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Lecture 1

Binary Quadratic Forms

1.1 The theory of modular form originates from the work of C.F. Gauss of
1831 in which he gave a geometrical interpretation of some basic notions of
number theory.

Let us start with choosing two non-proportional vectors in R?

v ={(a,b), w=/cd).
The set of vectors
A=2Zv+7Zw :={miv+mow € R2| my,mo € Z}

forms a lattice in R?, i.e., a free subgroup of rank 2 of the additive group of the
vector space R%2. We picture it as follows:
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The area A(v,w) of the parallelogram formed by the vectors v and w is
given by the formula

V:-W W-'W

A(v,w)? = det (V'V V'W) .
Let x = mv +nw € A. The length of x is given by the formula
|12 = ||mv + nw]||* = (m,n) <v VoV W) <m> = am? + 2bmn + cn?,
v-w w-w/\n
where
a=v-v, b=v-w, c=w-w. (1.1)

Let us consider the (binary) quadratic form (the distance quadratic form of A)
f = ax® + 2bxy + cy*.
Notice that its discriminant satisfies
D =4(b? — ac) = —4A(v,w)* < 0. (1.2)

Thus f is positive definite. Given a positive integer N, one may ask about
integral solutions of the equation

f(z,y) = N.

If there is an integral solution (m,n) of this equation, we say that the binary
form f represents the number n. Geometrically, this means that the circle of
radius v/ N centered at the origin contains one of the points x = mv +nw of the
lattice A. Notice that the solution of this problem depends only on the lattice
A but not on the form f. In other words, if we choose another basis (v/, w’) of
the lattice A, then the corresponding quadratic form

f/ — a/x2 —|—Qb’xy—|—c’y2,

where ' = v/ -v/, b =v' -w/, ¢ = w' -w has the same set of integral
solutions for the equation
f'(@,y) =N.

Let
v =av+yw, Vv =pv+iw.

for some «, 3,7,0 € Z. Since the matrix

M = (o‘ B) (1.3)

v 0
is invertible in the ring of integral matrices, we must have

det M = ad — By = £1.



It is easy to see that
/. / /. / . .
<v/ v/ v/ W/)_Mt <v vV Vv W>M
vi-w w-w V-W W-W
ad b\ _ fa v\ [(a b\ [(a B
d d) \B §)\c d)\y &)

This can be also expressed by saying that the form f’ is obtained from the form
f by the change of variables

and hence

T — ar+ Py, y—yxr—+oy.

We write this in the form
fl=Mf.

Following Lagrange, we say f and f’ are equivalent. An equivalence class is
called a class of quadratic forms. Obviously, for any positive integer IV, the set
of integral solutions of the equations f(z,y) = N depends only on the class of
forms to which f belongs. Also it is clear that two equivalent forms have the
same discriminant.

1.2 As we saw before, any lattice A determines a class of forms expressing the
distance from a point in A to the origin. Conversely, given a positive definite
binary form f = ax? + 2bzy + cy?, we can find a lattice A corresponding to this
form. To do this we choose any vector v of length /a and let w be the vector
of length /¢ which forms the positive angle with v defined by cos ¢ = b/+/ac.
Obviously we use here that f is positive definite. Of course, A is defined uniquely
up to an orthogonal transformation of R2.
In this way we obtain the following:

Theorem 1.1. There is a natural bijection between the set of lattices in R2
modulo an orthogonal transformation and the set of classes of positive definite
quadratic forms.

Let us describe the set of classes of forms in a more explicit way.
Theorem 1.2. Let f be a positive definite binary form. Then there exists a
form g = Azx? 4+ 2Bxy + Cy? equivalent to f which satisfies the conditions:

{0<2B< A<C}.

Proof. Let f = ax? + 2bzy + cy? and A be a lattice associated to it. Let us
change the basis of A in such way that the corresponding form

g=VIPa* +2v' - w'ay + W]y
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satisfies the assertion of the theorem. We take v’ to be a vector from A of
smallest length y/a. Then we take w’ to be a vector of smallest length in A
which is not equal to £v’. T claim that (v/,w’) forms a basis of A. Assume it
is false. Then there exists a vector x € A such that x = av’ + bw’, where one
of the coefficients a, b is a real number but not an integer. After adding some
integral linear combination of v/, w’ we can assume that |al,[b] < 3. If a,b # 0,
this gives

1
Bl = lal* [V + [BI*[w'[[* + 2abv" - w" < (Jal[v']| + [BlIw']))* < 5 [lw'||*

that contradicts the choice of w'. Here we have used the Cauchy-Schwarz in-
equality together with the fact that the vectors v/ and w’ are not proportional.
If a or b is zero, we get ||x|| < [|v/|| or ||x|| < 1[|w’|, again a contradiction.
Now let us look at g. The projection of mv’ +w’ to v’ is equal to (m +
W)v’ . We can choose m such that the length of the projection is less than or
equal than 3||v/[|. However, the shortest projection corresponds to the shortest

7 ’
vector. By our choice if w’, we must have —% < 3 = ‘l"v‘,"l’l < % It remains to

change v’ to —v’, if needed, to assume that b = v - w’ > 0, hence 0 < 2b < a.
O

Definition. A positive definite binary quadratic form ax? 4 2bxy +cy? is called
reduced if
0<2b<a<ec

The previous theorem says that each positive definite binary quadratic form
is equivalent to a reduced form.
Let
Q={(a,b,c) eR*:0<2b<a<ca>0ac>b*}. (1.4)

By Theorem 1.2, any positive definite binary quadratic form is equivalent to a
form ax? + 2bxy + cy?, where (a,b,c) € Q.

1.3 Let us find when two reduced forms are equivalent. To do this we should
look at the domain €2 from a different angle. Each positive definite quadratic
form f = ax? 4 2bxy + cy? can be factored over C into the product of linear
forms:
f = ax? + 2bxy + cy® = a(x — 2y)(x — Zy),

where

—b Vac — b2

PR AL (1.5)
a a

It is clear that f is completely determined by the coefficient ¢ and the root z.
Observe that Im z > 0. We have a bijective correspondence

[ =ax?®+2bzy + cy® — (a,2)



from the set of positive definite binary quadratic forms to the set Ry x H, where
H={z€C:Im z >0}

is the upper half-plane. Let us see how the group GL(2,Z) acts on the both
sets. We have
Mf =a((azx+ By) — z(yx + 0y))((ax + By) — Z(yx + dy)) =
a(z(a—vz) —y(=B +62))(z(a —v2) —y(-B +02)) =
—B+ 0z —B+ 6z
—y)r— ———).

o — Yz oa—vz
Let us consider the action of GL(2,Z) on C\ R by fractional-linear transforma-
tions (also called Moebius transformations) defined by the formula

(O‘ 6>-z—a2+ﬁ (1.6)

ala = zv|*(x —

v 0 Cyz+8

Notice that

az+p — Im (az+ B)(yz+9) _ aé—ﬁylmz
vz +6 REEIE lyz 402

Im M-z=1Im

(1.7)

This explains why the transformation is well-defined on C\ R. Also notice that

MlzdetMl(ﬁ ﬂ).
v a

Thus the root z is transformed to the root 2’ = M~ . z and we obtain, for any
M € GL(2,7),

M= f=alyz+6*(x—M-z)(x— M-32).

1.4 Until now we considered binary forms up to the equivalence defined by an
invertible integral substitution of the variables. We say that two binary forms
are properly equivalent if they differ by a substitution with determinant equal
to 1. In other words, we restrict ourselves with with the subgroup SL(2,Z) of
GL(2,Z).

Since

GL(2,7) = SL(2,Z) U (é _01> SL(2,7)

0 -1
properly equivalent to a form ax? + 2bxy + cy?, where (a, b, c) €  and

and (1 : ) (az? + 2bwy + cy?) = ax? — 2bwy + cy?, we obtain that each f is

Q:{(aab,C) ERS : |2b‘ gcéa,a,acsz >0}.
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Definition. We shall say that f = ax® + 2bxy + cy? is properly reduced if
(a,b,c) € Q.

Since

GL(2,Z) = SL(2,Z) U <(1) é) SL(2,7)

and (9 §) corresponds to the switch of the basis vectors v, w of the lattice, we
obtain

Theorem 1.3. There is a natural bijective correspondence between proper
equivalence classes of positive definite binary forms and lattices in R? modulo
rotation transformation.

Let Q;‘ be the set of positive definite binary quadratic forms on R2. The
group SL(2,Z) of integral unimodular invertible matrices acts naturally on Q;
by f — M~'f. The map QF — R, x H defined in above is SL(2, Z)-equivariant
if we let SL(2,7Z) act on the target by

(a,2) = (a|yz + 6%, M - 2).

Note that we have restricted ourselves to the subgroup SL(2,Z) in order to have
Im M- z>0.

Using (1.1) we see that the conditions 0 < |2b| < a < ¢ correspond to the
conditions

1 1
—§§R6z§§7\z|21, Im z > 0.

Let D be the subset of the upper-half planes described by the above inequalities.
It is called the modular figure and looks as follows:

1—-350 -1

o=
ol

Fig. 2
So we have a bijective correspondence between  and R, x D.
Now we want to investigate when two reduced forms are equivalent. It is
enough to check when z,z’ € Q are in the same orbit of SL(2,Z). Note that
M = 41, where I is the identity matrix acts identically on €.



Theorem 1.4. Let 2,2’ € Q and

az+f ,
=z
vz 44

where M € SL(2,Z) and M # +£1. Then one of the following cases occurs:

i) Rez==4% M=+ Lol , 2 =2F1;
2 0 1

(ii) 2| =1, M =+ (2 _01> , 2 =—1/z;

( _),z—z or
z262”/3,M:i<11 ) M-z=z;

0 1 0 _ 2/,
1 ),z-z or M = :I:(1 _1>72 e

(v)ze%/S,Mj:Cl) _11>,M'zz,0er:<i _11>,M~z
/3
er’s,

(iii) z = e™/3, M =+

(iv) z=e"3 M=+

Proof. Interchanging z and 2/, if needed, we may assume that Im M -z > Im z.
Formula (1.7) implies that |yz 4+ 6] < 1. Since

vz 46| = [vz[ = 18] = [y = [9]

and g.c.d(v,d) = 1, we obtain that either v = 0 and 6 = %1, or |y| = 1 and
|6] < 1. In the second case, replacing M with —M, we may assume that v = 1.

Assume we are in the first case, i.e. v =0 and |§] = 1. Then |[M| = ad =
%52 =% =1and

a B
M-z—gz+g—z:tﬁ.

This shows that M - z is out of the domain —% < Re z < % unless § =

or § = +1 and Re z = :l:%. In the first case M = +I. In the second case
M=+ <(1) :Iil), Re z = +3,. This leads to case (i) in the theorem.
Assume we are in the second case, i.e. v =1. Then |z 4 §| < 1 implies

(a) 6=0, |2|=1,0r

(b) 6 = 1, |2| = 1,Re z = +1, ie. z = €¥/3,e™/3 (use that |z + 6> =
|z\2+2Re z6+122+2Re z5)
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o
1

a — Re z, this implies & = 0 or « = +1 and Re z = :F%7 |z| = 1. This leads to
case (ii) and (iii) in our theorem.

Now, in case (b), we get M = (a a—l) or M = (a a—l). In the

Incase(a)wehaveMzi( _01> and M -z =a— 1. Since Re M -z =

1 1 1 -1
first case, M - z = o — ﬁ Note that p := €27/3 is a primitive third root of 1,
and e™/3 = —p?. Thus we get M -p = a — fp = a+p, hence « =0 and 2’ = z,

or = 1and 2’ = —p® Also, M - (—p®) = a — —7 is out of the domain.
In the second case, M - (—p?) = a — 1+1p2 =a-— T[—pQ —1=oa—p? This
givesa =0and 2 =zora = —1,2 = p. Also M - p =a — -1 is out of the

p—1
domain. This gives cases (iv) and (v) of the theorem.
O

Corollary 1.1. In the notation of the previous theorem M - z = z if and only
if one of the following cases occurs:

—e™/2 gnd M = + (O _01> :

o Z = 1
o z=¢"/3 ansz:I:(i _01),07”M::|:((1) :1),
o 2 = e27/3 andM:j:<_11 _01),07"M::|:((1) _11)

Now let f = ax?+ 2bzy +cy? = a(z — 2y)(x — zy). It follows from (1.5) that
Re z = +1 if and only if b = Fa and |z| = 1 if and only if ¢ = a. This analysis
proves the following:

Theorem 1.5. Let f = ax? + 2bxy + cy? and f' = a’2® + 2b'xy + c'y? be two
properly reduced positive definite binary forms. Then f is properly equivalent
to f' if and only if f = f' or f = ax?® £ axy + cy?, f = ax® F axy + cy?, or
f = ax? + 2bxy + ay?, f' = ax?® — 2bxy + ay®. Moreover, Mf = f for some
M # +1 if and only if one of the following cases occurs:

, 0 -1
(i) f=a(2?+y?) andM:I:(1 O)"

o, . (1 1 0 -1
(i1) f=a(zx iacy—&—y)andM-i(l 0 )ty 1)

Definition. Let G be a group acting on a set X. A subset S of X is called a
fundamental domain for the action of G on X if each orbit of G intersects S at
exactly one element.

