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1. (Contents of Talk)-1

• The talk considers the ABC equation

A+B + C = 0.

This is a
homogeneous linear Diophantine equation.

• We study multiplicative properties of the
solutions (A,B,C), i.e. solutions with
restrictions on their prime factorization.
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Contents of Talk-2

• The height of a triple (A,B,C) is

H := H(A,B,C) = max{|A|, |B|, |C|}

• The radical of a triple (A,B,C) is

R := R(A,B,C) =
Y

p|ABC

p

• The smoothness of a triple (A,B,C) is

S := S(A,B,C) = max{p : p divides ABC}.
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Contents of Talk-3

• The ABC Conjecture concerns the
relation of the height and the radical of
relatively prime triples (A,B,C).

• We consider the relation of the height and
the smoothness of relatively prime triples.

• We formulate the XYZ Conjecture
concerning this relation.

5



An Example

• (A,B,C) = (2401,�2400,�1)

• 2401 = 74

2400 = 25 · 3 · 52

1 = 1

• The height is H = 2401.

• The radical is R = 2 · 3 · 5 · 7 = 210.

• The smoothness is S = 7.
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Another Example

• (A,B,C) = (2n+1,�2n,�2n)

• The height is H = 2n+1.

• The radical is R = 2.

• The smoothness is S = 2.

• Relative primality condition needed:
Without it get infinitely many solutions
with small radical R (resp. smoothness
S), arbitrarily large height H.
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The Basic Problem

Problem. How small can be the smoothness
S be, as a function of the height H,

so that:

There are infinitely many relatively prime
triples (A,B,C) with these values satisfying
A+B + C = 0?

8



Nomenclature

• A smooth number is a number all of
whose prime factors are “small.” This
means all prime factors at most y, where
y is the smoothness bound.

• Some authors call such numbers friable.
In English, this means: brittle, easily
crumbled or crushed into powder.
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ABC Conjecture

• ABC Conjecture. There is a positive
constant ↵1 such that:

• For any ✏ > 0 there are

(a) infinitely many relatively prime
solutions (A,B,C) with radical

R  H↵1+✏

(b) finitely many relatively prime solutions

(A,B,C) with radical

R  H↵1�✏.

• Remark. Most versions of ABC

Conjecture assert ↵1 = 1.
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XY Z Equation

• To avoid confusion with ABC Conjecture,
we define the XY Z equation to be:

• X+Y+Z=0.
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XY Z Conjecture

• XYZ Conjecture. There is a positive
constant ↵0 such that the XY Z equation
X + Y + Z = 0 has:

• For any ✏ > 0 there are

(a) infinitely many relatively prime
solutions (X,Y, Z) with smoothness

S  (logH)↵0+✏

(b) finitely many such solutions (X,Y, Z)

with smoothness

S  (logH)↵0�✏.

• Question. What should be the threshold
value ↵0?
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Counting Smooth Numbers

Definition.  (x, y) counts the number of
integers  x all of whose prime factors p  y.

Notation. The quantity

u :=
logx

log y

is very important in characterizing the size of
 (x, y).

13



Dickman Rho function

• ⇢(u) is a continuous function with
⇢(u) = 1 for 0  u  1, determined by the
di↵erence-di↵erential equation

u⇢0(u) = �⇢(u� 1).

It is positive and rapidly decreasing on
1  u < 1.

• The Dickman ⇢-function is named after
Karl Dickman, in his only published paper:

• “On the frequency of numbers containing
prime factors of a certain relative
magnitude,” Arkiv för Math., Astron. och
Fysik 22A (1930), 1–14.

• Dickman showed (heuristically) that

 
✓
x, x

1
�

◆
⇠ ⇢(�)x.
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Logarithmic Scale

• For y = x� a positive proportion of
integers below x have all prime factors
smaller than y.

• We consider smoothness bounds y where
there are only some positive power x� of
integers below x having factors smaller
than y. This scale is y = (logx)↵.

• For ↵ > 1 there holds

 (x, (logx)↵) ⇠ x1�
1
↵+o(1)

• There is a threshold at ↵ = 1, below
which  (x, y) = O(x✏); it qualitatively
changes behavior.
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Heuristic Argument-1

• “Claim”. The threshold value in the
XYZ Conjecture ought to be ↵0 = 3

2.

