains the spectra of all u * g, and the
formula (B.10) giving the “Fourier coefficients” of p * g as a “weak summation
formula.”

The closed graph theorem implies that any uniformly almost periodic measure
has

(B.12) sup / |du| = C(R) < o0,
2cR" JC(a,R)

where C(x, R) =  + R[0,1]™ is a scaled unit cube. Thus any almost periodic mea-
sure is necessarily translation-bounded. This in turn implies that the convolution
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u * g makes sense for any function g € S(R™), the Schwartz space of rapidly-
decreasing C'*°-functions. The tempered distribution i can be viewed as having a
“formal §-function expansion”

(B.13) p~ Y 8o
Eeou(w)

given the term-by-term Fourier transform of the right side of (B.12).
For any full-rank lattice L € R™, the measure

(B.14) pr(x) =Y by .
A€l

is an almost-periodic measure. For any compactly supported continuous function
f(x), the function

(B.15) prxf) =Y fly—-N),
A€l

is periodic with period lattice L, hence is uniformly almost-periodic.

The “Fourier expansion” of the almost periodic measure uy for a lattice L is
related to the Poisson summation formula. This states (Theorem 2.6) that the
(distributional) Fourier transform of py, is

R 1
(B.16) pr = M Z i),
geL~

where L* is the dual lattice
(B.17) L*={¢eR":(N\€& eZiorall A€ L} .

However, taking the Fourier transform of (B.16) formally, term-by-term, gives

(B.13) pae) ~ s 3 exp(2ri(6,a))
EeL~

This indicates that the spectrum oy (ur * f) of the periodic function py, * f is
contained in L*.

The space of uniformly almost periodic measures is not large enough to include
measures pp associated to all regular cut-and-project sets. We can obtain a suffi-
ciently large class of measures by relaxing the notion of almost periodic function
used to define almost periodic measures. It was observed by Besicovitch and Bohr
[BeBo] that various notions of almost periodicity are obtained by changing the
topology of convergence used for approximation by finite trigonometric polynomi-
als. In this way one can define the almost periodic functions of Stepanov, Wiener
and others, see Besicovitch [Be]. We would like a class of almost periodic functions
wide enough to permit as valid Fourier series expansions all expressions

(B.19) 3 e(g)ermiE)

Ees
for any countable set S and any square-summable sequence
(B.20) D> 1€ < oo,

Ees
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and which satisfy a Parseval identity. The class B?(R) of Besicovitch almost peri-
odic functions on R satisfy these conditions.

DEFINITION B.4. The Besicovitch B?-distance between two functions f,g €
L2(R) is

‘ ) T ) 1/2
(B.21) Dp2(f, 9] = (117ryj;pﬁ/_T|f(w) —g(z)| dw) :

The class B?(R) of Besicovitch almost periodic functions consists of all functions
f € L?(R) such that there is a sequence of trigonometric polynomials {f,} with

(B.22) Dp2(f,fn] >0 as n—o0.

Besicovitch’s original definition of B2-almost periodic functions incorporated a
notion of e-almost period which is parallel to definition (B.1) of uniformly almost
periodic functions. Call a set P of real numbers satisfactorily uniform if there
exists a number [ such that the ratio of the maximum number of terms of P to the
minimum number of terms in P in an interval of length [ is less than 2. A function
in L2(R) is B%-almost periodic if for each € > 0 there exists a satisfactorily uniform
set

P€={Ti:'--<7'_1 <7'0<T1<T2<"'}
such that for each i € Z,
DBz[fa fn] <e€,
where f;, is the translated function f(- — 7;), and for every positive ¢ > 0,
1 T+c
lim sup (lim sup —/ |flx +1;) — f($)|2dm) <é.
T—00 i—woo C Jg

This equivalence of this definition to the earlier one is given in Besicovitch [Be, p.
78 and p. 100].
We can associate to B2-almost periodic function on the line a B2-Fourier series