The proof of Theorem 1.4 shows this enlarged set Q contains a representative
of each orbit of SL(2,Z). Moreover, two points (a, b, ¢) and (a’,b’,¢’) in Q belong



to the same orbit of SL(2,Z) if and only if either a = ¢ =a’ = ¢/,b = =V or
a =a,b =—b=a/2. Clearly

Q:R+XD.

To get the fundamental domain for the action of SL(2,Z) on Q5 we have to
consider the subset Q' of  defined by the following inequalities:

Q' ={(a,b,c) eQ:|2b|<a<c or a=c>2b>0 or a=2b>0}

The corresponding subset of the modular figure is obtained by deleting from it
the vertical line Re z = 1/2 and the part of the unit circle where the argument
is less than /2.

Since we do not need we leave it to the reader to state an analog of Theorem
1.3 for reduced (but not properly reduced) forms and find a fundmanetal domain
for action of GL(2,Z) on QF .

1.5 Theorem 1.4 has a nice application to number theory.

Definition. A binary quadratic form axz? 4 2bxy+cy? is called integral if a, 2b, c
are integers. It is called primitive if (a,2b,c) = 1.

Corollary 1.2. . The set of reduced integral positive definite binary forms with
fized discriminant D = 4d is finite.

Proof. If we fix the discriminant D = 4d = 4(b* — ac), then there are only
finitely many points in the domain 2 whose coordinates are integers. O

Definition. We say that two integral positive definite binary forms are in the
same class if they are properly equivalent.

Corollary 1.3. The set of classes of primitive integral positive definite binary
forms with the same discriminant is finite.

Exercises

1.1 Let A be a lattice in R?2. Show that the number of vertices of shortest
distance from the origin can be equal only to 2,4 or 6. Find the lattices with 4
and 6 shortest distance points.

1.2 Show that any subgroup of R? which is a discrete set (i.e. each ball in R?
contains only finitely many elements of the set) is a free abelian subgroup of
rank at most 2.

1.3 Let A be a lattice in R?2. Let us identify R? with C in the usual way.
Consider the set Oy of complex numbers z such that z- A C A.

(i) Show that O, is a subring of C and A is a module over Oy;
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(ii) Show that O = Z unless there exists ¢ € C such that cA is contained in
some imaginary quadratic extension Q(v/—d) of Q.

1.4 We say that a lattice A admits a complez multiplication if the ring Op
defined in the previous exercise is different from Z. Assume that A satisfies this
property. Prove the following assertions:

(i) the field of quotients K of O, is a quadratic extension of Q which contains
A;

(ii) a distance quadratic form of A is proportional to an integral quadratic
form;

(iii) the quadratic field K is equal to Q(v/b? — ac);

(iv) the ring Oy is generated over Z by 1 and fw, where w =
if d =1 mod (4), and w = v/—d, f?d = D otherwise.

1+\2/jd,f2 = 4D

1.5 Let K = Q(v/—d) be an imaginary quadratic field. We shall assume that d
is a square free integer. We say that two lattices A and A’ contained in K are
similar if A’ = aA for some a € K.

(i) Find a natural bijective correspondence between the similarity classes of
lattices contained in K and the proper equivalence classes of primitive
integral positive definite binary forms ax? + 2bzy + cy? which decompose
into the product of linear forms over K and whose discriminant D = 4(ac—
b?) is equal to the square of the volume of the fundamental parallelogram
of the corresponding lattice.

(ii) Let aw?+2bxy+cy? represents a class of primitive integral positive definite
binary forms corresponding to the lattice A with complex multiplication
defined by the ring O. Show that a and =b+2ybi-ac Vszac generate a proper
ideal in Q.

1.6 Let A and A’ be two lattices admitting complex multiplication with Oy = Opr =
O. Define A - A’ as the subgroup of C generated by the products A\, A € A, X € A’.
(i) Show that A - A’ is a lattice A” with Oprv = O;

(ii) Show that the operation of product of lattices defined in part (i) is compatible
with the similarity relation and defines the structure of a finite abelian group
on the set of similarity classes of lattices A with the same ring Oj.

1.7 Using the previous exercises define the structure of an abelian group on the set
C(D) of proper equivalence classes of primitive integral positive definite binary forms
of given discriminant D.

(i) Compute the product of two forms az? + cy? and a’'z? + ¢'y? with ac = da'c’.

(ii) Show that the class of the form z* 4 ny? (resp. x2 +zy +ny?) is the unit of the
group C(D) if D = 4n (resp. if D =1+ 4n).

(iii) Show that the class of az® —bxy+cy? is the opposite of the class of ax?+bzy+cy?.
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1.8 Using Exercise 1.5 (ii) show that there is a natural isomorphism between the group
of similarity classes of lattices with complex multiplication defined by a ring O and
the group C(O) of ideal classes of O.

1.9 Find all reduced primitive integral positive definite quadratic binary forms with
discriminant D = —4,—8,—12, —20,—-56. Compute the number h(D) of classes of
primitive integral positive definite quadratic binary forms for these values of D.

1.10 Show that h(—4n) > 1 if n is not a prime number.
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Lecture 2

Complex Tori

2.1 As we saw in the previous lecture there is a natural bijection between the set  of
proper equivalence classes of positive definite binary quadratic forms and the product
Ry x D', where D’ is the subset of the modular figure D whose complement consists of
points % + iy and €'?,0 < ¢ < /2. The factor Ry corresponds to the first coefficient
a of the form f = az® + 2bzy + cy®. Now recall that the set of equivalence classes
of positive definite binary quadratic formis also bijective to the set of lattices in R?2
modulo orthogonal transformation. The set of proper equivalence classes of positive
definite binary quadratic forms corresponds to the set of lattices modulo rotation
transformations. Now to get rid of the factor R let us consider lattices equivalent if
one is obtained from another by multiplying with a nonzero complex number A, i.e.
A ~ A if A" = {\v|v € A}. Since each complex number can be written in the form re*?
we see that we allow, additionally to rotations, positive scalar dilations of lattices. If
v, w is a basis of A, then A\v, A\w is a basis of AA. In particular, if A = r is real positive,
we get that the corresponding quadratic form f = ||v||>z? + 2v - way + ||w||*y? is
multiplied by 7. Thus, we may always assume that ||v||> = 1, hence the equivalence
class of A is determined by one root z € H of the quadratic form f modulo Moebius
transformations. Thus we obtain

Theorem 2.1. There is a natural bijection between the set of equivalence classes of
lattices in R? and the subset D' of the modular figure D.

Now let us find another interpretation of elements from D, this time as isomorphism
classes of elliptic curves.

Let A be a lattice in R%. Consider the orbit space
E =R?/A.
One can choose a representative of each orbit in the fundamental parallelogram
1 = {ov + ywl0 < 2,y <1},

where v, w is a basis of A. In this parallelogram two points belong to the same orbit
if and only if they differ by v or w. So, if we identify the opposite sides of II, we get a

13
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bijective map from II onto E. Topologically, E is homeomorphic to the torus, or the
product of two circles. In fact, as a topological group,

R?/A = R?*/7* = (R/Z) x (R/Z) = S" x S*.

However, we can do more; we put a structure of a complex manifold on E which will
depend only on the equivalence class of A.

Before we do it let me recall some basics about complex manifolds. Let X be a
topological space. A geometric structure on X is defined by assigning to any open
subset U of X a certain ring O(U). Its elements will be interpreted as functions on U.
This assignment satisfies the following property:

(i) if V C U then there is a unique homomorphism of rings ry,v : O(U) — O(V)
such that rw,uy o ry/v = rw/v whenever V.C U C W.

We would like to interpret elements of O(U) as functions on U and the homomor-
phism ry /v is as the restriction of functions on U to the subset V. In order to do this,
we shall require an additional property. Let x be a point of X. Consider the following
equivalence relation on the union of rings O(U) where U runs through the set of open
neighborhoods of . Let f € O(U),g € O(V). We say that f ~ g if there exists an
open neighborhood W of  contained in U NV such that 7y ,w (f) = rv/w(g). Denote
the set of equivalence classes by O,. There is a natural structure of a ring on O, such
that for any U containing = the canonical map O(U) — O, is a homomorphism of
rings. We require

(ii) For each z € X the ring O, is a local ring, i.e. contains a unique maximal ideal.

Let m, denotes the unique maximal ideal of O, and k(z) = Oz/m,. This is a
field. For any open neighborhood U of x there is a canonical homomorphism of rings
O(U) = Oy — k(x) the image of f € O(U) in k(z) is called the value of f at x and
is denoted by f(z). In this way each f € O(U) can be considered as a function on U,
although at each point x of U the value of f at  may belong to a different field. Of
course, we can consider the common set of values by taking the union of all fields x(z).
In many special cases, each ring O(U) is equipped with a structure of an algebra over a
field k£ and the restriction homomorphisms are k-algebra homomorphisms. In this case
we may consider k as a subring of O(U); its elements are called constant functions. If
are lucky the residue homomorphisms O(U) — x(z) induce an isomorphism of fields
k — k(z). In this case we may consider the value of any function on U as an element
of the same field k.

A topological space X together with a collection Ox of the rings Ox (U) satisfying
the previous conditions (i) and (ii) is called a geometric space. The collection Ox is
called the structure sheaf of the geometric space.

An example of a geometric structure on X is obtained by taking Ox (U) the ring
of continuous real functions on U.

Obviously, a geometric structure Ox on X equips each open subset U C X with
the restricted geometric structure. We shall denote it by Op. A continuous map
[+ X — Y of geometric spaces is called a morphism of geometric spaces if for any
open subset U C Y there is a homomorphism of rings f{f : Oy (U) — Ox(f~(U))
satisfying the following properties:
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(i) for any V C U the following diagram is commutative:

f#
Oy (U) —L— Ox(f~ 1))
Tu/vl yf—lww—l(w
f#

Oy (V) — = Ox(f71(V))

(i) Let f(z) = y and let fi7, : (Oy)y — (Ox)o be defined as follows. Take a
representative ¢ € Oy (U) of ¢ € (Oy)y and define f,(4) to be the equivalence
class of f# (¢) in (Oy)s. It is easy to see that this is wel-defined. We require
that ffl maps m, to my.

One interprets the homomorphism f# as the composition of a function on U with
the map f : f~*(U) — U. In fact, for each x € X with f(x) = y the homomorphism
ffz induces a homomorphism of fields ffz : k(y) — k(x) such that, for any ¢ €
Oy(U),y e U,

AU @) (@) = [ (8(f(2)))
So, a morphism of geometric spaces is a continuous map f : X — Y which transforms
functions on Y to functions on X.

We leave to the reader to define compositions of morphisms of geometric space and
to show that the identity map X — X is a morphism of geometric spaces. This will
define a category of geometric spaces. The notion of isomorphism of geometric spaces
is immediate: it is a morphism of geometric spaces which admits the inverse.

To define a geometric structure on X one need not to define O(U) for all U; it
suffices to do it only for an open set in a base {U;}ier of the topology. Then for any
open U we set

OWU) = lim O(U;
v) s (Us)
Here we use the definition of the projective limit: the subset of the product [],.; O(Us)
which consists of strings (..., ai,...,a;,...) such that ry, v, (a;) = rv; v, (a;) when-
ever U, C U; NU;.

We will be mainly concern with an example of a complex structure. Let us define
it. Let X = C" equipped with its standard topology defined by the Fuclidean metric
llz]| = (|z12 +. ..+ |2 |?)*/2. We define a complex structure on X by assigning to each
open ball U,(a) with center at a and radius r the ring O(U,(a)) of complex valued
functions on U,(a) which admit an expansion

f(z) = Z Qiyoin (21— a1)™ o (20 — an)™

i1,-in 20

absolutely convergent in U,(a). A complex valued function on an open set U belongs
to O(U) if and only if for any point a € U there exists a ball U, (a) contained in U such
that the restriction of f to it belongs to O(U,(a)). Such functions are called complex
analytic or holomorphic functions on U. A non-trivial result from complex analysis
says that a function f = u + iv : U — C is holomorphic in U if and only if it admits
continuous partial derivatives with respect to the real and imaginary coordinates x;, y;
in C" and satisfies the Cauchy-Riemann differential equations in U

0 1, 0u ov i, 0u v
E)Eif(z) - 5(8371' B 8y¢) + 5(6‘yi Oz

) =0.
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We shall denote the ring of holomorphic function on U by ©O8°! (U). The sheaf defined
by the rings Oh"l(U) defines a structure of a geometric space on C". It is called the
complex affine n-dimensional space. Clearly the field C can be identified with constant
functions and all residue fields x(x) can be identified with C.

Definition. A geometric space (X, Q) with Hausdorff X is called a complez manifold
of dimension n if for each x € X there exists an open neighborhood U such that
the geometric space (U, Oy) is isomorphic to an open ball in C™ with the restricted
geometric structure of the complex affine n-dimensional space C". A complex manifold
of dimension 1 is called a Riemann surface. A morphism of complex manifolds (not
necessary of the same dimension) is called a holomorphic map.

A complex manifold is an example of a geometric space (X, Ox ) where the following
additional property of Ox is satisfied:

(ii) Let U = U;erU; be an open covering. Suppose that a collection of functions
fi € O(U;) satisfies

ru,vnu; (Fi) = ruyunu, (), Vi g €L
Then there exists a unique f € O(U) such that, for any i € I, ry,u, (f) = fi.

