Smooth Solutions to the ABC Equation

Jeff Lagarias, University of Michigan

July 2, 2009

Credits

- This talk reports on joint work with K. Soundararajan (Stanford)
- graphics in this talk were taken off the web using Google images.
 (Google search methods use number(s) theory.)
- Work partially supported by NSF-grant DMS-1101373.

Table of Contents

- 1. Overview
- 2. ABC Conjecture Lower Bound
- 3. GRH Upper Bound
- 4. Methods and Proofs

1. (Contents of Talk)-1

The talk considers the ABC equation

$$A + B + C = 0.$$

This is a

homogeneous linear Diophantine equation.

• We study multiplicative properties of the solutions (A, B, C), i.e. solutions with restrictions on their prime factorization.

Contents of Talk-2

- The height of a triple (A,B,C) is $H:=H(A,B,C)=\max\{|A|,|B|,|C|\}$
- ullet The radical of a triple (A,B,C) is

$$\frac{\mathbf{R}}{\mathbf{R}} := R(A, B, C) = \prod_{p|ABC} p$$

• The smoothness of a triple (A, B, C) is $S := S(A, B, C) = \max\{p : p \text{ divides } ABC\}.$

Contents of Talk-3

- The ABC Conjecture concerns the relation of the height and the radical of relatively prime triples (A, B, C).
- We consider the relation of the height and the smoothness of relatively prime triples.
- We formulate the XYZ Conjecture concerning this relation.

An Example

- (A, B, C) = (2401, -2400, -1)
- $2401 = 7^4$ $2400 = 2^5 \cdot 3 \cdot 5^2$ 1 = 1
- The height is H = 2401.
- The radical is $R = 2 \cdot 3 \cdot 5 \cdot 7 = 210$.
- The smoothness is S = 7.

Another Example

- $(A, B, C) = (2^{n+1}, -2^n, -2^n)$
- The height is $H = 2^{n+1}$.
- The radical is R=2.
- The smoothness is S=2.
- Relative primality condition needed:
 Without it get infinitely many solutions with small radical R (resp. smoothness S), arbitrarily large height H.

The Basic Problem

Problem. How small can be the smoothness S be, as a function of the height H, so that:

There are infinitely many relatively prime triples (A, B, C) with these values satisfying A + B + C = 0?

Nomenclature

- A smooth number is a number all of whose prime factors are "small." This means all prime factors at most y, where y is the smoothness bound.
- Some authors call such numbers friable.
 In English, this means: brittle, easily crumbled or crushed into powder.

ABC Conjecture

- ABC Conjecture. There is a positive constant α_1 such that:
- ullet For any $\epsilon > 0$ there are
 - (a) infinitely many relatively prime solutions (A, B, C) with radical

$$R \le H^{\alpha_1 + \epsilon}$$

(b) finitely many relatively prime solutions (A, B, C) with radical

$$R \leq H^{\alpha_1 - \epsilon}$$
.

• Remark. Most versions of ABCConjecture assert $\alpha_1 = 1$.

XYZ Equation

- ullet To avoid confusion with ABC Conjecture, we define the XYZ equation to be:
- X+Y+Z=0.

XYZ Conjecture

- XYZ Conjecture. There is a positive constant α_0 such that the XYZ equation X+Y+Z=0 has:
- For any $\epsilon > 0$ there are
 - (a) infinitely many relatively prime solutions (X, Y, Z) with smoothness

$$S \leq (\log H)^{\alpha_0 + \epsilon}$$

(b) finitely many such solutions (X,Y,Z) with smoothness

$$S \leq (\log H)^{\alpha_0 - \epsilon}$$
.

• Question. What should be the threshold value α_0 ?

Counting Smooth Numbers

Definition. $\Psi(x,y)$ counts the number of integers $\leq x$ all of whose prime factors $p \leq y$.

Notation. The quantity

$$u := \frac{\log x}{\log y}$$

is very important in characterizing the size of $\Psi(x,y)$.

Dickman Rho function

• $\rho(u)$ is a continuous function with $\rho(u)=1$ for $0\leq u\leq 1$, determined by the difference-differential equation

$$u\rho'(u) = -\rho(u-1).$$

It is positive and rapidly decreasing on $1 \le u < \infty$.