• Heuristic Argument. (a) Pick (A,B) to be
y-smooth numbers. There are  (x, y)2

choices. Assume these give mostly
distinct values of C = �(A+B).

• (b) The probability that a random C is
y-smooth is  (x,y)

x .
Reasonable chance of at least one “hit”
would require (assuming independence)

 (x, y)3 > x.

• (c) Thus take y so that  (x, y) = x
1
3+✏.

Then 1� 1
↵ = 1

3 so ↵ = 3
2 and:

y = (logx)
3
2+✏.
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Heuristic Argument-2

• Claim 2. The threshold value in the XYZ
Conjecture for relatively prime solutions
to A+B = 1 should be ↵0 = 2.

• Heuristic Argument. (a) Pick A to be a
y-smooth numbers. There are  (x, y)
choices. Assume these give mostly
distinct values of B = �(A� 1).

• (b) The probability that a random B is
y-smooth is  (x,y)

x .
Reasonable chance of at least one “hit”
would require (assuming independence)

 (x, y)2 > x.

• (c) Thus take y so that  (x, y) = x
1
2+✏.

Then 1� 1
↵ = 1

2 so ↵ = 2 and:

y = (logx)2+✏.
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Example Revisited

• (A,B,C) = (2401,�2400,�1).

• log 2401 ⇡ 7.783

• (log2401)2 ⇡ 60.584

• S = 7.

• Is this a “lucky” example? Numerically
the matching value of ↵ = 1, not ↵0 = 2
as in the heuristic.
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Main Result

• Theorem ( Alphabet Soup Theorem)
ABC + GRH implies XY Z.

• This is a conditional result. It has
two (unequal) parts.

• Lower Bound Theorem
ABC Conjecture =) the XY Z constant
↵0 � 1.

• Upper Bound Theorem
Generalized Riemann Hypothesis (GRH)
=) the XY Z constant ↵0  8.
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Main Result: Comments

• The exact constant ↵0 is not determined
by the Alphabet Soup Theorem, only its
existence is asserted.

• Lower Bound Theorem assuming ABC

Conjecture: This is Easy Part.

• Upper Bound Theorem assuming GRH:
This is Hard Part.

Stronger result: Get asymptotic formula
for number of primitive solutions, for
↵0 > 8. Use Hardy-Littlewood method
(circle method).
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2. Lower Bound assuming
ABC Conjecture

• ABC Conjecture.
For each ✏ > 0 there are only finitely many
relatively prime triples (A,B,C) having

R  H1�✏.

• Recall:

• The height of a triple (A,B,C) is

H := H(A,B,C) = max{|A|, |B|, |C|}

• The radical of a triple (A,B,C)

R := R(A,B,C) =
Y

p|ABC

p
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Remarks: Lower Bound

• The ABC Conjecture implies many
things: (asymptotic) Fermat’s Last
Theorem, etc.

• It is a powerful hammer, here we use it to
crack something small.

• XY Z Lower bound is a very easy
consequence of ABC Conjecture.
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(Conditional ) Lower Bound
Theorem

• Theorem. (XY Z Lower Bound) Assuming
the ABC Conjecture, the constant ↵0 in
the XY Z Conjecture satisfies.

↵0 � 1.

• Note: This lower bound ↵0 � 1 is exactly
at the value (logx)↵ where the behavior
of  (x, y) changes.
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Lower Bound Theorem-Proof

• (a) The radical R and smoothness S of
any (A,B,C) are related by

R =
Y

p|ABC

p 
Y

pS

p

• (b) This easily gives

R  exp (S(1 + o(1))) ,

since
Q
py p = ey(1+o(1)).

• (c) Argue by contradiction. Suppose, for
fixed ✏ > 0, have infinitely many solutions

S  (1� ✏) logH.

Combine with (b) to get, for such
solutions,

R  e(1�✏) logH(1+o(1)) ⌧ H1�1
2✏.

This contradicts the ABC Conjecture.
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Unconditional Lower Bound

• Theorem. For each ✏ > 0 there are only
finitely many relatively prime solutions to
A+B + C = 0 having height H and
smoothness S satisfying

S  (3� ✏) log logH

• Proof. Similar to above, but using
unconditional result:

• Theorem. (Cam Stewart and Kunrui Yu )
There is a constant c1 such that any
primitive solution to A+B + C = 0 has
height H and radical R satisfying

H  exp
✓
c1R

1
3(logR)

1
3

◆
.
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Cameron L. Stewart
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Kunrui Yu
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3. Upper Bounds assuming
GRH

• We assume:

• Generalized Riemann Hypothesis. (GRH)
All the zeros of the Riemann zeta
function and all Dirichlet L-functions
L(s,�) inside the critical strip
0 < Re(s) < 1 have real part 1

2.