Ezample 2.1. Each non-empty open subset of C™ with the restricted structure of the
geometric space is a complex manifold of dimension n. A map f : U — V of an
open subset of C™ to an open subset of C™ is given by n functions f;(z) (defining
the composition U — V < C™). It is holomorphic if and only if each fi(z) is a
holomorphic function on U. More generally, let f : X — Y be a holomorphic map of
complex manifolds. Take an open neighborhood V' of a point y € f(X) isomorphic to
an open subset ¥V’ of C™ and let € X be mapped to y. Then f~*(V) contains an open
neighborhood U of x isomorphic to an open subset U’ of C™. The map f: U — V
defines a map f’ : U’ — V' of open subsets of the corresponding complex affine spaces.
Then f is holomorphic if and only if f is holomorphic (for all z € X).

Ezample 2.2. Let X = CU{oo}. Define the topology on X by extending a base of the
standard topology on C by adding open neighborhoods of co of the form

Ur(o)={2€C:|z| >r}U{oco}

Now extend the structure sheaf "' on C by adding the rings O(U,(c0)), each equal
to the ring of complex valued functions f(z) on U, (c0) such that f(1/z) € O(Uy,,(0)).
We have X = UyUU;, where Uy = Up(o0) = X \ {0} and Uy = Uss(0) = X\ {o0} =C.
The homeomorphism 7 : Uy — U; defined by the formula z — 1/z is an isomorphism
of the geometric spaces. In fact f is holomorphic on an open U C U; if and only if
f(1/2) is holomorphic on 77 *(U). Since Uy is obviously isomorphic to C, we obtain
that X is a geometric space. It is called the Riemann sphere or complex projective
line and is denoted by CP'. Using the stereographic projection, we see that CP' is
homeomorphic to a two-dimensional sphere.

Remark 2.1. A more traditional way to define a structure of a complex manifold is
by using local charts. A collection of {(Ua, ¢a)} of open subsets U, of X together
with homeomorphisms ¢, from U, to an open subset of C" is called a local chart if
X = UaU, and, if Uy NUp # 0, the map ¢g 0 ¢a' : ¢pa(Ua NUg) — ¢p(Ua NUp) is
holomorphic. Two local charts are called equivalent if their union is a local chart. A
structure of a complex manifold of dimension n on X is an equivalence class of local
charts. We leave it as an exercise to check that the two definitions are equivalent.
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Let G be a group which acts holomorphically on a complex manifold X. This
means that for each g € G the map u(g) : ¢ — gz is holomorphic. It follows from the
definition of an action of a group on a set that u(g~!) is the holomorphic inverse of
1(g). Thus each u(g) is an automorphism of the complex manifold X. We would like
to equip the set of orbits X/G of G with a structure of a complex manifold. We restrict
ourselves with the case when G acts properly discontinuously on X. This means that
for any compact subsets A, B of X the set {g € G : g(A) N B # (0} is finite. In
particular, for any x € X the stabilizer subgroup G, = {g € G : g - © = z} is finite.

Theorem 2.2. Let G be a group which acts holomorphically and properly discontin-
uously on a Riemann surface X. Then the orbit space X/G admits a structure of a
Riemann surface such that the canonical map p : X — X/G is holomorphic. This
structure is unique up to isomorphism.

Proof. First we define the topology on X/G. This is standard. By definition a subset
of X/G is open if its pre-image p~*(U) is an open subset of X. Now we define the
structure sheaf. By definition

Ox/c(U) =0x(p~ ' (U))° =

{feOx(p ' (U): flg-2) = f(x),Vg € G,z e p ' (U)}

It is immediately verified that this defines a structure of a geometric space on Y =
X/G. Let us show that it is isomorphic to a Riemann surface. Let y = G - = be an
orbit, considered as a point of Y. Since X is locally homeomorphic to R?, it is locally
compact. Thus x contains an open neighborhood U whose closure U is compact. Let
U =U; DU, D ... be asequence of strictly decreasing open neighborhoods of x with
NnUn = {x}. Since each U is relatively compact and G acts properly discontinuously,
the set G(n) = {g € G : U, Ng(Uy,) # 0} is finite. Clearly G(n) C G(m) for m < n.
Thus there exists some N such that G(m) = G(N) for all m > N. I claim that
G(N) C G,. In fact, if this is false g - ¢ = o’ # z for some g € G(N). The map
g : X — X matches the filter of open neighborhoods U,, of x with the filter of open
neighborhoods g(U,) of z’. Since our topology is separated, we can find an open
subset U, with large enough n such that g(U,) N U, = (. However this contradicts
the definition of G(N). So G(N) C G,. Obviously, G, C G(N). Thus G(N) = G,
and in particular is finite. Therefore the set Ngeq, g(Un) is an open neighborhood of
z. It is invariant with respect to G,.. Moreover, for any z’, 2’ € Uy we have 2"’ = g-2’
for some g € G implies g € G,. In particular g(Un) N g’ (Un) # 0 if and only if g, g’
belong to the same coset of G modulo the subgroup G,. Thus

P (p(UN)) = Ugeag(Un) =[] 9(UN)
9GL€G/H

is the disjoint union of open subsets homeomorphic to Uy, and hence is open. This
implies that V = p(Ux) is an open neighborhood of y = Gz in Y. Since each G-
invariant function on p~*(V) is determined uniquely by its values on Uy we obtain

Oy (V) =2 O(UN)C"

If we replace V by a smaller open subset V' and replace Uy with Uy = Unx Np~ H(V)
we similarly get
Oy (V') = O(Uy)“"
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This shows that V' is isomorphic, as a geometric space, to the orbit space Un/G. In
fact the isomorphism is induced by the restriction of the morphism p : X — X/G of
geometric spaces to Un. Its fibres are Gz-orbits in U,. Thus we have reduced our
assertion to the case when the group G is finite and also fixes a point z € X. Now we
have to use the assumption that X is of dimension 1. Without loss of generality we
may assume that X is an open ball of finite radius r in C with center at the origin.
For each g € G the map pu(g) : X — X is given by a holomorphic function f(z) with
f(2) # 0 at each point in X and f(0) = 0. An elementary theorem from the theory
of functions in one complex variable says that f(z) = ze', i.e. g defines a rotation of
the ball. Since G, is of finite order, we obtain that €' — 1 for some d > 1. We also
see that G is a cyclic group of order d. Now any function ¢(z) invariant with respect
to the transformations z — zn,n% = 1 must be a holomorphic function in ¢t = z¢. This
easily follows by considering the Taylor expansion of ¢(z) at 0. Now it is easy to see
that the map z — 2% defines an isomorphism of geometric spaces U,-(0)/G — U,.4(0).
This proves the assertion. O

Remark 2.2. It follows from the proof that the assertion of the theorem remains
true in any dimension if we additionally assume that G acts freely on X, i.e., the
stabilizer subgroup G, of any point x € X is trivial. In general case X/G is not
a complex manifold but an analytic space with quotient singularities (also called a
complex orbitfold).

Corollary 2.1. Let us identify R? with C in the natural way. Then E = R?/A admits
a structure of a compact complexr manifold of dimension 1 for which the factor map
C — E is a holomorphic map of complex manifolds.

Proof. The group A acts on the complex manifold C by translations z — z+ A, A € A.
This action is obviously properly discontinuous. In fact any compact set B in C is
contained in a finite union of A-translates of the fundamental paralellogram

M={z€C:z=awi +bw2,0<a,b<1}

where w1, w2 is a basis of A. Thus for any compact set A, we have (miwi + mowa +
A)N B = 0 if |m1], |m2| are sufficiently large. This leaves us only with finitely many
A such that (A + A)N B # 0. O

Definition. A Riemann surface X is called a complex torus of dimension 1 or an
elliptic curve if it is isomorphic to C/A for some lattice A.

Theorem 2.3. Two elliptic curves C/A and C/A’ are isomorphic if and only if ' =
al for some a € C\ {0}.

Proof. We shall use the simple observation that the geometric spaces C and E = C/A
are locally isomorphic. This means that for any point z € C has a neighborhood
isomorphic to an open neighborhood of z + A € E. This follows immediately from
the proof of Theorem 2.2. Assume A’ = aA for some non-zero complex number a.
Consider the map C — C defined by the formula z — az. It is an automorphism of
the complex manifold C which maps A onto A’. Tt induces a bijective map of the orbit
spaces C/A — C/A’. Tt follows from the previous remark that this map is holomorphic.

Conversely, assume that there is a holomorphic isomorphism f : E = C/A — E' =
C/A’. Let f(0+ A) = 20+ A’. Consider the map t., : E — E’ defined by the formula
24+ A — (z+ 20) +A'. It is easy to see that it is a holomorphic automorphism.
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Composing f with t_,, = tzol we may assume that f(0+ A) = 0+ A’. Now we use
that the projection maps p : C — C/A and p’ : C — C/A’ are universal covers of
the topological spaces. The composition C —+ C/A — C/A’ is a continuous map of
a simply-connected topological space C to the torus C/A’. It has a unique lift to a
homeomorphism f : C — C of the universal covers. It is also a holomorphic map
satisfying f(0) € A’. In fact, the composition p’ o f is equal to f o p and hence is
holomorphic. This easily implies that f is holomorphic. Now for any A € A and z € C
we have f(z+ \) — f(z) € A’. Thus the continuous map z — f(z + A) — f(z) € A’ is
constant and hence f(z + \) = f(z) + f()\). This shows that the partial derivatives
of f are periodic with respect to A. By Liouville’s theorem, they must be constant.
Hence f is a linear map of C which maps A to A’ O

Corollary 2.2. There exists a natural bijection between the set of isomorphism classes
of elliptic curves and the modular figure D.

The group law on C defines a group law of the quotient group C/A. It follows from
the previous theorem that any holomorphic isomorphism of elliptic curves which sends
0 to 0 is a homomorphism of groups. The group of holomorphic group automorphisms
of the elliptic curve C/A is isomorphic to the group {a € C* : aA = A}. Let w1, w2 be
a basis of A. Replacing A with zA for some z € C* we may assume that w1 = 1,ws =
w € H. Then

aw=aw+p, a-1=~w-+34,
a f

0

for some integral invertible (over Z) matrix M = ( ) . This shows that the vector

(w,1) € C? is a complex eigenvector of M with eigenvalue a. The eigenvalue a = x + iy
satifies the characteristic equation

t* — (a4 8)t + det M = 0.

We have a+a = 2z = —(a+6) € Z and |a| = 2* +y*? = det M = 1. The only solutions
are

(2,9) = (0, £1), (£1,0), (5, +/3/2).

This gives
a = 4i, £1, £e>"/3 et™/3,

Thus there are the following possibilities for the group G of holomorphic group auto-
morphisms of elliptic curve:
G=>7/2,7/4,7/6.

The first case is realized for any lattice A. The second case is realized by the lattice
Z + Zi. The third case is realized by the lattice Z + Ze?™/3.

Let us show that any elliptic curve with G # {£} is isomorphic to either E; =
C/Z+Zior E,=C/Z+ Ze>™"/3. By Corollary 2.3, we may assume that w belongs to
the modular figure. Thus |Re w| < 1/2 and |w| > 1. We already noticed in Lecture 1
that the derivative of the Moebius transformation z — 228 at the point zo is equal

yz+6
to (czo + d)~2. Since a® = 1 for some d > 0, the matrix M is of finite order. This
implies that the derivative of the corresponding Moebius transformation is a complex
root of 1. In particular, we have |yw + 0| = 1. This implies

aw+ B |(aw + B)(y@ + 5)|

’YW+(5 - \'yw+5|2 = |(050J+5)('ya)+6)|

|w|=\
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Since |w| > 1,and ad — By = 1 this gives |aw + G, |y@ + 6| > 1. Thus
wl > ow + B] > |aflw], || = [y@ + 6] = |7]|w].

Assume o« # 0. Then we must have |a| = 1,8 = 0,|w| = 1. Assume 7y # 0. Then
we must have |y| = 1,6 = 0, |w| = 1. Thus we have the following possibilities for the

matrix M:
1 0 0 1 0 1 0 1
w=xp 1) (4 1) (0 L)+ o)

This gives the following possibilities for w:

. 10 0 1\ ..
w—z,M—:I:(O 1),:&(_1 0>,G:Z/4.

_ 27i/3 . 1 0 0 1 0 1 N
w=e 7M—:I:(0 1),:I:(_1 1 ,t 1 -1 ,G27Z/6.

This proves the assertion.

Moreover we have shown that the group PSL(2,Z) = SL(2,Z)/+1 acts on the upper
half-plane  freely except at the orbits of the points w = i, e2™*/3. The stabilizer group
PSL(2,Z); = Z/2,PSL(2,Z) 2xi/s = Z/3. The elliptic curves corresponding to these
two exceptional orbits are called harmonic (resp. anharmonic).

Exercises

2.1 Let X be the set of prime numbers in Z together with 0. Define a topology on X
by declaring that sets of the form V(n) = {p € X : p|n},n € Z are closed. For each
open set D(n) = X \ V(n) take O(D(n)) to be the ring of rational numbers whose
denominators are products of powers of prime divisors of n. Show that this defines
a geometric structure on X. Show that k(z) = Fp, the prime field of p elements,
if = p is prime and the field of rational numbers Q otherwise. Show that for any
f =a/be O(D(n)) the value of f at z is equal to itself if z = 0 and is equal to ¢ :Zg L
if x = p is prime.