- The Dickman ρ -function is named after Karl Dickman, in his only published paper:
- "On the frequency of numbers containing prime factors of a certain relative magnitude," Arkiv för Math., Astron. och Fysik 22A (1930), 1–14.
- Dickman showed (heuristically) that

$$\Psi\left(x,x^{\frac{1}{\beta}}\right) \sim \rho(\beta)x.$$

Logarithmic Scale

- For $y=x^{\beta}$ a positive proportion of integers below x have all prime factors smaller than y.
- We consider smoothness bounds y where there are only some positive power x^{γ} of integers below x having factors smaller than y. This scale is $y = (\log x)^{\alpha}$.
- For $\alpha > 1$ there holds

$$\Psi(x, (\log x)^{\alpha}) \sim x^{1 - \frac{1}{\alpha} + o(1)}$$

• There is a threshold at $\alpha = 1$, below which $\Psi(x,y) = O(x^{\epsilon})$; it qualitatively changes behavior.

Heuristic Argument-1

- "Claim". The threshold value in the XYZ Conjecture ought to be $\alpha_0 = \frac{3}{2}$.
- Heuristic Argument. (a) Pick (A, B) to be y-smooth numbers. There are $\Psi(x, y)^2$ choices. Assume these give mostly distinct values of C = -(A + B).
- (b) The probability that a random C is y-smooth is $\frac{\Psi(x,y)}{x}$. Reasonable chance of at least one "hit" would require (assuming independence)

$$\Psi(x,y)^3 > x.$$

• (c) Thus take y so that $\Psi(x,y)=x^{\frac{1}{3}+\epsilon}$. Then $1-\frac{1}{\alpha}=\frac{1}{3}$ so $\alpha=\frac{3}{2}$ and:

$$y = (\log x)^{\frac{3}{2} + \epsilon}.$$

Heuristic Argument-2

- Claim 2. The threshold value in the XYZ Conjecture for relatively prime solutions to A + B = 1 should be $\alpha_0 = 2$.
- Heuristic Argument. (a) Pick A to be a y-smooth numbers. There are $\Psi(x,y)$ choices. Assume these give mostly distinct values of B=-(A-1).
- (b) The probability that a random B is y-smooth is $\frac{\Psi(x,y)}{x}$. Reasonable chance of at least one "hit" would require (assuming independence)

$$\Psi(x,y)^2 > x.$$

• (c) Thus take y so that $\Psi(x,y) = x^{\frac{1}{2} + \epsilon}$. Then $1 - \frac{1}{\alpha} = \frac{1}{2}$ so $\alpha = 2$ and: $y = (\log x)^{2 + \epsilon}$.

Example Revisited

- (A, B, C) = (2401, -2400, -1).
- $\log 2401 \approx 7.783$
- $(\log 2401)^2 \approx 60.584$
- S = 7.
- Is this a "lucky" example? Numerically the matching value of $\alpha=1$, not $\alpha_0=2$ as in the heuristic.

Main Result

- Theorem (Alphabet Soup Theorem) ABC + GRH implies XYZ.
- This is a conditional result. It has two (unequal) parts.
- Lower Bound Theorem ABC Conjecture \Longrightarrow the XYZ constant $\alpha_0 \ge 1$.
- Upper Bound Theorem
 Generalized Riemann Hypothesis (GRH) \implies the XYZ constant $\alpha_0 \le 8$.

Main Result: Comments

- The exact constant α_0 is not determined by the Alphabet Soup Theorem, only its existence is asserted.
- Lower Bound Theorem assuming ABC
 Conjecture: This is Easy Part.
- Upper Bound Theorem assuming *GRH*: This is Hard Part.

Stronger result: Get asymptotic formula for number of primitive solutions, for $\alpha_0 > 8$. Use Hardy-Littlewood method (circle method).

2. Lower Bound assuming ABC Conjecture

• *ABC* Conjecture.

For each $\epsilon > 0$ there are only finitely many relatively prime triples (A, B, C) having

$$R < H^{1-\epsilon}$$
.

- Recall:
- The height of a triple (A, B, C) is

$$H := H(A, B, C) = \max\{|A|, |B|, |C|\}$$

• The radical of a triple (A, B, C)

$$R := R(A, B, C) = \prod_{p|ABC} p$$

Remarks: Lower Bound

- The *ABC* Conjecture implies many things: (asymptotic) Fermat's Last Theorem, etc.
- It is a powerful hammer, here we use it to crack something small.
- ullet XYZ Lower bound is a very easy consequence of ABC Conjecture.

