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1. (Contents of Talk)-1

e [ he talk considers the ABC equation

A+ B+ C =0.
This is a
homogeneous linear Diophantine equation.

e \We study multiplicative properties of the
solutions (A, B,C), i.e. solutions with
restrictions on their prime factorization.



Contents of Talk-2

e The height of a triple (A, B,C) is

H := H(A, B,C) = max{|A|,|Bl,|C|}

e The radical of a triple (A,B,C) is

R:=R(A,B,C)= ][ »
p|ABC

e The smoothness of a triple (A, B,C) is

S:=8S(A,B,C) = max{p: pdivides ABC}.



Contents of Talk-3

e The ABC Conjecture concerns the
relation of the height and the radical of
relatively prime triples (A, B, C).

e \We consider the relation of the height and
the smoothness of relatively prime triples.

e \We formulate the XY/ Conjecture
concerning this relation.



An Example

e (A,B,C) = (2401, -2400,—1)

o 2401 =74
2400 = 2°.3.52
1=1

e [ he height is H = 2401.

e Theradicalis R=2-3-5-7=210.

e [ he smoothness is § =17.



Another Example

e (A,B,C) = (2nT1 —2on —2on)

e The height is H = 2nt+1,

e [ he radical is R = 2.

e [ he smoothness is § = 2.

e Relative primality condition needed:
Without it get infinitely many solutions
with small radical R (resp. smoothness
S), arbitrarily large height H.



The Basic Problem

Problem. How small can be the smoothness
S be, as a function of the height H,
sO that:

There are relatively prime
triples (A, B,C) with these values satisfying
A+ B+ C =07



Nomenclature

e A smooth number is a number all of
whose prime factors are ‘“small.” This
means all prime factors at most y, where
y is the smoothness bound.

e Some authors call such numbers friable.
In English, this means: brittle, easily
crumbled or crushed into powder.



ABC Conjecture

e ABC Conjecture. There is a positive
constant a7 such that:

e For any € > 0O there are

(a) relatively prime
solutions (A, B,C) with radical

R S HO{]_—l—E
(b) relatively prime solutions
(A, B,C) with radical

R < HY1™C,

e Remark. Most versions of ABC
Conjecture assert a1 = 1.
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XY Z Equation

e [0 avoid confusion with ABC Conjecture,
we define the XY Z equation to be:

o X+Y—+Z=0.
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XY Z Conjecture

e XYZ Conjecture. There is a positive
constant ag such that the XY Z equation
X+Y+ Z =0 has:

e For any € > O there are

(a) relatively prime
solutions (X,Y, Z) with smoothness

S < (log H)®0Te€
(b) such solutions (X,Y, 2)
with smoothness

S < (log H)®*0™¢,

e Question. What should be the threshold
value ag?
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Counting Smooth Numbers

Definition. W(z,y) counts the number of
integers < z all of whose prime factors p < y.

Notation. The quantity
__logzx

"~ logy
IS very important in characterizing the size of

W (z,y).

u .
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Dickman Rho function

° IS a continuous function with
p(u) =1 for 0 <u <1, determined by the
difference-differential equation

up'(u) = —p(u —1).
It is positive and rapidly decreasing on
1l <u < oo.

e [he Dickman p-function is named after
. in his only published paper:

e “On the frequency of numbers containing
prime factors of a certain relative
magnitude,” Arkiv for Math., Astron. och
Fysik 22A (1930), 1-14.

e Dickman showed (heuristically) that
1
Y (x,m3> ~ x.
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Logarithmic Scale

e For y =28 a positive proportion of
integers below z have all prime factors
smaller than y.

e \We consider smoothness bounds y where
there are only some positive power x7 of
integers below x having factors smaller
than y. This scale is y = (log z)?.

e For a > 1 there holds

W (z, (log z)®) ~ g1 ~ato®)

e [hereis a threshold at o = 1, below
which W(z,y) = O(x€); it qualitatively
changes behavior.
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Heuristic Argument-1

e 'Claim”. The threshold value in the
ought to be

e Heuristic Argument. (a) Pick (A, B) to be
y-smooth numbers. There are W(z,y)?
choices. Assume these give mostly
distinct values of C = —(A + B).