2.2 Using the notion of a geometric structure give a definition of a differentiable
manifold of class C*.

2.3 Show that the projective space P™(C) (defined as the set of one-dimensional linear
subspaces in C"™!) has a structure of a complex manifold of dimension n. Show that
the natural map C™™* \ {0} — P™(C) defined by sending z = (o, ..., z) to the line
Cz is a holomorphic map.

2.4. Let (X, Ox) be a geometric space. Assume that the value of f € O(U) at a point
x € U is not equal to zero. Prove that the restriction of f to some open neighborhood
V of z is an invertible element of O(V).

2.5 Prove that any holomorphic function f : X — C defined on a connected compact
Riemann surface must be a constant function.

2.6 Let A be a lattice with complex multiplication (see Exercise 1.4). Show that the
ring Op is isomorphic to the ring of holomorphic group endomorphisms of the elliptic
curve C/A.
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2.7 Let A be a cyclic subgroup of the multiplicative group C* of the field C generated
by a complex number ¢ with |g| # 1. Show that the factor group C*/A has a structure
of a complex manifold of dimension 1 isomorphic to an elliptic curve.

2.8 Generalize the construction of an elliptic curve by showing that a quotient group
C™ modulo the subgroup A generated by 2n vectors linearly independent over R has a
structure of a compact complex manifold of dimension n. It is called a complex torus
of dimension n.

2.9 Consider the action of the group G = {£1} on C? defined by sending (z1, 22) to
(=21, —22). Show that C?/G does not admit a structure of a complex manifold such
that the canonical map C? — C?/G is holomorphic. However C?\ {0}/G is a complex
manifold of dimension 2.

2.10 Let P(z1,...,2n) : C* — C be a complex polynomial in n variables. Assume

gTF;(al, ...,an) # 0, where P(ai1,...,an) = 0. Show that there exists an open neigh-

borhood U of the point (a,...,as) such that U N P7'(0) is a complex manifold of
dimension n — 1. Generalize this to the case of a polynomial map C™ — CF.

2.11 Let P(z0,...,2n) : C* — C be a complex homogeneous polynomial in n + 1
variables. Assume that the equations g—z_ =0, ¢=0,...,nhavenocommon solutions
in C"™'\ {0}. Show that the set of zeroes of P, considered as a subset of projective
space P"*(C) is a complex manifold of dimension n — 1. Generalize this to the case of

the set of zeroes in P™(C) of a finite set of homogeneous polynomials.
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Lecture 3

Theta Functions

3.1 Tt is known that a compact smooth manifold of dimension n can be always
embedded in R?"*1. This theorem does not have its analog in the complex case. A
compact complex manifold cannot be embedded in CV for any N. This follows from
the fact that any holomorphic function on a connected compact complex manifold must
be a constant function. However, it is often possible to embed a complex manifold into
projective space P"(C). A theorem of Chow says that in this case the complex manifold
is isomorphic to a projective algebraic complex manifold. The latter is defined as the
set of solutions in P (C)) of a system of homogeneous algebraic equations

filzo,...,zn) =... = fn(zo,...,2n) =0. (3.1)
This system must satisfy the following smoothness conditions:
(i) the polynomials fi,..., fv generate a prime ideal Ix in the ring of polynomials
Clzo, - - ., znl;

(ii) the rank r of the matrix

of1 of1
oxg e Oxp,
J= (ao,--.,an) (3.2)
9fNn 9fn
oxg e Oxn

does not depend on the point (ao, ..., an) satisfying the equations (3.1).

The number d = n — r is equal to the dimension of the complex manifold defined
by (3.1) (see Exercise (2.11)). Not every complex manifold X can be given in this
way. A necessary (but not sufficient) condition is that the field M(X) of meromorphic
functions on X has the transcendence degree over C equal to the dimension of X.
A meromorphic function is defined by choosing a covering of X by open connected
subsets U; and assigning to each U; an elements f; of the field M(U;) of quotients
of O(U)" with the compatibility condition f; = f; in M(U; N U;). Here we use
the fact that O(U;)"" does not have zero divisors. The transcendence degree of the
field M(X) over C is always less or equal to the dimension of X (see [Shafarevich],
vol. 2, Chapter 8, §2). If X is a projective algebraic complex manifold, then its field
of meromorphic functions coincides with the field of rational functions. A rational

function is an element of the field R(X) generated by fractions M formed by

Qk(z0,-- Zn

23
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homogeneous polynomials of the same degree considered modulo the ideal Ix. The
transcendence degree of this field is always equal to n — r. Dropping the condition
(ii), we obtain the definition of an irreducible complex projective algebraic variety.
Its dimension is equal to the n — r, where r is the maximal value of the rank of the
Jacobian matrix.

We shall prove later that any compact complex manifold of dimension 1 is isomor-
phic to a projective algebraic complex manifold (a smooth projective curve). In this
lecture we shall find such an isomorphism explicitly for complex tori X = C/A. Let
us try to find a non-constant map f : X — P"(C). Recall that the complex projective
space P"(C) is defined as the set of lines in C"**, or equivalently as the set of non-zero
vectors (zo,...,2n) € C"*! considered up to multiplicatication by a non-zero scalar.
The set P*(C) is a complex manifold of dimension n. It is covered by n + 1 subsets
Ui = {(z0,--.,2n) : z; # 0} each isomorphic to C" (see Exercise 2.3). A holomorphic
map f : X — CP", after composing with the natural map C — C/A, is defined by
n + 1 holomorphic functions fo,..., fn on C which need not be periodic with respect
to A but must satisfy the weaker property:

filz4+ X)) =ex(2)fi(z), i=0,...,n, A€EA,
where e (z) is a holomorphic invertible function on C. Let us try to find such functions.

Definition. A holomorphic function f(z) on C is called a theta function with respct
to a lattice A if, for any A € A there exists an invertible holomorphic function ey (z)
such that

fz+X) =ex(2)f(z), VzeC.

The set of functions {ex(z)} is called the theta factor of f.

Ezample 3.1. Let A = Z+Z1, where 7 € H. We know that each lattice can be reduced
to this form by means of a homothety transformation. Set

Oz7) = (i)

nez

This function is holomorphic on C. In fact, we shall show that the series converges
uniformly on any bounded set in C. Then we can differentiate the series and see that
the derivative with respect to Z is zero. Thus the series represents a holomorphic
function on C. Assume that on a bounded set we have |Im z| < ¢. Then

2 .2
Z |6'L7r(n T+22n)| < Ze 7n“Im (7)627rcn.

nez nez

Choose N such that e ™™™ (D¢27¢ < 1 for n > N. Then
Zefwnglm (T)e2ﬂcn < Zef‘nn(an)Im (T)
nez nez

The latter series is obviously converges.
Now let us check that O(z;7) is a theta function. Obviously it is periodic with
respect to z — z +m, m € Z. We also have

@(Z + T;T) _ Z eiw(n27—+22n+27n) — Z eiTr((n+1)27—+2z(n+1)7772z) _
nez nez
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i (=7—22) Z eiﬂ((n+1)27+2z(n+1) _ 677”'(#22)@(2; ).
nez

Proceeding by induction we see, for any A = m + nr € A, we have
O(z+m+nr;7T) = efﬂ(nQTjLQnZ)@(z; T),
so that ©(z;7) is a theta function with the theta factor

—1 2
emnr(z) = e~ TOTTHIN),

This theta function is called the Riemann theta function.

3.2 How to find a general form of a theta function? First notice that the theta factor
satisfies the following condition:

extxa (2) = ex(z + Nex (2). (3.3)

This follows from comparing the equalities:
FEHA+N) =enin(2)f(2),

FEAAEX) = ex(z+X)f(z 4+ ) = exlz + Nex (2)F(2).

Let ¢(z) € O(C)" be a holomorphic invertible function on C. For any theta
function f(z) with theta factor ex(z) the function f(z)¢(z) is also a theta function
with the theta factor

ex(z) = ex(2)d(z +7)o(2) . (34)

Definition. A set of holomorphic invertible functions {ex}aea satisfying the func-
tional equation (3.3) is called a theta factor with respect to the lattice A. Two theta
factors {ex}rea and {ex}hca are called equivalent if they either related by (3.4) for
some invertible holomorphic function ¢(z) or are obtained from each other by trans-
lation of the argument z — z + a.

Let Th({ex}; A) denote the set of theta functions with theta factor {ex}. Obviously
it is a subspace of the space O(C) of holomorphic functions on C. Notice that for any
fy9 € Th({exr}; A) the meromorphic function f/g is periodic with respect to A. So, it
defines a meromorphic function on C/A. Such functions are called elliptic functions.

We have

Th({ex}; A) = Th({eh}; A)
if {ex} is equivalent to {€% }. The isomorphism is defined by composition of multiplica-

tion with a function ¢! defined by (3.4) and the inverse image under the translation
map z — z + a.

One can show, we don’t really need it, that it is possible to find ¢(z) such that
log(e(2)¢(z+7)d(2)™") depends linearly on z. Thus the theta factor ey (z)’ looks like
6;(2)’ _ 6727ri(a>\z+b>\).

Further replacing f(z) by f(z)ezm'(%’“z2+(bl7%1)Z> we may assume that a; = by = 0.

In particular

fz4+1) = f(2), flz+7)=e 2T f(2), (3.5)
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Now we have
fE+T4+1) = f((z4+7)+1) = f(z+7) = e 2™ f()

f(z 7+ 1) _ f((z + 1) + T) _ 672Tri(a(z+1)+b)f(z) _ 6727ria6727ri(az+b)f(z).

—27mia

By comparison, we see that e =1, hence a = k for some k € Z. The first equality
allows us to expand f(z) in a Fourier series

f(2) =) ™™, coeC.

nez

Replacing z with z + 7, we obtain

f(Z + 7_) _ Z Cne21rin‘re27rinz _ e—27ri(kz+b)f(z) _

nez

—27ib 2wi(n—k)z —27ib _2winz
cne e = Cntk€ e .

nez nez

2minz

Comparing the coefficients at e we get

Crgh = CHGZWi(nT+b). (36)
If £ = 0 we must have ¢, = 0 except maybe for one value N of n satisfying N7+b € Z.
This gives
f(Z) _ CN@QWiNz.

If K # 0 we get a recursion for the coefficients. Assume & < 0. Let cy # 0 for
some N > 0. Then |ex_x| = |ene 2™ N7HY)| Since Im 7 > 0, the absolute value of
the coefficients cy_si, s > 1, will not go to zero and the Fourier series will diverge.
Similarly, if ¢y # 0 for some N < 0, we get |cn+sk|, s > 1, do not go to zero and again
the series diverges. It remains to consider the case k > 0. In this case all coefficients
are determined by k coefficients co,...,cx—1. In fact, we can solve the recurency
explicitly. To simplify the computations, let us replace f(z) with f(z+4 § — %) Then

T b T b
fetg -+ =flz+5- 1)
T b —2mi(k(z+ 5 — b)+b) T b
L_Z — - )= 3.7
fetg—ptm)=e fe+5-7) (3.7)
—2mi(kz+k%) T Q
e flet T -0,
So we may assume that
b=kr/2.
Let s € {0,...,k — 1}. Then it is easy to check that
Cotrk = eﬂ-i[(errk)zr/k]cs (3.8)

is the explicit solution of the recurrency 3.6. This shows that each f(z) with the theta
factor

) n2
Cminr(z) = e 2RO (3.9)

can be written in the form
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where
Os(z; 1)k = Ze"i[(s”k)Z)T/k]62“2(“‘”@) s=0,....k—1.
re’z
It is convenient to rewrite these functions in the form

Os(z;7)k = Z emil(F A2 kT +2k2(F+r)]
TEL

It is easy to see using the uniqueness of Fourier coefficients for a holomorphic function
that the functions ©,(z)y are linearly independent and hence form a basis of the space
of theta functions with the theta factor (3.9).

3.3 Summarizing the previous computations, we obtain
Theorem 3.1. Fach theta factor is equivalent to the theta factor of the form

2
—27mi(nkz4+2— kT
emtnr(2) =€ ( T k)

The space Th(k; A+) of theta functions with theta factor of this form is zero for k < 0.
For k = 0 it consists of constant functions. For k > 0 it is of dimension k and is
spanned by the functions

Ou(z; )0 = Z eﬂi[(%+r>2kr+2kz(%+r)]7 s=0,...,k—1.
re’
Observe that

6727Ti(nkz+%k‘r)6727ri(nk/z+%k'7‘) — 6727ri(n(k+k/)z+%(k+k/)f)'

Obviously, if f € Th({ex};A),g € Th({e\};A) then fg € V({exer}). This implies
that the multiplication of functions defines a bilinear map

Th(k; A;) x Th(k'; A,) — Th(k + k'; A,).
Notice that for £ = 1 we obtain
Oo(z;7)1 = O(2;7).