(Conditional) Lower Bound Theorem

• Theorem. (XYZ Lower Bound) Assuming the ABC Conjecture, the constant α_0 in the XYZ Conjecture satisfies.

$$\alpha_0 \geq 1$$
.

• Note: This lower bound $\alpha_0 \ge 1$ is exactly at the value $(\log x)^{\alpha}$ where the behavior of $\Psi(x,y)$ changes.

Lower Bound Theorem-Proof

• (a) The radical R and smoothness S of any (A,B,C) are related by

$$R = \prod_{p|ABC} p \le \prod_{p \le S} p$$

• (b) This easily gives

$$R \leq \exp\left(S(1+o(1))\right),$$
 since $\prod_{p < y} p = e^{y(1+o(1))}.$

• (c) Argue by contradiction. Suppose, for fixed $\epsilon > 0$, have infinitely many solutions

$$S \leq (1 - \epsilon) \log H$$
.

Combine with (b) to get, for such solutions,

$$R \le e^{(1-\epsilon)\log H(1+o(1))} \ll H^{1-\frac{1}{2}\epsilon}.$$

This contradicts the ABC Conjecture.

Unconditional Lower Bound

• Theorem. For each $\epsilon > 0$ there are only finitely many relatively prime solutions to A+B+C=0 having height H and smoothness S satisfying

$$S \leq (3 - \epsilon) \log \log H$$

- Proof. Similar to above, but using unconditional result:
- Theorem. (Cam Stewart and Kunrui Yu) There is a constant c_1 such that any primitive solution to A+B+C=0 has height H and radical R satisfying

$$H \leq \exp\left(c_1 R^{\frac{1}{3}} (\log R)^{\frac{1}{3}}\right).$$

Cameron L. Stewart

Kunrui Yu

3. Upper Bounds assuming GRH

- We assume:
- Generalized Riemann Hypothesis. (GRH) All the zeros of the Riemann zeta function and all Dirichlet L-functions $L(s,\chi)$ inside the critical strip 0 < Re(s) < 1 have real part $\frac{1}{2}$.
- Note. We allow imprimitive Dirichlet characters so the L-functions may have complex zeros on the line Re(s) = 0.

Upper Bound Theorem

• Theorem. (Height-Smoothness Upper Bound) If the GRH holds, then for each $\epsilon > 0$ there are infinitely many primitive solutions (A, B, C) for which the height H and smoothness S satisfy

$$S \leq (\log H)^{8+\epsilon}$$
.

• Corollary. (XYZ Conjecture Upper Bound) If the GRH holds, then the constant α_0 in the XYZ Conjecture satisfies

$$\alpha_0 \leq 8$$
.

Remarks on Upper Bound Theorem-1

- Proof establishes a stronger result: An asymptotic formula counting the number of (weighted) solutions (X, Y, Z).
- Approach to this uses the Circle Method, combined with the Saddle-Point method of Hildebrand-Tenenbaum for counting y-smooth numbers below a bound x.
- The method counts all solutions, without imposing the relative primality condition.
 An inclusion-exclusion argument is needed at the end to get relative primality.

Remarks on Upper Bound Theorem-2

- Crucial new ingredient for minor arcs: An expansion of additive characters in terms of a set of multiplicative functions.
- The additive characters are the exponentials in the circle method.
- A "spanning set" of multiplicative functions (depending on a parameter y) are Dirichlet characters of small conductor and multiplicative functions $g_t(n) = n^{it}$ for some range of t. (The latter are "continuous spectrum").

Technical Main Theorem: Weighted Sums-1

- Let $\Phi(x)$ be a "weight function" compactly supported on $(0, \infty)$.
- Main case: A "bump function" that is the constant 1 on $[\epsilon, 1 \epsilon]$ and is 0 outside $[\frac{1}{2}\epsilon, 1 \frac{1}{2}\epsilon]$.
- Think:

$$\Phi(x) := \chi_{[0,1]}(x) = \{ \begin{array}{ll} 1 & \text{if } 0 \le x \le 1, \\ 0 & \text{if } x \ge 1 \end{array} \}$$

(not compactly supported)

Technical Main Theorem: Weighted Sums-2

Weighted Sum to Estimate

$$N_{\Phi}(x,y) := \sum_{\substack{X,Y,Z \in \mathcal{S}(y) \\ X+Y=Z}} \Phi(\frac{X}{x}) \Phi(\frac{Y}{x}) \Phi(\frac{Z}{x}).$$

- Here S(y) = the set of all integers with no prime factor larger than y.
- For "bump function" this sum only detects solutions with max(|X|,|Y|,|Z|) < x.