e (b) The probability that a random C' is
y-smooth is %
Reasonable chance of at least one “hit”
would require (assuming independence)

W(z,y)3 > z.
1
e (C) Thus take y so that W(z,y) = #37°.
Then 1 -1 =150 a=3 and:
3
y = (logz)2T¢.
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Heuristic Argument-2

e Claim 2. The threshold value in the
for relatively prime solutions
to A+ B = 1 should be

e Heuristic Argument. (a) Pick A to be a
y-smooth numbers. There are W(x,y)
choices. Assume these give mostly
distinct values of B= —(A - 1).

e (b) The probability that a random B is
y-smooth is w
Reasonable chance of at least one “hit”
would require (assuming independence)

W(z,y)? > z.

1
e (C) Thus take y so that W(z,y) = z27°.
Then 1 -1 =1s0a=2 and:
y = (logz)?Tte.
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Example Revisited

e (A, B,C) = (2401, -2400,—1).

e |0g2401 ~ 7.783

e (l0g2401)? =~ 60.584

o S=17.

e Is this a ? Numerically
the matching value of a = 1, not ag = 2
as in the heuristic.
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Main Result

e Theorem ( Alphabet Soup Theorem)
ABC 4+ GRH implies XY Z.

e [ hisis a conditional result. It has
two (unequal) parts.

e Lower Bound Theorem
ABC Conjecture — the XY Z constant
ag > 1.

e Upper Bound Theorem
Generalized Riemann Hypothesis (GRH)
— the XY Z constant ag < 8.
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Main Result: Comments

e [ he exact constant ag is not determined
by the Alphabet Soup Theorem, only its
existence is asserted.

e Lower Bound Theorem assuming ABC
Conjecture: This is Easy Part.

e Upper Bound Theorem assuming GRH:
This is Hard Part.

Stronger result: Get asymptotic formula
for number of primitive solutions, for
ag > 8. Use Hardy-Littlewood method
(circle method).
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2. Lower Bound assuming
ABC Conjecture

e ABC Conjecture.
For each ¢ > O there are only finitely many
relatively prime triples (A, B,C) having

R< HL™e
e Recall:

e The height of a triple (A,B,C) is

H := H(A, B,C) = max{|A|,|Bl,|C|}

e The radical of a triple (A, B,C)

R:=R(A,B,C)= ][ »
p|ABC
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Remarks: Lower Bound

e The ABC Conjecture implies many
things: (asymptotic) Fermat’'s Last
T heorem, etc.

e It is a powerful hammer, here we use it to
crack something small.

e XY/ Lower bound is a very easy
consequence of ABC Conjecture.
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(Conditional ) Lower Bound
Theorem

e Theorem. (XY Z Lower Bound) Assuming
the ABC Conjecture, the constant ag in
the XY Z Conjecture satisfies.

ag > 1.

e Note: This lower bound ag > 1 is exactly
at the value (logz)® where the behavior
of W(x,y) changes.
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Lower Bound T heorem-Proof

e (a) The R and S of
any (A, B,C) are related by
R= ][ p<]]vp

p|ABC  p<S

e (b) This easily gives

R<exp(S(1+o(1))),
since [I,<yp = ey(1+o(1)),

e (C) Argue by contradiction. Suppose, for
fixed € > 0, have infinitely many solutions

S<(1-¢)logH.

Combine with (b) to get, for such
solutions,

This contradicts the ABC' Conjecture.
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Unconditional Lower Bound

e [ heorem. For each € > 0O there are only
relatively prime solutions to
A+ B+ C = 0 having height H and
smoothness S satisfying

S<(3—¢)loglogH

e Proof. Similar to above, but using
unconditional result:

e Theorem. (Cam Stewart and Kunrui Yu )
There is a constant c¢q such that any
primitive solution to A4+ B+ C = 0 has
height H and radical R satisfying