• Note. We allow imprimitive Dirichlet
characters so the L-functions may have
complex zeros on the line Re(s) = 0.
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Upper Bound Theorem

• Theorem. (Height-Smoothness Upper
Bound) If the GRH holds, then for each
✏ > 0 there are infinitely many primitive
solutions (A,B,C) for which the height H

and smoothness S satisfy

S  (logH)8+✏.

• Corollary. (XYZ Conjecture Upper
Bound) If the GRH holds, then the
constant ↵0 in the XY Z Conjecture
satisfies

↵0  8.
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Remarks on Upper Bound
Theorem-1

• Proof establishes a stronger result: An
asymptotic formula counting the number
of (weighted) solutions (X,Y, Z).

• Approach to this uses the Circle Method,
combined with the Saddle-Point method
of Hildebrand-Tenenbaum for counting
y-smooth numbers below a bound x.

• The method counts all solutions, without
imposing the relative primality condition.
An inclusion-exclusion argument is needed
at the end to get relative primality.
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Remarks on Upper Bound
Theorem-2

• Crucial new ingredient for minor arcs: An
expansion of additive characters in terms
of a set of multiplicative functions.

• The additive characters are the
exponentials in the circle method.

• A “spanning set” of multiplicative
functions (depending on a parameter y)
are Dirichlet characters of small
conductor and multiplicative functions
gt(n) = nit for some range of t. (The
latter are “continuous spectrum”).
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Technical Main Theorem:
Weighted Sums-1

• Let �(x) be a “weight function”
compactly supported on (0,1).

• Main case: A “bump function” that is the
constant 1 on [✏,1� ✏]
and is 0 outside [12✏,1� 1

2✏].

• Think:

�(x) := �[0,1](x) = { 1 if 0  x  1,
0 if x � 1

(not compactly supported)
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Technical Main Theorem:
Weighted Sums-2

• Weighted Sum to Estimate

N�(x, y) :=
X

X,Y,Z2S(y)
X+Y=Z

�(
X

x
)�(

Y

x
)�(

Z

x
).

• Here S(y) = the set of all integers with
no prime factor larger than y.

• For “bump function” this sum only
detects solutions with
max(|X|, |Y |, |Z|)  x.
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Technical Main Theorem:
Weighted Sums-4

• The Hildebrand-Tenenbaum saddle-point
method evaluates a certain contour
integral by integrating on a saddle point
line Re(s) = c, which lies in critical strip.

• Given range x and smoothness bound y,
the associated saddle point value c is the
(unique) positive solution to the equation

X

py

log p

pc � 1
= logx.

• If y = (logx)↵, with ↵ > 3, then the
saddle point value is

c = 1�
1

↵
+O

✓log log logx

log logx

◆
.
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Adolf J. Hildebrand

(An Elusive Sighting...)
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Gérald Tenenbaum
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Technical Main Theorem:
Statement

• Theorem. (Counting Weighted Solutions)
For all (x, y) with y = (logx)↵ with

8 + ✏  ↵  8+
1

✏
,

(✏ > 0 fixed) the weighted sum N�(x, y)
counting all solutions (including
imprimitive ones) is given by main term:

Sf(1�
1

↵
)S1(�,1�

1

↵
)
 (x, y)3

x

which contains two singular series,
and by remainder term R(x, y):

R(x, y) = O

 
 (x, y)3

x
·

1

(log logx)1�✏

!
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Technical Main Theorem:
Singular Series

• Finite Place Singular Series S(c) :=

Y

p

0

@1+
p� 1

p(p3c�1 � 1)

 
p� pc

p� 1

!31

A

(converges for Re(c) > 2
3, diverges at

c = 2
3.)

• Archimedean Singular Series S(�, c) :=

c3
Z Z

�(t1)�(t2)�(t1+t2)(t1t2(t1+t2))
c�1dt1dt2.