Technical Main Theorem: Weighted Sums-4

- The Hildebrand-Tenenbaum saddle-point method evaluates a certain contour integral by integrating on a saddle point line Re(s) = c, which lies in critical strip.
- Given range x and smoothness bound y, the associated saddle point value c is the (unique) positive solution to the equation

$$\sum_{p < y} \frac{\log p}{p^c - 1} = \log x.$$

• If $y = (\log x)^{\alpha}$, with $\alpha > 3$, then the saddle point value is

$$c = 1 - \frac{1}{\alpha} + O\left(\frac{\log\log\log x}{\log\log x}\right).$$

Adolf J. Hildebrand

(An Elusive Sighting...)

Gérald Tenenbaum

Technical Main Theorem: Statement

• Theorem. (Counting Weighted Solutions) For all (x, y) with $y = (\log x)^{\alpha}$ with

$$8 + \epsilon \le \alpha \le 8 + \frac{1}{\epsilon}$$

 $(\epsilon > 0 \text{ fixed})$ the weighted sum $N_{\Phi}(x,y)$ counting all solutions (including imprimitive ones) is given by main term:

$$\mathfrak{S}_f(1-\frac{1}{\alpha})\mathfrak{S}_{\infty}(\Phi,1-\frac{1}{\alpha})\frac{\Psi(x,y)^3}{x}$$

which contains two singular series, and by remainder term R(x, y):

$$R(x,y) = O\left(\frac{\Psi(x,y)^3}{x} \cdot \frac{1}{(\log \log x)^{1-\epsilon}}\right)$$

Technical Main Theorem: Singular Series

• Finite Place Singular Series $\mathfrak{S}(c) :=$

$$\prod_{p} \left(1 + \frac{p-1}{p(p^{3c-1}-1)} \left(\frac{p-p^c}{p-1} \right)^3 \right)$$

(converges for $Re(c) > \frac{2}{3}$, diverges at $c = \frac{2}{3}$.)

- Archimedean Singular Series $\mathfrak{S}(\Phi,c):=$ $c^3\int\int\Phi(t_1)\Phi(t_2)\Phi(t_1+t_2)(t_1t_2(t_1+t_2))^{c-1}dt_1dt_2.$ (Converges for $Re(c)>\frac{2}{3}$, diverges at $c=\frac{2}{3}$, for step function $\Phi=\chi_{[0,1]}(t)$)
- Singular series are positive for real $c > \frac{2}{3}$, i.e. for $\alpha > 3$!

Inclusion-Exclusion Theorem-1

• Theorem. (Counting Primitive Solutions) Let the weighted sum $N_{\Phi}^*(x,y)$ count primitive solutions only. For all (x,y) with $y = (\log x)^{\alpha}$ satisfying

$$8 + \epsilon < \alpha < 8 + \frac{1}{\epsilon},$$

(ϵ fixed) the weighted sum $N_{\Phi}^*(x,y)$ is given by the main term

$$\frac{1}{\zeta(2-\frac{3}{\alpha})}\mathfrak{S}_f(1-\frac{1}{\alpha})\mathfrak{S}_{\infty}(\Phi,1-\frac{1}{\alpha})\frac{\Psi(x,y)^3}{x}$$

in which the remainder term R(x,y) satisfies

$$R(x,y) = O\left(\frac{\Psi(x,y)^3}{x} \cdot \frac{1}{(\log\log x)^{1-\epsilon}}\right)$$

Technical Main Theorem 2: Inclusion-Exclusion-2

The inclusion-exclusion factor

$$\frac{1}{\zeta(2-\frac{3}{\alpha})}$$

is positive for $\alpha > 3$. However it is 0 at $\alpha = 3$.

Interpretation.

For $\alpha > 3$ a positive fraction of all integer solutions are primitive integer solutions. But for $0 < \alpha < 3$ a zero fraction of all

• Heuristic: Expect infinitely many primitive solutions only for $\alpha > \frac{3}{2}$.

integer solutions are primitive solutions.

Hardy-Littlewood Method-1

Weighted Counting Function Identity

$$N(x,y;\Phi) = \int_0^1 E(x,y,\beta)^2 E(x,y;-\beta) d\beta,$$
 where integrand is ...