Let us modify a little the definition of ©(z;7) introducing the theta functions with
rational characteristics

) 2
ﬁab(z; 7_) _ Z eﬂ'z[(a+r) 7'+2(z-‘,—b)(n‘+'r)]7 a, be Q

rEZ
In this notation
Os(2;7)k = V20(k2; kT) (3.10)
The functions
2
Oi(alr) =011 (s) =i Y (1) 20'q7, (3.11)
ret4z
7,2
O2(z|T) = 19%0(2;7') = Z vq' 7, (3.12)
re3+Z
71.2
03(z|T) = Yoo(z;7) = g2, (3.13)
neZ

Oa(2|7) = o1 (1) = D _(~=1)"0"¢7, (3.14)
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where v = €2™* g = €?™" are called the Jacobi theta functions. It is easy to check

the following properties of functions ¥ (z; 7):

Dap(2;7) = ehm(b_b/)ﬁa/b/(z;r) ifa' —a,b/ —beZ (3.15)
ﬁab(z + 1; T) _ Z eﬂ'i[(a+r>27—+2(z+b)(a+r)+2(a+r)] _ e27-rz'a,l9ab(z; 7_); (316)
re’
ﬂab(z + T 7_) — Z ewi[(a+r)2T+2(z+b)(a+r)+27(a+r)] _ (317)
TEL
Z67ri[(a+'r+1)27—71'+2(z+b)(a+7‘+1)72272b] _ 672‘”%67:#(77—722)19(117(2;7'). (3.18)

TEZ

Also each ¥45(z; T) is obtained from ©(z;7) by translation in the argument z and
multiplying by a nowhere vanishing factor.

O(z+b+ar;7) = Z il T 2(ztbtar)r] _

rEZL

Zewi[(a+7")27—+2(z+b)(r+a)7a27—72(z+b)a] _ efiﬂ(a27'+2(z+b)a)q9ab(z;7_).

rEZL

Or, equivalently,
Yan(2;7) = ei"(a2T+2(z+b)“)1900(z +b+ar;7) (3.19)
Let us set

2
Th(k; Ar)ap = {f € O(C) : f(z 4+ m +nr) = ¢ 2rilmmatnt) g=2kmilnzt57) g3y
(3.20)
Its elements are called theta functions of order k with rational theta characteristics
(a,b). It is easy to see that the multiplication of functions defines a bilinear map

’Th(k’7 AT)ab X th(k/7 AT)a/b/ — Th(k + k,, AT)(a+a’)(b+b/)'
For any f € Th(k; A-) we have

; b
erz[a27—+2(z+a)b]f(z + +ar

) € Th(k; Ar)ab-
In particular, there is a canonical isomorphism

Th(k; Ar)asy = Thik; Ar)
Also observe that

Th(k; Ar)as = Th(k; Ar)ary  ifd’ —a,b/ —b € Z. (3.21)

3.4 Now we are ready to use theta functions to embed E = C/A in projective space.

Lemma 3.1. Let f be a nonzero function from Th(k; A). Then f has ezactly k zeroes
in C modulo A counting with multiplicities.
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Proof. We use a well-known formula from the theory of functions in one complex
variable: the number of zeroes (counted with multiplicities) of a holomorphic function
f(2) on an open subset D of C inside of a compact set K contained in D together with
its oriented boundary I' is equal to

Z = i/allogf(z)dz.
27 Jr

Here we also assume that f(z) has no zeroes on I'. Let us take for K a small translate
zo + 11 of the fundamental parallelogram of the lattice I' such that its boundary I" does
not contain zeroes of ¥as(2; 7). It is easy to achieve since a holomorphic function has
a discrete set of zeroes. Using that

a2
fz+m+nr)= eiﬂk(TT“"z)f(z),

we obtain
1 1 zo+1
=5 Fdlog;f(z):%/z0 dlog f(z) —dlog f((z + 7;7)—
1 zo+T 1 zo+1 )
o " dlog ()~ dlog (= + 11 = 5 / " dlmik(2z ) = b

Since each zero of ¥45(2;7) can be translated to a zero of Jqu(z;7) inside K by means
of a vector from the lattice, we obtain that the zeroes of ¥45(z;7) form k orbits with
respect to A. This proves the assertion. O

Corollary 3.1. The zeroes of the function 9q(z;7) in C are the points

1 1
z:(a+§)7+(b+§)+A.

Proof. Using the formula (3.14) it is enough to verify that the function 19%%(2;7)
vanishes at the origin 0. This will follow from the fact that this function is odd. We
have

ﬁab(_Z;T) _ Zeﬂi[(a+r)27—+2(7z+b)(a+r)] _ Ze'fri[(fafrf7-+2(z7b)(7a7'r)] _ (322)

TEL rEL
> erilcamrPra2Gt-a=nl —_y (507 (3.23)
rEL
Taking (a,b) = (3, 3) and using (3.15) we obtain what we want. O

Corollary 3.2. The set of zeroes of ©4(z;T)k consists of the points
s 1 1 i
-4+ = —+—-+A, i=0,....,k—1.
()t typtas =0,

Proof. Use (3.9) and the previous lemma. If z is a zero of ©,(z;7), then kz is the
zero of 9sq(z; k7). Thus
13
s 1 1
k‘Zf (%4— §)kT+§+Z+ZkJT
This gives

1 1 1
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Theorem 3.2. For each k > 1 the formula
zZ — (@0(2’; T)k, . ,@k_l(z; T)k)

defines a holomorphic map ¢ : E- = C/Z + ZT — CP*=L. If k > 3, this map is a
holomorphic embedding (i.e. injective and the derivative at each point is nonzero).

Proof. First of all the map is well-defined. In fact all theta functions Os(z;7)x cor-
respond to the same theta factor, hence when we replace z with z + A, X € A, the
right-hand side is multiplied by a non-zero scalar and hence defines the same point
in the projective space. Also we see from the previous corollary that the functions
O:(z;7)r do not vanish at the same point, hence not all coordinates of the vector
¢x(z) are zero. The map is holomorphic since the theta functions are holomorphic
functions. Let us show that it is injective when k > 3. Suppose ¢x(21) = ¢r(z1), or
d¢r(z1) = 0. Using the formulae (3.12) and (3.13), we see that, for any integers m, n,

O:(z + % + %;T)k =Vso(kz+m+nrikr) =
2mims 2mi

ek einW(Tsz)ﬂ%o(kz;kT):e BT RN g (7). (3.24)

This shows that ¢(z1 + 5 + 2L) = ¢(z1 + B + 2L), or dop(z1) = dop(z1 + 2 + 27) =
0. Note that, if & > 3 we can always choose m and n such that the four points
z1,21,%20 = 21+ P 4+ 25,25 = 21 + 7 + BT are distinct. The linear space generated
by the functions ©,(z; )i is of dimension k. So we can find a linear combination f of
these functions such that it vanishes at z1, 22 and some other k — 3 points z3, ..., 2k—1
which are distinct modulo A. But then f also vanishes at 27 and 25, or f has a double
zero at z1 and z2. Thus we have k + 1 zeroes of f counting with multiplicities. This

contradicts Lemma 3.1 and proves the assertion. O

Remark 3.1. Let us consider the group %A/A, If we consider it as a subgroup of C/A
we see that

%A/A:{CLE(C/A:ka:O}

is the subgroup rE of k-torsion points on the elliptic curve E = C/A. The group pE
acts by translations on E and on the space of functions Vi, generated by ©,(z; 7). In
fact, we have

O,(z + %;T)k = 627;‘#@3(*3;7')16;

as we have already noticed in the proof of Theorem 3.2. Also

(s Tirh = 0ol 4 73kr) = F P B D)
_ - < o (3.25)
Z ezﬂ[(kr+.s+l) % t2z(kr+s+1)—2z—1)] _ e—ﬁz(Qz-&-E)C_)s_’_l(Z; T)k,

TEL

where O (z;7)r = O0(2; 7)k.

FEzample 3.2. Let us take k = 3 and find the image of the map

¢3 : E; — CP%.
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Consider the action of the group G = %A/A on CP? by projective transformations
defined on generators by the formula:

(1/3) - (w0, w1, 32) = (w0, €™ *x1, '™/ *5);

3.26
(1/3) - (wo, x1,22) = (21, T2, T0). ( )

Then it follows from the previous remark that the map ¢3 is G-equivariant if we make
G act on E by translations. This implies that the image of E, must be invariant
with respect to the action of G as above. It follows from the remark made after the
statement of Theorem 3.1 that for any homogeneous polynomial F(Ty, T1,T>) of degree
3 the theta function F(©¢(z;7)3,01(2;7)3, O2(2;7T)3) belongs to the space Th(9; A) of
dimension 9. On the other hand the space of cubic homogeneous polynomials in three
variables is of dimension 10. This implies that there exists a cubic polynomial F' such
that
F(©0(z;7)3,01(2;7)3,02(2;7)3) =0,

so that the image C' of ¢3 is contained in the set of zeroes of the homogeneous poly-
nomial F(zo,z1,x2) in CP?. As we already noticed any compact closed subvariety
of P"(C) must be the set of zeroes of a system of homogeneous equations. Some el-
ementary algebraic geometry (or better commutative algebra) tells us that C' is the
set of zeroes of one polynomial. The degree of this polynomial cannot be less than 3.
In fact any polynomial of degree 1 defines a a complex manifold isomorphic to P*(C)
hence homeomorphic to a two-dimensional sphere. But C' is homeomorphic to a torus.
Similarly a polynomial of degree 2 defining a complex manifold can be reduced by a
linear homogeneous transformation to the form x(z) + x1x2. Hence it defines a complex
manifold isomorphic to P!(C) (use the projection map (o, z1,x2) — (zo,x1)). So we
see that C is the set of zeroes of F'. The polynomial F' must be a common eigenvector
for the action of the group A/A 2 (Z/3)* on the space W of homogeneous cubic
polynomials given by the formula (3.26). Also it satisfies the condition that its par-
tial derivatives have no common zeroes. It is easy to see that this is possible only if
F =2} + 2% + 23 + ywox122 for some scalar . This implies that the image of ¢3 is a
subset of the plane projective curve

xg +ad s+ yroxiT2 = 0. (3.27)
Since E; is a compact complex manifold of dimension 1, it is easy to see that it must
be equal to the whole curve. Also since it is a manifold the partial derivatives of the
polynomial in (3.27) do not have a common solutions in P?(C) (see Exercise 3.2). This
easily implies that

¥ £ =27,

The equation (3.27) is called the Hesse equation of an elliptic curve. So we have
proved that any elliptic curve is isomorphic to a complex submanifold of the complex
projective plane given by the Hesse equation.

Remark 3.2. Consider the affine part of the Hesse cubic where g # 0. It is isomorphic
to the curve C’ in C? given by the equation

1+a2% +y° +yzy=0. (3.28)

It follows that the functions
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define a surjective holomorphic map C?\ Z — C’ whose fibres are equal to the cosets
z+Z+ 7Z. Here Z is the set of zeroes of ©g(z;7)s. Observe that the functions ®1(z)
and ®2(z) are elliptic functions with respect to A, i.e. meromorphic functions with the
set of periods A. In other words we have succeeded in parametrizing the cubic curve
(3.28) by double-periodic functions. For comparison let us consider a homogeneous
equation of degree 2. Applying a homogeneous linear transformation we can reduce it
to the form 2 — 2% 4+ x3 = 0 (if it defines a complex submanifold). Dehomogenizing,

we get the equation of a (complex) circle
S:z?4+y?=1.

In this case its parametrization C — S is defined by one-periodic holomorphic func-
tions cos27z,sin27z . Its fibres are cosets z 4+ Z. One of the best achievements
of mathematics of the last century is the Uniformization Theorem of Klein-Poincare
which says that any equation f(x,y) = 0 defining a Riemann surface in C* admits a
parametrization by automorphic functions. Its group of periods is not commutative
in general.

Exercises

3.1 Using Exercise 2.12 show that the equation z® + 3> + 2% + yzyz = 0 defines a
complex manifold of dimension 1 in P?(C) if and only if 4 4 27 # 0.

3.2 Show that the image of a 3-torsion point of C/A under the map ¢s3 is an inflection
point of the Hesse cubic (a unique point at which some line intersects the curve with
multiplicity 3). Find the projective coordinates of these points.

3.3 Show that for general value of the parameter v the group of projective automor-
phisms of the Hesse cubic is of order 18. Show that it is generated by translations
z+a,a € %A /A and the inversion automorphism z — —z of the corresponding complex
torus C/A. Find the corresponding projective automorphisms of the Hesse cubic.

3.4 Show that the image of 2-torsion points on the Hesse cubic are the four points
(0,1,—1),(1, a, a), where a is a root of the cubic equation 2t* + 4> +1 = 0.

3.5 Find the values of the parameter v in the Hesse equation corresponding to the
harmonic and anharmonic elliptic curve.

3.6 Show that the parameter « in the Hesse equation (3.27) is equal to the following
function in 7:

__Yoo(0; 37)% 4 ¢/ %900 (73 37)% + ¢*V00(27; 37)3
N q5/%900(0; 37)900(T; 37) V00 (275 37)

3.7 Analyze the proof of Theorem 3.2 in the case k = 2. Show that ¢ defines a
holomorphic map E, — P!(C) such that for all points 2 € P'(C) except four, the
pre-image consists of 2 points and over the four points the pre-image consists of one
point.

3.8 Show that the map C — P*(C) given by the formulas

2= (D00(2), D 10(2), D3 (2), 93 1.(2))

11
22

defines an isomorphism from C/2A = C/A onto a complex submanifold of P*(C) given
by two homogeneous polynomials of degree 2.
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3.9 Let X be a complex manifold of dimension 1 in P*(C) defined by two homogeneous
equations of degree 2.

(i) Show that, after linear homogeneous change of variables X can be defined by
the equations 28 + az? — 25 = 0, 22 + bz? — 22 = 0 for some nonzero a,b € C.
(ii) Show that each X as above is isomorphic to an elliptic curve.

(iii) Find the values of (a,b) in (i) such that the corresponding elliptic curve is
harmonic (resp. anharmonic).