1 1
H < exp <01R§(|Og R)§> :
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Cameron L. Stewart
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Kunrui Yu
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3. Upper Bounds assuming
GRH

e \\Ve assume:

e Generalized Riemann Hypothesis. (GRH)
All the zeros of the Riemann zeta
function and all Dirichlet L-functions
L(s, x) inside the critical strip
0 < Re(s) < 1 have real part %

e Note. We allow imprimitive Dirichlet
characters so the L-functions may have
complex zeros on the line Re(s) = 0.
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Upper Bound Theorem

e Theorem. (Height-Smoothness Upper
Bound) If the GRH holds, then for each
e > 0 there are infinitely many primitive
solutions (A, B,C) for which the height H
and smoothness S satisfy

S < (log H)8 €.

e Corollary. (XYZ Conjecture Upper
Bound) If the GRH holds, then the
constant ag in the XY Z Conjecture
satisfies

Oéo<8.

29



Remarks on Upper Bound
Theorem-1

e Proof establishes a stronger result: An
asymptotic formula counting the number
of (weighted) solutions (X,Y, 7).

e Approach to this uses the Circle Method,
combined with the Saddle-Point method
of Hildebrand-Tenenbaum for counting
y-smooth numbers below a bound z.

e T he method counts all solutions, without
imposing the relative primality condition.
An inclusion-exclusion argument is needed
at the end to get relative primality.
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Remarks on Upper Bound
T heorem-2

e Crucial new ingredient for minor arcs: An
expansion of additive characters in terms
of a set of multiplicative functions.

e [ he additive characters are the
exponentials in the circle method.

e A ‘“spanning set” of multiplicative
functions (depending on a parameter y)
are Dirichlet characters of small
conductor and multiplicative functions
gi(n) = n't for some range of t. (The
latter are ‘“continuous spectrum’).
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Technical Main Theorem:
Weighted Sums-1

o Let d(x) be a “weight function”
compactly supported on (0, o).

e Main case: A that is the
constant 1 on [e, 1 — €]
and is 0 outside [3e, 1 — Ze].

e [ hink:

ifo<z<1,
@) i=x @ =1g 1t ooi

(not compactly supported)
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Technical Main Theorem:
Weighted Sums-2

e \Weighted Sum to Estimate

X Y YA
Neo(z,y) i= > DP(=)D(—)P ().
X.Y,ZeS () X X X

X+v=2

e Here S(y) = the set of all integers with
no prime factor larger than y.

e For “bump function” this sum only
detects solutions with
maz(|X1],[Y1],]2]) < .
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Technical Main Theorem:
Weighted Sums-4

e [ he Hildebrand-Tenenbaum saddle-point
method evaluates a certain contour
integral by integrating on a saddle point
line Re(s) = ¢, which lies in critical strip.

e Given range x and smoothness bound y,
the associated saddle point value c is the
(unique) positive solution to the equation

O
Z Jp = |log .
p<ypc_1

o If y = (logx)?, with a > 3, then the
saddle point value is

1
c=1——40

(87

(Iog log log :1:)
loglogz /
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Adolf J. Hildebrand

(An Elusive Sighting...)
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Gérald Tenenbaum
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Technical Main Theorem:
Statement

e Theorem. (Counting Weighted Solutions)
For all (z,y) with y = (logz)® with

1
8t+e<a<8+ —,
€

(e > O fixed) the weighted sum Ng/(x,vy)
counting all solutions (including
imprimitive ones) is given by main term:

S (1— é)@oo(cb, 1— é)w(‘r’y):&

i

which contains two singular series,
and by remainder term R(x,y):

W (z,y)3 1 )

x (loglog z)1—¢

R(x,y) = O (
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Technical Main Theorem:
Singular Series

e Finite Place Singular Series &(c) :=

M+ 2o (2]
5 p( 3(:1 1)

(converges for Re(c) > % diverges at
__ 2
C — g)

e Archimedean Singular Series G&(d,c¢) 1=

03//¢(t1)¢(t2)¢(t1+t2)(tth(t1‘|‘t2))C—1dtldt2-

(Converges for Re(c) > 3, diverges at
c= 3, for step function ® = x[q 1](t))

e Singular series are positive for real ¢ > %
i.e. for a > 3!
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Inclusion-Exclusion Theorem-1

e Theorem. (Counting Primitive Solutions)
Let the weighted sum Ng&(z,y) count
primitive solutions only. For all (z,y) with
y = (log z)® satisfying