• Weighted Exponential sum.

$$E(x, y; \beta) := \sum_{n \in \mathcal{S}(y)} e(n\beta) \Phi(\frac{n}{x})$$

• Here

$$e(\beta) = exp(2\pi i\beta).$$

Hardy-Littlewood Method-2

• Estimate the integral

$$N(x,y;\Phi) = \int_0^1 E(x,y,\beta)^2 E(x,y;-\beta) d\beta,$$

- Idea (a) Cut the integration interval [0,1] up into subintervals $I(\frac{a}{q})$, indexed by rational numbers $\frac{a}{q}$ having small denominators: $q < \sqrt{x}$.
- (b) The integrand is large in small neighborhoods of $\frac{a}{q}$ with small denominators, $q \leq x^{1/4}$, these are the major arcs $J(\frac{a}{q})$. Estimate their size exactly, get the main term of asymptotics.
- (c) Show the integrand is "small" everywhere else, the minor arcs, get the remainder term.

Hardy-Littlewood Method-3

- Cutoff Exponent δ . This is an adjustable parameter. $0 < \delta < 1/4$, fixed in advance.
- Major Arcs. $1 \le q \le x^{1/4}$, take

$$J(\frac{a}{q}) := \{\beta : |\beta - \frac{a}{q}| \le \frac{1}{x^{1-\delta}}\}$$

(As δ gets smaller, these intervals get smaller. But they stlll give main term!)

• Minor Arcs. Everything else. For denominators $x^{1/4} \le q \le x^{1/2}$ it is the whole Farey interval $I(\frac{a}{q})$.

For denominators $1 \le q \le x^{\frac{1}{4}}$ it is part of Farey interval not covered by $J(\frac{a}{q})$, which generally consists of two pieces.

Weighted Exponential sum Consider:

$$E(x, y; \beta) := \sum_{n \in S(y)} e(n\beta) \Phi(\frac{n}{x})$$

(This involves the additive character $f(n) := e(n\beta)$)

- Idea: Expand in "basis" of multiplicative characters. These include:
 - (a) Dirichlet characters $\chi(n)$ (mod q) for general integer modulus q, may be imprimitive or primitive character.
 - (b) continuous characters $\psi_t(n) := n^{it}$.
- This is overdetermined set, extract suitable subset, depending on parameters (x,y).

• Dirichlet Character Decomposition. For $\beta = \frac{a}{b}$, given n set d := (n, q). Then

$$e(n\beta) = \frac{1}{\phi(\frac{q}{d})} \sum_{\chi \pmod{\frac{q}{d}}} \tau(\bar{\chi}) \chi(\frac{na}{d})$$

where $\tau(\chi)$ is a Gauss sum.

• This decomposition preserves L^2 -norm:

$$\sum_{\chi \pmod{\frac{q}{d}}} \frac{|\tau(\chi)|^2}{\phi(\frac{q}{d})^2} = 1.$$

• Transformed Weight Function Given weight function $\Phi(x)$, form the Laplace-Mellin transform

$$\widehat{\Phi}(s,\lambda) := \int_0^\infty \Phi(w) e(\lambda w) w^{s-1} dw$$

- Size Lemma 1. This function $\hat{\Phi}(s,\lambda)$ is "small" except when $|s|\approx |\lambda|$
- Size Lemma 2. This function satisfies the L^1 -smallness bound

$$\int_{-\infty}^{\infty} |\widehat{\Phi}(c+it,\lambda)| dt << (1+|\lambda|)^{1/2+\epsilon}.$$

• Continuous Character Decomposition.

The function $f(n) = e(n\beta)$

$$e(n\beta)\Phi(\frac{n}{x}) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \hat{\Phi}(s,\beta x) (\frac{x}{n})^s ds.$$

• This decomposition preserves L^2 -norm:

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |\widehat{\Phi}(c+it,\beta x)|^2 = \int_{-\infty}^{\infty} |\Phi(e^u)e(\beta x e^u)e^{cu}|^2 du.$$

Exponential Sums with Dirichlet Characters

- Reduction of Problem. For $\beta = \frac{a}{q} + \gamma$, can express exponential sum $E(x,y;\beta)$ as a combination of generalized exponential sums $E(x,y;\chi,\gamma)$ over Dirichlet characters (mod q). Here...
- Generalized Weighted Exponential sum For $\chi(n)$ a Dirichlet character (mod q),

$$E(x, y; \chi, \gamma) := \sum_{n \in \mathcal{S}(y)} e(n\gamma)\chi(n)\Phi(\frac{n}{x})$$