3.10 Show that each ¥44(z;7) considered as a function of two variables z, T satisfies
the differential equation (the Heat equation):

(), 0f(zT)

022 or

=0.

3.11 Check the following equalities:

1 LT T+1 LT T
Yo0(0;7) =Dy (537) = ="My 4 (F5—i) 1010(5:7);
1 1 ;
D03 (057) = Doo(537) = ie™ /40y (225 7) = ie™ 494 (257
. _ 1 _ mit/4 T+1 TiT /4 T.
1910(0,7)——6%%(5,7')—6 60%( 3 iT)=¢e 190(5,7)

3.12 Prove that, for any w € C,the product ¥as(z + w;T)94p (2 — w; ) is a theta
function of order 2 with theta characteristic (a + a’,b + b’). Deduce from this the
addition formulae:

091 (0951 (2 +w)0g1 (2 — w) = Dp1 ()" Vg1 (0)* = 911 ()11 (w)?,
910(0)*910(z + w)010(z — w) = V14(2)* 9 1o(w)” = V11 ()11 (w)?,
051 (0)*9 11 (2 + w11 (z —w) =Dy 1(2)" g1 (0)* = Vg1 (2)*0 1 (w)*.
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Lecture 4

Theta Constants

4.1 In this lecture we shall study the functions of 7 equal to ¥(0,7) where ¥(z, )
is a theta function. To show that they are worth of studying we shall start with the
Riemann theta function ©(z; 7). We have

0(0,7) = Zemrzf = qu2, g=¢"". (4.1)

rEZL rEL
We have
’I'2 7‘2 n
00,7 => ... > ¢ =S "e(n)g",
r1EZL TR EL n=0
where

ex(n) = #{(r,...,re) €ZF :n =1 + .. . +ri}.

So ©(0,7)" is the generating function for counting the number of representations of
an integer as a sum of k squares. For example c3(6) = 24 since all representations of
6 as a sum of 3 squares are obtained from 6 = 22 4+ 1 4+ 1 by changing the order and
signs.

Let us show that 9(7) = ©(0, 7)" satisfies the following functional equation:

I(=1/7) = (—in)*?9(r), I(r +2) = I(7). (4.2)

Here in the first equation we take the branch of the square root which is positive on
the purely imaginary ray iRso. The second equation follows immediately from the
Fourier expansion. To prove the first one we use the Poisson formula in the theory of
Fourier transforms. Recall that for any rapidly decreasing at infinity smooth function
f on R™ one defines its Fourier transform f by the formula:

foo = [ ety

Let A be a lattice in R™ and A be the volume of its fundamental parallelopiped. Let
AN ={xeR":x-v €Z,VYv € A}. Then the Poisson formula says that

S f) =AY fw). (4.3)

xEA yeEA

35
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77rz2y

We apply this formula to our case. Take n = 1 and A = Z and f(z) = e
considered as a function of z € R. Then the left-hand side of (4.3) is equal to ©(0, 7y).
Now the Fourier transform of f(x) is easy to compute. We have

f(ﬂc) = /OO eZﬂimte_”tQ”’dt = /oo efﬂy(tfi)zemg/ydt =

et [T e = e = f(-1/9) V.

— 00
This verifies (4.2) when we restrict 7 to the imaginary axis 7 = 4y. Since the set of
zeroes of a holomorphic function is discrete this suffices.
Note that if kK = 8n, (4.2) gives

I(—) = 7*/%9. (4.4)

We shall interpet this later by saying that ©(0;7)* is a modular form of weight k/2
with respect to the principal congruence subgroup I'(2).

To give you an idea why the functional equation of type (4.2) is useful, let me give
one numerical application. Take 7 = iz purely imaginary with z > 0. Then (4.2) gives

—rxr? 1 —mr?jz 1 G —mr?/z
Ze —ﬁZe —ﬁ(lJrQ;e )

TEL TEZL

Suppose we want to compute the value of the left-hand side at small z. For x = .001
we need fifty terms to reach the accuracy of order 107!°. But now, if we use the
right-hand side we have

Z 6771'.0017‘2 =10(1 + 9e~ 1007 | ).

TEZL

—1007

Since e ~ 107%3* we need only two terms to reach the accuracy of order 10740,

4.2 We know that the zeroes z of O(z,7) = Yoo(z; T) satisfy
2z = (14 2m)7 + (1 4 2n).

Then
e;t27r7lz _ 76‘“’7:7—(2"1'71) ,

where we consider only positive m. Let ¢ = ¢*™" be as before, and consider the infinite
product

> 2m—1 . 2m—1 .
P(ziq)= [[+q 2 €™)1+q 2 ™). (4.5)
m=1

Recall that an infinite product ]2, f» of holomorphic functions on an open subset U
of C represents a holomorphic function equal to limy_, Hivzl fn if for any compact
subset K of U the series >~ | (1 — fn) is uniformly convergent.

Since |gq| < 1, the infinite series

e 2m—1
Z qu (627r7lz + 6727r7l2)

m=1
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is absolutely convergent for any z and the infinite series (4.5) is a holomorphic function
on C. Its zeroes are the same as the zeroes of ©(z, 7). This implies that

[eS)
2m—1 72772'2)

2m=Ll oz
1+q z e™)(1+q 7 e

m:l

@(Z,T) 190() Z T

for some function Q(g). Using formula (3.14) from Lecture 3, we obtain

27”27 1 —271-1'2).
)

(4.6)

2m2 1 27”2)(1_q

91 (7)) =Q(g) [JT(1 ¢
e TR, (4.7)

ﬁ1z+677”z) H(1+qme27r7,Z)(1+q e

1 Tz —Tiz °° m 2miz m _—2miz
911(z7m) =iQ(g)qs (€™ — ™) [T (1 = ¢"e™™)(1 = ¢™e™*™). (4.8)
m=1
Plugging in z = 0 we get
> 2m—1
P0(0;7) = Q) [T (1+4a" = )%
m=1
> 2m—1
P01 (0;7) =Q(g) [J(1—¢" = )%
: 7,1;[1 (4.9)
910(057) = 2Q(0)a* ] (1+a™)
m=1
19%%( 7)=0.
Differentiating 19%% (z;7) in 2z, we find
1 m
911(0:7) = —21Q(q)g* [T (1 —a™)? (4.10)
m=1

We observe that Q(0) = 1, by taking ¢ = €*™" with 7 = it with t — co. Now
¥000; 7 — 1, while the right side of formula above goes to Q(0).
To compute the factor Q(q) we will use the following:

Theorem 4.1. (C. Jacobi).
19,%% = —7T’l900’l9%0’l90%.
Here, following the classic notation, we set

Pap(0; 7) = Yab,

WetlET) () = g,

dz
(e/2,1/2) where ¢, = 0,1 the classic notation is really

Also notice that when (a,b) =
Ven (z;7) = Oen(z; 7).

However we keep our old notation.
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Proof. Consider the space Th(2;A)qs with a,b = €¢/2,¢ = 0,1. Its dimension is 2. If
(a,b) = (1/2,0), the functions 19%0(,2; 7)%00(z; T) and ﬁ%%(z; 7')190% (2; 7) belong to this
space. It follows from (3.12) and (3.7) that

19%0(2; 7), Jo0(z; T),’l?oé (z;7) are even functions in z,

0

%%(z; 7) is an odd function in z.
Thus 19%0(7;; T)00(z; T) is even and 79%%(2; 7’)190% (#;7) is odd. Now consider the func-
tion

F(2) = Yab (2, 7)0arp (25 7)) — Y (2, 7) Darir (25 7).

Observe that F(z) = 9ap(2;7)2(Oarpr (2;7) /9ab(2; 7). The function %ﬁfg) is almost
periodic with respect to A, that is

Yo (z+m+nr;7) p2milm(a’ —a)=n (' )] Yarp (257)

Dap(z +m +n1;T) Dap(2;7)
This implies that F/(z) € Th(2; A)aata’—a,2046/—b = Th(2;A)ata v+ In particular,

s (z;T)'ﬂO (z;7) — Y, (z;7)’19

11 1 1 11
272 2 2 22

(z71) € Th(2;A)%O.
Since this function is even (the derivative of an odd function is even, and the derivative
of an even function is odd) we must have

Y (z;T)/ﬁO (z;7) — Y, (2;7)'0

11 1 1 1
22 2 2 2

%(z; T) = 019%0(2; 7)P00(z; 7), (4.11)

for some constant ¢. Since 911 (0;7) = 0, we get

11
22
ﬁlllﬁol
22 2

C= ————.
19l07900
2

Differentiating (4.11) twice in z and plugging in z = 0, using the fact that the odd
function terms drop out, we obtain

g " / 19/1 1190% 17 "
— 22
T3Py — B0y 3y = 55 s (V3000 + 9 40000).
2
This gives
n " " "
33 _ 03 30 Yoo
11 Vo1 P10 Yoo
22 2
Now we use the Heat equation
82'[9a ] 6’190, N )
AZCE Cha B R G (112

(see Exericise 3.10). This allows us to rewrite the previous equality in terms of deriva-
tives in 7, since
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for example. We get

dlogﬂ%% dlogﬁoé’ﬁlo’ﬁog
dr - dr
Integrating, we get
11 = ady19 1,90,
22 2 2

for some constant . To compute a we use (4.9) and (4.10) with ¢ = 0 (i.e. taking
Im 7 go to infinity), noting that the factors of q'/® on both sides cancel out. This
gives &« = —m. The theorem is proven. O

4.3 Now we are in business. Multiplying the equalities in (4.9) and comparing it
with the equality (4.10), we obtain using the Jacobi theorem

—27Qq* [[(1—¢™)?= 933 = —mdoody1 1, =
m=1
—2rQ¢r [J—q™ 2 [+ ) [ (1 +a™)>
m=1 m=1 m=1

This gives

Q- H Loa

(1+gm)(1+ g™ 7)1 —gmF3)

Here again we fix the sign in front of @) by looking at the value of both sides at
q = 0. Replaing ¢ with ¢* and using the obvious equalities

=3
-
Jr
=
_|_
NI\J
S
i:w
=
_l’_

Q=JJa-m=J]a-q™. (4.13)

oo
=—2r¢"* (1 =q™? (4.14)
m=1
Here comes our first encounter with one of the most notorious functions in mathemat-
ics:

Definition. The Dedekind n-function is the holomorphic function on the upper-half
plane defined by

n(r)=q [[A—q™). q=e". (4.15)
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Thus Q(q) = ¢~ */*2n(r) and we can rewrite (4.5) in the form
Doo = n(T)f(7)?,
790% = n(r)fi(r)® (4.16)
910 = n(r)falr)? |
19/%% = _27”7(7—)37
where
f(r)=q V/* H(1+q2m{1); (4.17)
fL(r) = g 1/48 H T (4.18)
1 (4.19)

fa(r) = V2¢' 2 TT (1 +4™).

m=1

They are called the Weber functions.

4.4 Let us give some applications.

We have )
;2 T
1900(2; 7_) — Z ew(2rz+z'r‘ T) _ ZqTUr,
reZ re’
where ¢ = e*™7, v = e®™*. Tt follows from (4.4) and (4.9) that
> m—1 2m—1
Yoo(z;7) = Hl—q 1—|—q = 0)(14+q¢ 2z o h).
m=1
Comparing the two expressions we get the identity
2 i 2m+41 2m41
dgro"=[[=¢™0+q¢ = v)(1+q = v (4.20)
TEL m=1
Here are some special cases corresponding to v =1 and v = —1
r2 = 2m+41
dgT =J]Ja-gM+q = ) (4.21)
reL m=1
L > 2m—1 o
(=17 =J[a-¢™0-q = )% (4.22)
rEL m=1

To get more of this beautiful stuff, let us consider the function 19%%(0, 37). By (3.14),

we have :
7911(0,37') :eﬂ'i/6 7’”/1219(74,_1;37.)00 _

6 2 2
(1 - eﬂ(6m+4>f)(1 . em‘(amw)f) _

::18

71'7,/6 TF’LT/12 | | _ Grrzm'r

m:l
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ewi/ﬁe‘rri‘r/12 H (1 _ q”rn)

m=1

On the other hand, we have

_ in[(m+§)23r+2(m+3) 5] _
(0,37) e

meZ

9

11
62

S
eﬂ'i/667ri7'/12 Z (71)m67r(3m2+m)‘r — eﬂ'i/GgTriT/lQ Z (71)mqm(3m+l)/2.
m=0 meZ

This gives the Euler identity

e}

Z(*I)Tqﬂgrﬂ)/z _ H (1—q™). (4.23)

rEL m=1

In particular, we get the following Fourier expansion for the Dedekind’s function n(7):

n(r) = g% > (=1) ¢ @2,

rEZL

The positive integers of the form n + (k — 2)@,n = 1,2,... are called k-gonal
numbers. The number of beads arranged in the form of a regular k-polygon is expressed
by k-gonal numbers. In the Euler identity we are dealing with pentagonal numbers.
They correspond to the powers of ¢ when r is negative.

The Euler identity (4.23) is one of the series of MacDonald’s identities associated
to a simple Lie algebra:

e o]
darkg = [ —g™"
r€Z m=0

The Euler identity is the special case corresponding to the algebra sl(2).

Exercises

4.1 Let p(n) denote the number of partitions of a positive integer n as a sum of positive
integers. Using the Euler identity prove that

p(n) —p(n—1) =p(n —2) +p(n —5)+ ...+ (=1)"p(n — %k(?ﬂf - 1)+
(-1 Fp(n — %k(3k +1)+...=0.