1
B+e<a<8+4 —,
€

(e fixed) the weighted sum N (z,y) is
given by the main term

1
¢(2-2)

in which the remainder term R(z,vy)
satisfies

1 1. W 3
S (1 — )Goo(P,1— = (,y)
(8%

« T

R(z,y) = O (W($’y)3 ! )

X | (loglogx)l—¢
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Technical Main Theorem 2:
Inclusion-Exclusion-2

e | he inclusion-exclusion factor
1

((2-32)

IS positive for a« > 3. However it is O at

o= 3.

e Interpretation.
For a > 3 a positive fraction of all integer
solutions are primitive integer solutions.

But for O < o« < 3 a zero fraction of all
integer solutions are primitive solutions.

e Heuristic: Expect infinitely many primitive
solutions only for o > %
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Hardy-Littlewood Method-1

e \Weighted Counting Function Identity

1 2
N(z,y; D) = /O E(z,y, 8)2E(z, y; —B)dp,

where integrand is ...

e \Weighted Exponential sum.

E(eyif) = 3 enB)e()

neS(y)

e Here

e(f) = exp(2mifB).
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Hardy-Littlewood Method-2

e Estimate the integral

1 2
N(z,y; ®) = /O E(z,y, B)2E(z,y; —B)dp,

e Idea (a) Cut the integration interval [0, 1]
up into subintervals I(g), indexed by
rational numbers % having small
denominators: ¢ < /.

e (b) The integrand is large in small
neighborhoods ofg with small

denominators, g < x1/4, these are the
major arcs J(g). Estimate their size
exactly, get the main term of asymptotics.

e (C) Show the integrand is ‘“small”
everywhere else, the minor arcs, get the
remainder term.
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Hardy-Littlewood Method-3

e Cutoff Exponent . This is an adjustable
parameter. 0 < é < 1/4, fixed in advance.

e Major Arcs. 1< q < z1/4, take

1
JE) =818 -2 < =)
q q XL

(As 6 gets smaller, these intervals get
smaller. But they stlll give )

e Minor Arcs. Everything else. For
denominators z1/4 < ¢ < 21/2 it is the
whole Farey interval I(g).

1
For denominators 1 < g < z4% it is part of
Farey interval not covered by J(%), which
generally consists of two pieces.
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Multiplicative Character
Decomposition-1

e Weighted Exponential sum Consider:

B,yif) = Y emf)o()
neS(y)

(This involves the additive character

f(n) :=e(nB))

e Idea: Expand in “basis’ of multiplicative
characters. These include:
(a) Dirichlet characters x(n) (mod q) for
general integer modulus ¢, may be
imprimitive or primitive character.
(b) continuous characters ¢(n) = n't.

e [ his is overdetermined set, extract
suitable subset, depending on parameters

(z,y).
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Multiplicative Character
Decomposition-2

e Dirichlet Character Decomposition. For
B =%, given n set d := (n,q). Then

1
oD

where 7(x) is a Gauss sum.

e(nf) = > rCOx(C))

mod %)

e This decomposition preserves L2-norm:

TCOI® _
()

x ( mod %)
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Multiplicative Character
Decomposition-3

e Transformed Weight Function Given
weight function ®(z), form the
Laplace-Mellin transform

P(s,\) = /OOO d(w)eQDw)w ™ Ldw

e Size Lemma 1. This function ®(s, ) is
“small” except when |s| = ||

e Size Lemma 2. This function satisfies the
Ll-smallness bound

/OO |<T>(C-I— it, \)|dt << (1 + |>\|)1/2+e.
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Multiplicative Character
Decomposition-4

e Continuous Character Decomposition.
The function f(n) = e(npB)

T % (s, gy (B ds.

7L Jec—100 n

(@) () =

e This decomposition preserves L2-norm:

i/oo |<T>(c—|—7jt,ﬁx)|2 = /OO |c|>(e“)e(ﬁ:ce“)ecu|2du.