(B.23) from Y e
é€oB(f)

which is supported on a countable set og(f) which we call the Besicovitch spectrum
of f, cf. [Be, p. 104]. To do this we a mean value M(f) of a B2-polynomial. Take
a series of trigonometric polynomials

(B.24) sn(z) = Z c(&)e? ™
§EF,

where F), is a finite set, with Dp,[sn(z) — f(z)] = 0. Each s,(z) has a mean value,
and these have a limiting mean value, so we can define

(B.25) M(f) = lim M(sn()) .

n—o0

Now {e?™%%s,,(2)}n—oo converges to e2™%7 f(z) in the B2-sense, and we define

(B.26) c(€) ~pz M(fe?%) .
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THEOREM B.4. If f € B%(R) then f has a B2-Fourier series supported on a
countable set o (f),

(B.27) f~pe Z c(£)e?mieT
¢€os(f)
Also f satisfies the Parseval identity

(B.28) £ = Dp, [f,0] = > @) .
¢€os(f)

PROOF. See Besicovitch [Be, p. 109]. O

THEOREM B.5. If S is any countable set and {c(§) : £ € S} is a square-
summable sequence in R, so that

S le(©)P < oo,

£ES

then there exists f € B2(R) which has B2-Fourier series

(B.29) DI G
€es
PROOF. See Besicovitch [Be, p. 110]. O

Finally, the uniqueness theorem for B2-Fourier series is as follows.
THEOREM B.6. The functions f,g € B%(R) have the same Bs- Fourier series,
if and only if

(B.30) Dpslf,g] = 0.

PROOF. See Besicovitch [Be, p. 109]. O

One can find two functions f, g € B?(R) which differ on a set of infinite
Lebesgue measure and which have Dpg2(f,g) = 0, so that they have the same B2-
Fourier series. This ambiguity is similar to the ambiguity one encounters in the
definition of the diffraction measure presented in §2, where the diffraction measure
remains unaffected by “small” changes, cf. (2.9). However the Fourier coefficients
of a B2-almost periodic function f do contain “phase information” in the sense that
the translated function fi(x) = f(x — t) has the same spectrum og(f;) = op(f)
and its Fourier coefficients are

(B31) ei(€) = (€)™ .

We define B2-almost periodic measures in exactly the same way as was done
for uniformly almost periodic measures.
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DEFINITION B.5. An unbounded Radon measure u is a Besicovitch almost pe-
riodic measure or B?-almost periodic measure if for each compactly supported C'>°-
function g on R the convolution u * g(y) is a B2-almost periodic function.

One can now define a B2-Fourier series and a B2-almost periodic spectrum
op(u) for a B2-almost periodic measure, or distribution. Hof [H97, p. 257] indi-
cates that certain one-dimensional cut-and-project sets A give B%-almost periodic
measures pp in this sense.

Besicovitch developed the theory of B2-almost periodic functions on the real
line R, and apparently did not extend it to R”. In the 1950’s Fglner [Fg] developed
an analogue of the Besicovitch theory which is valid on arbitrary infinite groups G,
and in particular R™. He proves analogues of the Theorems B.4.-B.6. for his almost
periodic functions. However, he notes that his function space does not agree with
Besicovitch’s class B2(R) on R. Later Davis [Da68] gave an extension of BP-almost
periodic functions valid on an arbitrary locally compact Abelian group. His defini-
tion does extend Besicovitch’s to R" (choosing a suitable “complete homogeneous
Bohr net” on R"). His functions have well-defined Fourier series with a countable
spectrum, and he gives a sense in which the Fourier series recovers the function, cf.
[Da68, Thm. 3.1]. However he does not work out the case of B%-almost periodic
functions in any detail.

The most interesting special case for this paper is that where the Besicovitch
almost-periodic distribution f has a Fourier transform f that is itself a Besicovitch
almost-periodic distribution. In this case both f and f have spectra — in the B2-
almost-periodic sense — that is supported in a countable set. Can one characterize
such pairs of distributions? Is there some analogue of a “summation formula”
associated to such a pair of distributions?
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