Using this identity compute the values of p(n) for n < 20.
4.2 Prove the Gauss identity:

2 E[Ou —z?"t?) (

4.3 Prove the Jacobi identity:

oo oo

-1
(1 _ :r2n+1)> _ Z .’L‘T(T+1)/2.

n=0 r=0

[e')

ﬁ(l —a")? = (=17 (@2r+ 12"V

n=1 r=0
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4.4 Using (4.2) prove the following identity about Gaussian sums:

- efrrpq:7 e*ﬁrqp.
\/ar:O \/ﬁr:O

Here p,q are two coprime natural numbers.[Hint: Consider the assymptotic of the
function f(z) = ©(0;iz + 2) when z goes to zero ]

4.5 Prove the Jacobi triple product identity:

> 1 1 r2
[Ja -0+ ia+q 2 =3 g7
n=1 r€EZL

4.6 Prove a doubling identity for theta constants:
By (27)% = oo (1)9 (7).

(see other doubling identities in Exercise 10.10).
4.7 Prove the following formulas expressing the Weber functions in terms of the 7-
function:

T+1

H(r) = e 72/ 5 (), fu(r) =n(5)n(r), Ja(7) = V2n(2r)n(7).

NS

4.8 Prove the following identities connecting the Weber functions:

F(T)1(7)f2(7) = f1(27)f2(7) = V2.



Lecture 5

Transformations of Theta
Functions

5.1 Let us see now that the theta constants ¥,, and their derivatives ¥, satisfy
the functional equation similar to (4.2). This will imply that certain powers of theta

constants are modular forms. For brevity we denote the lattice Z + 7Z by A-.

Theorem 5.1. Let 9(2;7) € Th(k; Ar)ay and M = () € SL(2,Z). Then

—im( szé> z  ar+p . .
e Ty (77+6’77+6)€Th(k’AT)ab’
where . 465
(a',b") = (a + b — %,/Ba—i—&)—i— %)

Proof. First observe that for any f(z) € Th({ex};A) and ¢t € C*,
z
6(2) = F(2) € Thi{el };10),

where

In fact, for any X' = t\ € tA,

bz +08) = FCE2) = 1 1) = ea D11 ) = e ()o0).
We have
Th(k; Ar)as = Th({ex}; Z + 7Z),
where

em+n7—(z) _ 627ri(ma7nb)e*ﬂik(anJrnzr) )
a
For any M = ~ 5 S SL(27 Z) we have
(YT +0Z+ (ar + B)Z = Z + TZ.

43

(5.1)
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Thus for any ¥ € Th(k; A-)as, we have
I(z(y7 + 8)) € Th(er; Z + 7'2),

where
, ar+p

T YT +46’

Emtnr (2) = €minrt)(vr+8) (2(VT +9)).

We have, using (5.1),

. . 2
e/1 (Z) _ 677+5(Z(’}/T + 5)) — e27rz(a§—b’y)e—ﬂzk(Q’yz('yT+§)+'y T) _

efrikv(('yfﬁ»é)(z«kl)z - ('y‘r+5)z2)eTrik'yéeQTri(atsfb’y)

This shows that
ROy (£ ()Y 2+ 7'Z) = Th({el (2)}; Z + 7'T),

where

e/l/(z) _ eﬂ'i[k"/(5+2(a5*b’7)] . (52)

Now comes a miracle! Let us compute €/, (z). We have

T T 247')2 =22
efr// (Z) —e ky(vT+8)((z+7") )67'('yr+6)(z(77+ 6)) =

TN 2y +6) = (53)

eﬁik[’y('y‘r«k&)(227"+T'2)7(2az(77+6)+o¢27) eQﬂ"L(*bokaa)] _ eiﬂ'ikGe%‘ri(fbcx«kBa)
- )

where
G =~(y1 + 6)(227" + %) — 20z(y7 + 6) — o1 =

y(yr + 5)(2z(?;: _T_ ?) + (?;: i ?)2) —202(yT 4 8) — o1 =
2er(ar+9)+ MDY pazr 18) - atr =
ylar + B)* — &*1(y1 +6) .

—2z +

YT+ 4§
Here we used that ad — By = 1. Now

y(at 4 B)? = &®1(y7 +8) = 2yafBT + % — da’T =

—a(ad — By)T +aB(y7 +6) — B(ad — By) = —(ar + B) + aB(y7 +9).
This allows us to rewrite GG in the form

ar+

= 92z —
¢ i T +§

+o¢,6’=—2z—7'/+o¢ﬁ.

Putting G back in the expression (5.3) we get
6;-// (Z) — e—ﬂ'ik(22+‘r’)eﬂ'i[kaﬁ—Q(ﬂa—ab)] )
Together with (5.2) this shows that

Th({e) (2)}, Ar) = Th(k, Ars)arsr,
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where i

(@, ¥) = Ga— b+ —patap— K0 (5.4)
Summarizing we obtain that, for any 9J(z, 7') € Th(k; Ar)as,

YOI (7 4 §)237) € Thik, Avt)ary. (5.5)

Now let us replace (3‘ g) with its inverse (:g jf). We rewrite (5.13) and (5.14) as

e~ TR g (k4 a)z:7) € Thik, A )y (5.6)
where v kS5
(a',b) = (aa+yb— =I%, Ba+db+ =2-).
It remains to replace T with D‘:i? in (5.15) to obtain the assertion of the theorem.

O

Substituting z = 0 we get
Corollary 5.1. Let ¥1(z,7),..., ¥x(2;7) be a basis of the space Th(k; Ar)a» and
(2, 7),...,9%(2;7) be a basis of Th(k; Ar)ary, where (a',b') are defined in the Theo-
rem. Then, for any M = ( ) € SL(2,Z) there exists a matriz A = (cij) € GL(k,C)
depending on M and T only such that

A ar+ﬁ
191( ’YT+6 ZCZ]

5.2 Let us take k = 1 and (a,b) = (¢/2,1/2),e,n7 = 0,1. Applying the previous
Theorem, we get

a7 +1) = Oy o3 (57)
for some C' depending only on 7 and (a,b). In particular,

ﬁéé(z;TJrl) Cﬁé%( 7)=—=CV11(2;7).

11
22

Taking derivative in z at z = 0 we obtain

9(0; 7 + 1)%% = —Cﬂ%%(o; 7).
Recall now from (4.14) that
. r_ i - _ . m\3
911(0;7) = —2mq¥ H1(1 g™
2ma(T+1) _ _a 27Ta

Since the substitution 7 — 7 4+ 1 changes ¢“ into e

C = eTri/4.

q%e we obtain

Similarly, using the formulas (4.16) and (4.17) which give the infinite product expan-
sions for other theta constants, we find

Joo(z; 7+ 1) = 190% (z;7), (5.7)
D1 (27 +1) = doo(2;7), (5.8)
D1o(z7+1) = —e”/‘*ﬂéo(z; 7). (5.9)
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Now take M = (9 '). We have
e_im2/71900(z/7'; —1/7) = BYoo(z;7)
for some B depending only on 7. Plugging in z = 0 and applying (4.2), we get
B = v/—ir, (5.10)

where the square root takes positive values on 7 € iR.
In particular,

900(0; —1/7) = V—i1900(0; 7). (5.11)
Applying the formula (3.14) we have
iz z 1 .- z 1 1
—imz /7'19 Z._ 1y pimz /7‘19 I 4o
e 0%(7" 7_) e 00(T+ ; 7_)
AL S B S LA e %; ) = (5.12)
T

Beiw(‘r/4+z)1900(z + %; T) = Bﬁéo(z; 7).

In particular,

9(0; —1/7')0% = /—iT9(0; 7')%0. (5.13)
Replacing here 7 with —1/7, we obtain
9(0; —1/7)%0 = ViT9(0; 7)0%. (5.14)
This shows that L
e Tz )7 —1/7’)%0 =Vird(z; 7')0%. (5.15)
Finally, using (5.13), (5.14) and (5.15) and applying the Jacobi theorem, we obtain
9(0; —1/7)’%% = —T\/—Trﬁ%%(o; 7). (5.16)
We know from Theorem 5.1 that
e Y2/ —1/7) yy = BO(z7)y_y = —B9(z7)y,

for some constant B’ depending only on 7. Differentiating in 2z and setting z = 0 we
obtain

1 . / _ ’ . /
;19(0,—1/7‘)%% =B 19%%(0,7‘)
Comparing with (5.16), we get B’ = B and hence
0(0;=1/7)1 1 = 7v=itd(0; —1/7) 1. (5.17)

5.3 We shall interpret the previous computations later by saying that powers of
theta constants are modular forms with respect to certain sungroups of the modular
group. Right now we only observe the following

Corollary 5.2. Let f(7) =9¥11. Then, for any M = (: ?) € SL(2,Z), we have

B
5

[
(S

+

aT
YT

£ ) = C(M)(yr +6)2 f(7),

_|_

where ((M)® = 1.



47

Proof. We shall prove in the next lecture that it is enough to check this for generators
of the group SL(2,Z). Also we shall show that the group SL(2,Z) is generated by the
matrices M1 = (§1), M2 = (Y 3'), —I. We have from (4.14) and (4.15)

Fr+10%=f(r)° f(=1/7)* =72 f (7).

This proves the assertion. O

Corollary 5.3. Let n(7) be the Dedekind n-function. Then

satisfies
at + Baa 12 24
(LD = (o + ) 2n(r)™.
Proof. Use (4.10)
19'%% = 727r7](7)3

O

Corollary 5.4. Let M = (: ’g) € SL(2,Z). Assume that the products af,vd are

even. Then

z  ar+f
NT+6 YT+ 6

O )=C(yT+ 5)%67”'722/(77'*'5)@(2; T), (5.18)

where ¢ = 1 and the branch of the square root is chosen to have non-negative real
part.

Proof. Recall that ©(z;7) = ¥00(2;7), so Theorem 5.1 gives immediately that

z ar+p

2
— (M miyz®/(y7+9) .
D) — e o)

o(

for some constant ¢(M, ) depending only on M and 7. Take M = (_01 é) Then
formula (5.13) checks the assertion in this case. Take M = (} £2). Then the assertion
follows from (5.10). Now we argue by induction on |y| + |8]. If |§] > |v|, using that
O(z,7+2) = 0(z; 7), we substitute 7 =2 in (5.16) to obtain that the assertion is true
for M’ = (3 {}igj) Since we can decrease |§ & 2| in this way, the assertion will
follow by induction. Note that we used that |§ £ 27| is not equal to |d] or |y| because
(v,6) =1 and 76 is even. Now, if |§] < ||, we use the substitution 7 — —1/7. Using
(5.13) we see that the asssertion for M follows from the assertion fo M’ = (? :f{)
This reduces again to the case |§] > |v]|. O
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Exercises

6—1

5.1 Show that the constant ((M) in (5.16) is equal to i 2 (7};) when v is even and 0 is
odd. If vis odd and ¢ is even, it is equal to 67"”/4(%). Here () is the Jacobi-Legendre
symbol, where we also set (2) = 1.

5.2 Extend the transformation law for theta functons by considering transformations

defined by matrices (: ?) with determinant n not necessary equal to 1:

.M 22
e,mwlyﬁ 9( nz ;on'—&—ﬁ
YT +6 AT+ 6

) € Th(nk, Ar)arpr,

where 9(z;7) € Th(k, Ar)as and

k kd
(a/,b") = (a + b — %a,ﬁa+5b+ Tﬁ)

5.3 Using the previous exercise show that
(i) Aﬂ%% (z;7/2) = 190%(2; 7)19%% (2;7) for some constant A;
(ii) A'ﬁéo(z; 7/2) = Yoo (z; 7)¥10(2;7) for some constant A’

(iii) (Gauss’ transformation formulas

(z;7/2) = 219%0(2;7')19%%(2;7'),

11
22
190%(0;7/2)19%0(2;7/2) = 27900(2;7')19%0(@7'),

[Hint: Apply (3.14) to get A = A’, then differentiate (i) and use the Jacobi

theorem)].

5.4 (Landen’s transformation formulas) Using Exercise 5.2 show

190%(0; 27)011(22;27) = 19%0(2; )9 %(z; T),

1 1
2 2

1
2

9o (0; 27’)190%(22; 27) = Yo0(z; 7)Vg1 (2;T),

1 1
2 2

5.5 Let n be an odd integer.

(i) Show that, for any integer v, 190% (%;7) depends only on the residue of ¥ modulo
n.

(ii) Show that
n—1 v n—1 2
11190%(%”') = ljlﬁo%(gﬂ')-
(iii) Using Exercises 5.3 and 5.4 show that

Joo(z; 27’)19%0(2; 27’)190% (22;27)  doo(z;7)
Y00/(0; 27')19%0(0;27')190%(0;27') - 900 (0; 7)




(iv) Show that the expression

[0 P00 (557910 (%5 )01 (55 7)

2

D00(05 1) 10 (05 7)1 (05 7)1

does not change when 7 is replaced with 27.