271 J—c0 —

a7



Exponential Sums with
Dirichlet Characters

e Reduction of Problem. For :%—I—'y, can
express exponential sum E(x,y; 3) as a
combination of generalized exponential
sums E(x,y;x,vy) over Dirichlet characters

(mod gq). Here...

e Generalized Weighted Exponential sum
For x(n) a Dirichlet character (mod gq),

B,y = Y e(n)x(m)o()
neS(y)
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Partial Euler Product

e Now use Dirichlet series for smooth
numbers...

e Partial Euler Product

C(siy) = 1] <1—1>1= Y ons

S
p<y p nes(y)

e Partial Euler Product with Dirichlet
Character

1
L(si x09) ::H(l—"(p)) = 3 x>

S
p<y p neS(y)
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Relation to (Partial)
L-Functions

e To estimate E(x,y; x,y) use...

e Inverse Mellin Integral Formula

1 c+100 N S
E(z,y:x,7) = Q—M/C_m L(s; x, y) (s, yzx)zds.

e Idea. L(s; x,y) behaves somewhat like
L(s;x), part way into the critical strip.
Actually compare log L(s; x,y) and
log L(s,x). Use the GRH to control the
error, shift contour to the line
Re(s) =1/2 +e.
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Minor Arcs Estimate

e Theorem. (Minor Arcs Estimate) Assume
GRH. Then:

(1) For non-principal Dirichlet character
x(mod q), and for |y|z < z1/2,

E(z,y : x,7)| << (14|y|z)l/2H1/26,1/241 /2
(2) For principal character x(mod ¢q), and

y < 2%, and 2% < |y|z < z1/2, the same
estimate holds.

e (1) applies to major arcs as well. So get:
Corollary. Only the principal characters

(mod q) for “small” ¢ make large
contribution to the major arcs!
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Minor Arcs
Estimate-Comments

e Estimate achieves a power savings in .

e Main loss from converting L2-estimate to
Lq-estimate.

e [ he minor arcs method is crucial to the
method.
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Minor Arcs Estimate-Proof

e Inverse Mellin Transform Formula

1 c+100 . <
E(CC,y : X77> — —/C L(S, Xay)¢(377x)x ds.

2711 Je—ioo

e Idea. Goal is to upper bound absolute
value of integral. The quantity |®(s,yz)]
is large only in narrow region, must
control size of |L(s; x,y)| there. Relate it
to L-function L(s;x).

e Control of estimates in
(Dirichlet characters) and the
(continuous characters) used.
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Major Arcs Formula

e Only Principal Characters Matter. Main
term formulas involve only integrals
against partial Euler product L(s;XO,q,y)
+ a small error term. This simplifies the
expression for the major arcs.

e [ he formulas for main term are obtained
by Hildebrand-Tenenbaum saddle-point
method contour integral shift.

e The GRH is invoked (again) to show the
simplified inside the major
arcs sums is dominant contribution.

e Singular Series formulas. These arise
naturally from the sum of main terms over
q, the Farey fractions. The archimedean
integral decouples from the finite primes.
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3. Final Remarks

e Linear Diophantine Equations.

This GL(1) method works because have
first degree equations.

e [ his approach doesn’'t work for higher
degree equations, where the circle method
was originally applied (Waring's problem).
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Extensions of the Method

e One can expect variants of this method
to apply to:

e (a) Nontrivial coefficients in the
ABC-equation

aA+ bB + cC = 0.

e (b) Fixed side congruence conditions to
be imposed on A, B,C.

e (c) Systems of several linear
homogeneous Diophantine equations.
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Unconditional Upper Bound?

e It might be possible to remove GRH
assumption.

e Main Obstacle. Need Minor Arc estimates
with some power of x savings.

e Cannot shift contour near critical line.
Hope to use to show
“most’” L-functions in the sums
contribute a small amount. (Contours
shifted by zero locations.)

e If method works, expect to get a (much)
worse upper bound on ag.
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Unconditional Lower Bound?

e NO ideas!
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The Last Slide...

Thank you for your attention!
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