(Converges for Re(c) > 2
3, diverges at

c = 2
3, for step function � = �[0,1](t))

• Singular series are positive for real c > 2
3,

i.e. for ↵ > 3!
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Inclusion-Exclusion Theorem-1

• Theorem. (Counting Primitive Solutions)
Let the weighted sum N⇤

�(x, y) count
primitive solutions only. For all (x, y) with
y = (logx)↵ satisfying

8 + ✏ < ↵ < 8+
1

✏
,

(✏ fixed) the weighted sum N⇤
�(x, y) is

given by the main term

1

⇣(2� 3
↵)

Sf(1�
1

↵
)S1(�,1�

1

↵
)
 (x, y)3

x

in which the remainder term R(x, y)
satisfies

R(x, y) = O

 
 (x, y)3

x
·

1

(log logx)1�✏

!
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Technical Main Theorem 2:
Inclusion-Exclusion-2

• The inclusion-exclusion factor

1

⇣(2� 3
↵)

is positive for ↵ > 3. However it is 0 at
↵ = 3.

• Interpretation.
For ↵ > 3 a positive fraction of all integer
solutions are primitive integer solutions.

But for 0 < ↵ < 3 a zero fraction of all
integer solutions are primitive solutions.

• Heuristic: Expect infinitely many primitive
solutions only for ↵ > 3

2.
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Hardy-Littlewood Method-1

• Weighted Counting Function Identity

N(x, y;�) =
Z 1

0
E(x, y,�)2E(x, y;��)d�,

where integrand is ...

• Weighted Exponential sum.

E(x, y;�) :=
X

n2S(y)
e(n�)�(

n

x
)

• Here

e(�) = exp(2⇡i�).
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Hardy-Littlewood Method-2

• Estimate the integral

N(x, y;�) =
Z 1

0
E(x, y,�)2E(x, y;��)d�,

• Idea (a) Cut the integration interval [0,1]
up into subintervals I(aq), indexed by
rational numbers a

q having small
denominators: q <

p
x.

• (b) The integrand is large in small
neighborhoods of a

q with small

denominators, q  x1/4, these are the
major arcs J(aq). Estimate their size
exactly, get the main term of asymptotics.

• (c) Show the integrand is “small”
everywhere else, the minor arcs, get the
remainder term.
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Hardy-Littlewood Method-3

• Cuto↵ Exponent �. This is an adjustable
parameter. 0 < � < 1/4, fixed in advance.

• Major Arcs. 1  q  x1/4, take

J(
a

q
) := {� : |� �

a

q
| 

1

x1��
}

(As � gets smaller, these intervals get
smaller. But they stlll give main term!)

• Minor Arcs. Everything else. For
denominators x1/4  q  x1/2 it is the
whole Farey interval I(aq).

For denominators 1  q  x
1
4 it is part of

Farey interval not covered by J(aq), which
generally consists of two pieces.
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Multiplicative Character
Decomposition-1

• Weighted Exponential sum Consider:

E(x, y;�) :=
X

n2S(y)
e(n�)�(

n

x
)

(This involves the additive character
f(n) := e(n�))

• Idea: Expand in “basis” of multiplicative
characters. These include:
(a) Dirichlet characters �(n) (mod q) for
general integer modulus q, may be
imprimitive or primitive character.
(b) continuous characters  t(n) := nit.

• This is overdetermined set, extract
suitable subset, depending on parameters
(x, y).
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Multiplicative Character
Decomposition-2

• Dirichlet Character Decomposition. For
� = a

b , given n set d := (n, q). Then

e(n�) =
1

�(qd)

X

�( mod q
d)

⌧(�̄)�(
na

d
)

where ⌧(�) is a Gauss sum.

• This decomposition preserves L2-norm:

X

� ( mod q
d)

|⌧(�)|2

�(qd)
2 = 1.
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Multiplicative Character
Decomposition-3

• Transformed Weight Function Given
weight function �(x), form the
Laplace-Mellin transform

�̂(s,�) :=
Z 1

0
�(w)e(�w)ws�1dw

• Size Lemma 1. This function �̂(s,�) is
“small” except when |s| ⇡ |�|

• Size Lemma 2. This function satisfies the
L1-smallness bound

Z 1

�1
|�̂(c+ it,�)|dt << (1 + |�|)1/2+✏.
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Multiplicative Character
Decomposition-4

• Continuous Character Decomposition.
The function f(n) = e(n�)

e(n�)�(
n

x
) =

1

2⇡i

Z c+i1

c�i1
�̂(s,�x)(

x

n
)sds.