Partial Euler Product

- Now use Dirichlet series for smooth numbers...
- Partial Euler Product

$$\zeta(s;y) := \prod_{p \le y} \left(1 - \frac{1}{p^s}\right)^{-1} = \sum_{n \in S(y)} n^{-s}.$$

 Partial Euler Product with Dirichlet Character

$$L(s; \chi, y) := \prod_{p \le y} \left(1 - \frac{\chi(p)}{p^s} \right)^{-1} = \sum_{n \in \mathcal{S}(y)} \chi(n) n^{-s}.$$

Relation to (Partial) L-Functions

- To estimate $E(x, y; \chi, \gamma)$ use...
- Inverse Mellin Integral Formula

$$E(x,y:\chi,\gamma) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} L(s;\chi,y) \widehat{\Phi}(s,\gamma x) x^s ds.$$

• Idea. $L(s; \chi, y)$ behaves somewhat like $L(s; \chi)$, part way into the critical strip. Actually compare $\log L(s; \chi, y)$ and $\log L(s, \chi)$. Use the GRH to control the error, shift contour to the line $Re(s) = 1/2 + \epsilon$.

Minor Arcs Estimate

- Theorem. (Minor Arcs Estimate) Assume GRH. Then:
 - (1) For non-principal Dirichlet character $\chi(\text{mod }q)$, and for $|\gamma|x < x^{1/2}$,

$$|E(x, y : \chi, \gamma)| \ll (1+|\gamma|x)^{1/2+1/2\epsilon} x^{1/2+1/2\epsilon}$$

- (2) For principal character $\chi(\text{mod }q)$, and $y < x^{\delta}$, and $x^{\delta} \leq |\gamma| x < x^{1/2}$, the same estimate holds.
- (1) applies to major arcs as well. So get:

Corollary. Only the principal characters (mod q) for "small" q make large contribution to the major arcs!

Minor Arcs Estimate-Comments

- ullet Estimate achieves a power savings in x.
- ullet Main loss from converting L^2 -estimate to L_1 -estimate.
- The minor arcs method is crucial to the method.

Minor Arcs Estimate-Proof

• Inverse Mellin Transform Formula

$$E(x,y:\chi,\gamma) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} L(s;\chi,y) \widehat{\Phi}(s,\gamma x) x^s ds.$$

- Idea. Goal is to upper bound absolute value of integral. The quantity $|\widehat{\Phi}(s, \gamma x)|$ is large only in narrow region, must control size of $|L(s; \chi, y)|$ there. Relate it to L-function $L(s; \chi)$.
- Control of estimates in q-aspect
 (Dirichlet characters) and the T-aspect
 (continuous characters) used.

Major Arcs Formula

- Only Principal Characters Matter. Main term formulas involve only integrals against partial Euler product $L(s; \chi_{0,q}, y)$ + a small error term. This simplifies the expression for the major arcs.
- The formulas for main term are obtained by Hildebrand-Tenenbaum saddle-point method contour integral shift.
- The *GRH* is invoked (again) to show the simplified "main term" inside the major arcs sums is dominant contribution.
- Singular Series formulas. These arise naturally from the sum of main terms over q, the Farey fractions. The archimedean integral decouples from the finite primes.

3. Final Remarks

• Linear Diophantine Equations.

This GL(1) method works because have first degree equations.

 This approach doesn't work for higher degree equations, where the circle method was originally applied (Waring's problem).

Extensions of the Method

- One can expect variants of this method to apply to:
- ullet (a) Nontrivial coefficients in the ABC-equation

$$aA + bB + cC = 0.$$

- (b) Fixed side congruence conditions to be imposed on A,B,C.
- (c) Systems of several linear homogeneous Diophantine equations.

Unconditional Upper Bound?

- It might be possible to remove GRH assumption.
- Main Obstacle. Need Minor Arc estimates with some power of x savings.
- Cannot shift contour near critical line.
 Hope to use zero density results to show "most" L-functions in the sums contribute a small amount. (Contours shifted by zero locations.)
- If method works, expect to get a (much) worse upper bound on α_0 .

Unconditional Lower Bound?

• No ideas!

The Last Slide...

Thank you for your attention!