• This decomposition preserves L2-norm:

1

2⇡

Z 1

�1
|�̂(c+it,�x)|2 =

Z 1

�1
|�(eu)e(�xeu)ecu|2du.
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Exponential Sums with
Dirichlet Characters

• Reduction of Problem. For � = a
q + �, can

express exponential sum E(x, y;�) as a
combination of generalized exponential
sums E(x, y;�, �) over Dirichlet characters
(mod q). Here...

• Generalized Weighted Exponential sum
For �(n) a Dirichlet character (mod q),

E(x, y;�, �) :=
X

n2S(y)
e(n�)�(n)�(

n

x
)
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Partial Euler Product

• Now use Dirichlet series for smooth
numbers...

• Partial Euler Product

⇣(s; y) :=
Y

py

 

1�
1

ps

!�1

=
X

n2S(y)
n�s.

• Partial Euler Product with Dirichlet
Character

L(s;�, y) :=
Y

py

 

1�
�(p)

ps

!�1

=
X

n2S(y)
�(n)n�s.
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Relation to (Partial)
L-Functions

• To estimate E(x, y;�, �) use...

• Inverse Mellin Integral Formula

E(x, y : �, �) =
1

2⇡i

Z c+i1

c�i1
L(s;�, y)�̂(s, �x)xsds.

• Idea. L(s;�, y) behaves somewhat like
L(s;�), part way into the critical strip.
Actually compare logL(s;�, y) and
logL(s,�). Use the GRH to control the
error, shift contour to the line
Re(s) = 1/2+ ✏.
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Minor Arcs Estimate

• Theorem. (Minor Arcs Estimate) Assume
GRH. Then:

(1) For non-principal Dirichlet character
�(mod q), and for |�|x < x1/2,

|E(x, y : �, �)| << (1+|�|x)1/2+1/2✏x1/2+1/2✏

(2) For principal character �(mod q), and
y < x�, and x�  |�|x < x1/2, the same
estimate holds.

• (1) applies to major arcs as well. So get:

Corollary. Only the principal characters
(mod q) for “small” q make large
contribution to the major arcs!
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Minor Arcs
Estimate-Comments

• Estimate achieves a power savings in x.

• Main loss from converting L2-estimate to
L1-estimate.

• The minor arcs method is crucial to the
method.
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Minor Arcs Estimate-Proof

• Inverse Mellin Transform Formula

E(x, y : �, �) =
1

2⇡i

Z c+i1

c�i1
L(s;�, y)�̂(s, �x)xsds.

• Idea. Goal is to upper bound absolute
value of integral. The quantity |�̂(s, �x)|
is large only in narrow region, must
control size of |L(s;�, y)| there. Relate it
to L-function L(s;�).

• Control of estimates in q-aspect
(Dirichlet characters) and the T-aspect
(continuous characters) used.
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Major Arcs Formula

• Only Principal Characters Matter. Main
term formulas involve only integrals
against partial Euler product L(s;�0,q, y)
+ a small error term. This simplifies the
expression for the major arcs.

• The formulas for main term are obtained
by Hildebrand-Tenenbaum saddle-point
method contour integral shift.

• The GRH is invoked (again) to show the
simplified “main term” inside the major
arcs sums is dominant contribution.

• Singular Series formulas. These arise
naturally from the sum of main terms over
q, the Farey fractions. The archimedean
integral decouples from the finite primes.
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3. Final Remarks

• Linear Diophantine Equations.

This GL(1) method works because have
first degree equations.

• This approach doesn’t work for higher
degree equations, where the circle method
was originally applied (Waring’s problem).
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Extensions of the Method

• One can expect variants of this method
to apply to:

• (a) Nontrivial coe�cients in the
ABC-equation

aA+ bB + cC = 0.

• (b) Fixed side congruence conditions to
be imposed on A,B,C.

• (c) Systems of several linear
homogeneous Diophantine equations.
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Unconditional Upper Bound?

• It might be possible to remove GRH
assumption.

• Main Obstacle. Need Minor Arc estimates
with some power of x savings.

• Cannot shift contour near critical line.
Hope to use zero density results to show
“most” L-functions in the sums
contribute a small amount. (Contours
shifted by zero locations.)

• If method works, expect to get a (much)
worse upper bound on ↵0.
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Unconditional Lower Bound?

• No ideas!
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The Last Slide...

Thank you for your attention!
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