(v) Show that
T doo (%700 o250 (237)

Y00(0; T)”*lﬁ%O(O; T)"*WO% (0; 7)1

n—1
(st (T2 0ol 000y (57)
F00(0; 7)1 1,4 (05 7)1y (05 7)1

(vi) Prove the formula

n—1
Hu:21 ﬁOO(%§T)79%0(%§T)790%(%§7) in

Bo0(0; 7')"*119%0(0; 7')"*1190% (0;7)n=1

5.6 Let A = Zwi + Zws. Set t(z;wi,w2) = ﬂ%%(i; 22).
(i) Show that
t(z +UJ1;UJ1,0J2) = _t(Z;UJhUJQ),
77”.22«#“12
t(z + woywi,w2) = —e “1 t(z;wi,w2).

(ii) Let w},w) be another basis of A. Show that
t(z;wi,wh) = Ce“22+bzt(2;w1,w2)

for some constants C, a, b.
(iii) By taking the logarithmic derivative of both sides in (ii) show that

1" 11

a=_° (O;wi,w2) |t (0;wi,ws) (0 wr,we)
T 6t (Oywi,wa) 605w, wh)’ T 2t/(0;wi,wa) ]
and , .,
C = 3 (0;“-}1"‘}2);
t'(0; wr, w2)
(iv) using (iii) show that
1O 11O
T o0, 00 T 60, 0w
22 22
and b = 0;
(v) using the Heat equation (see Exercise 3.8) show that
"
1O dlogn(r)
9, (0) dr "’
22
where 7 = 2.

wi

49
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5.7 Define the Weierstrass o-function by

—22(07' | J6wlo’ )V ;
o(z;w1,w2) = wie 22 22—

Show that
(i) o(z;w1,w2) does not depend on the basis wi, w2 of the lattice A;
(ii) o(=2) = —o(2);
(iii)
o(z+wi) = —em(z"'“’lz)a(z), o(z+w2) = —6"2(Z+“22)0(z),
where n1 = 0’ (w12)/0(w12); 12 = o' (w22)/0(w22).

(iv) (Legendre- Weierstrass relation)
NMwz — Now1 = 2.

[Hint: integrate the function o along the fundamental parallelogram using (iii)];

V)
_ mi dlogn(7) _ mwzdlogn(t) m
w? dr ”= w? dr 2wy’

m=

where 7 = w2 /wi.

5.8 Using formulas from Lecture 4 prove the following infinite product expansion of
o(z;w1,w2):

2 o m, —2 m, 2
Wi m= 1 (I—¢"v7)(1 —q™v7)
o(zw1,w2) = o (v=v") H (1—qm)2 )

m=1

271§ 02 i
where g = "™ w1, p = ™%/t



Lecture 6

Modular Forms

6.1 We have seen already in Lecture 5 (5.2) and Corollary 5.3 that the functions
O(T)** = 900 (0; 7)** (resp. n(7)?*) satisfy the functional equation

flr+2)=f(r), f(=1/7)=7"f(r),

(resp.
fr+1)=f(r), f(=1/7)=72f(7)).

In fact, they satisfy a more general equation

at + 3 2% a
= r 1
EED —Greartim, (2 §)er (61)
where I is the subgroup of SL(2, Z) generated by the matrices = (9 '), £ ({ %) (resp.
(370, (51))-
To see this we first rewrite (6.1) in the form
g+ mig(r)" = f(7), (6:2)
where d y
. _dar _ L
1) = - TR — (o) (63)
By the chain rule
Jgg (1) = Jo(g" 7)jg' (7). (6.4)
Thus replacing 7 with g’ - 7 in (6.2), we get
(f(g-(g"-))ig (g - T)ig (1) = f(9g" - Mgy (1) = f (7).
This shows that
F)lrg = fg-m)ig(r)* (6.5)

satisfies
FMklgg) = (fF(D)kg)leg’, Vg,9 €T

In other words (6.5) defines a linear representation

p:T — GL(O(H)™"

o1
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of I' in the space of holomorphic functions on H defined by
p(9)(6(2)) = ¢lrg™". (6.6)

1

Note that we switched here to g7~ in order to get

p(gg’) = p(g) © p(g").
It follows from the above that to check (6.1) for some subgroup I it is enough to
verify it only for generators of I'. Now we use the following:

Lemma 6.1. The group G = PSL(2,Z) = SL(2,Z)/{+£} is generated by the matrices

0 -1 1 1
=) =6,
These matrices satisfy the relations
S* =1, (ST)’=1.

Proof. We know that the modular figure D (more exactly its subset D’) is a fundamen-
tal domain for the action of G in the upper half-plane H by Moebius transformations.
Take some interior point zo € D and any g € G. Let G’ be the subgroup of G gener-
ated by S and T. If we find an element g’ € G such that g’g - 2o belongs to D, then
g'g =1 and hence g € G'. Let us do it. First find ¢’ € G’ such that Im (¢'- (g- 20)) is
maximal possible. We have, for any g = <: g),
_ Im=z Im z
T +6l = [zl + 10
where C is a positive constant independent of g. So the set {Im ¢’ -2z : ¢’ € G’} is
bounded and discrete and hence we can find a maximal element. Take z = ¢ - 2.
Let ¢’ realize this maximum. Applying transformations 7" we may assume that
|Re T"g'g - 20| < &. If [T"g'g - 20| > 1 we are done since 2’ = T"g'g -z € D. If
not, we apply S. Then

Img-z

< Clm z,

-1 /
Im S -2 =Im —:Imz—<1mz',
2 |Z"2
contradicting the choice of ¢g’. This proves the first assertion. The second one is
checked by direct matrix multiplication. O

This explains why (6.1) is satisfied for the functions 6%, and n(7)*.

Definition. Let I" be a subgroup of finite index of SL(2,Z). A holomorphic
(resp. meromorphic) function f : H — C satisfying

art+ 2k —k a B
FETED = 4 071 0) =3 ), va= (2 5) e

is called a weak modular form (resp. a weak meromorphic modular form) of weight k
with respect to I'.

We shall later add one more condition to get rid of the adjective ”weak”.

Remark 6.1. . Some authors prefer to call 2k the weight of a weak modular form
admitting k to be equal 1/2. Since j,; has a meaning for any group I' acting discretely
on a complex manifold M, our definition can be easily extended to a more general
situation leading to the notion of an automorphic form of weight k.



53

6.2 Suppose we have n + 1 linearly independent functions fo,. .., f satisfying (6.1)
(with the same number k). Then we can consider the map

fiH—=CP", 17— (fo(r),..., fn(7). (6.7)
When we replace 7 with :Zi? , the coordinates of the image will all multiply by the

same number, and hence define the same point in the projective space. This shows
that the map f factors through the map

F:H/SL(2,Z) — CP".

Now recall that the points of #/SL(2,Z) are in a natural bijective correspondence with
the isomorphism classes of elliptic curves. This allows us (under certain conditions) to
view the set of elliptic curves as a subset of a projective space and study it by means
of algebraic geometry. Other problems on elliptic curves lead us to consider the sets of
elliptic curves with additional structure. These sets are parametrized by the quotient
H /T where I' is a subgroup of SL(2,Z) of finite index. To embed these quotients we
need to consider functions satisfying property (6.1) but only restriced to matrices from
r.

Many examples of such functions are obtained from powers of theta constants.

We will need one more property to define a modular form. It is related to the
behaviour of f(z) when Im z goes to infinity. Because of this property the image of
the map (6.7) is an algebraic variety.

Let I" be a subgroup of SL(2,Z) of finite index. We can extend the Moebius action
of I' on H to the set
H* =HUQU {o0} = HUP(Q)
by requiring that the subset P! (Q) is preserved under this action and the group I' acts
naturally on it with respect to its natural linear action on QZ:

(: ?) “(p,q) = (ap + Bq,vp + 6q).

In particular, if we identify rational numbers 2 with points (z : 1) € P'(Q) and the
infinity oo with the point (1,0) we have

aztB )
(a 5).35: ~ete if yz +6#0: (6.8)
v 6 o) if vz 40 =0.
a p J
(v 5) T
o f
<a B)'“’: Ll (6.9)
v 9 oo ify=0.

Note that SL(2,Z) acts transitively on the set QU{oco}. In fact for any rational number
z = 2 with (p,q) =1 we can find a pair of integers u, v such that up — vg = 1 so that

(u 7v)~£:oo.
-q P q

Thus any subgroup of finite index I' of SL(2,Z) has only finitely many orbits on
Q U {co}. Each such orbit is called a cusp of I'. For each cusp ¢ = I' -z of T'
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represented by a rational number x or oo the stabilizer group I'; is conjugate to a
subgroup of SL(2,Z)«. In fact, if g - = oo for some g € SL(2,Z), then

g-l"gfg*l-oo:oo.

Since
at + 0

YT+ 6

oo =004 7=0,

we have
1 1 8
g-T's-g C{z 0 1 ,B€Z}

Let h be the smallest positive § occured in this way. Then it is immediately seen that
g-Iy- g_1 is generated by the matrices

h_ (1 h (-1 0
T7i<0 1), _L(O _1).

The number A is also equal to the index of the subgroup g - Tz - ¢ ' in SL(2,Z)00 =
(T, —1I). In particular, all x from the same cusp of I' define the same number h. We
shall call it the indez of the cusp. Let f(7) be a holomorphic function satisfying (6.1).
For each € QU {co} consider the function ¢(7) = f(7)|rg™", where g -z = oo for
some g € SL(2,Z). We have

(M) kgleg™ = F(T)|kg '9Tag ' = fF(T)kT2g™ " = f(T)g™ " = B(7).

This implies that ¢(7) satisfies (6.1) with respect to the group gI'yg™*. Since the
latter contains the transformation 7" we have

H(T" - 7) = ¢(7 + h) = (7).

Thus we can consider the Laurent expansion of ¢(7)

¢(r)=> g, q=eTTN (6.10)

TEZL

This converges for all ¢ # 0. We say that f(7) is holomorphic at a cusp (resp. mero-
morphic) if a, = 0 for r < 0 (resp. a, = 0 for r < —N for some positive N). It is
easy to see that this definition is independent of the choice of a representative x of the
cusp. Now we are ready to give our main definition:

Definition. A holomorphic (resp. meromorphic) function f(7) on the the upper
half-plane # is called a modular form (resp. meromorphic modular form) of weight
k with respect to a subgroup I' of SL(2,Z) of finite index if it is holomorphic (resp.
meromorphic) at each cusp and satisfies

flg-7)=jg(1)*f(r), VgeT.

A modular form is called a cusp form or a parabolic form if its Fourier expansion at
each cusp has no constant term. A meromorphic modular form of weight 0 is called a
modular function with respect to I'.
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6.3 Let us give some examples.
Ezxample 6.1. Let
A(r) = n(r)*".

It is called the discriminant function. We know that A(r) satisfies (6.1) with kK = 6
with respect to the group I' = SL(2,Z). By (4.9)

Since
Am=qJ[Q-a™m*
m=1
we see that the Fourier expansion of A(7) contains only positive powers of gq. This
shows that A(7) is a cusp form of weight 6.

Ezample 6.2. The function Yoo (7) has the Fourier expansion qm2/2. It is convergent
at ¢ = 0. So 9¥gF is a modular form of weight k. It is not a cusp form.

Let us give more examples of modular forms. This time we use the groups other
than SL(2,Z). For each N let us introduce the principal congruence subgroup of
SL(2,Z) of level N

T'(N) ={M = (3‘ ?) €SL(2,Z): M =1 mod N}.
Notice that the map

SL(2,Z) — SL(2,Z/NZ), (fy‘ ?)a(? ?)

is a homomorphism of groups. Being the kernel of this homomorphism, I'(N) is a
normal subgroup of I'(1) = SL(2,Z). I think it is time to name the group I'(1). It is
called the full modular group.

We have

Lemma 6.2. The group I'(2) is generated by the matrices

2 1 2 2q 1 0
(5D, s (1 0),

Proof. Let H be the subgroup of I'(1) generated by T2, —I and ST?S~'. We know
that I'(1) is generated by 7" and S, it is easy to verify that H is a normal subgroup
of I'(1) contained in I'(2). Since I'(1)/T'(2) = SL(2,Z/2) it suffices to show that the
natural homomorphism ¢ : I'(1)/H — SL(2,Z/2) is injective. Let g € I'(1) \ H be an
element of the kernel of ¢. It can be written as a word in S and T'. Since

T)=d(T™), ¢(T*)=1, §*°=1, S'=5,

we can replace g with another element from the same coset modulo H to assume that
g is a word in S and T where no S? or T? appears. Since we know that (ST)* =
STSTST = 1, we have the following possible expressions for g:

S, ST, STS, STST, STSTS, T.
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Here we used that ¢(T'S) = ¢(ST) ™! since ¢(T?S?) = 1 and similarly
$(TST) = ¢(STS) ™", $(T'STS) = $(STST) ™",

H(TSTST) = $(STSTS) .

Also ¢(ST) = ¢(STST)~". Thus it is enough to verify that the elements S, ST, ST'S,
T are not in the kernel, i.e. do not belong to I'(2). This is verified directly. O

Ezample 6.3. Consider the theta constants J¢ <. Applying the transformation 7/ =
T + 1 twice and using formulas (5.1) , we obtain

’1900(7'+ 2) = 190%(7' + 1) = 1900(7’),

Vo1 (T +2) =Doo(r+1) = 190%(7'),

1
3

910(r+2) = ™M1 (r +1) = ™20, (7).
Next, using formulas (5.11)-(5.14), we have

1 ) __ _3mi/4 1

Poo(ST*S7) = dool (3" ) 1) = Doy 5) = (%+2)”21900(%1+2) =

1

smifac_ 1 | oy1/29 L
e T+) oo ( 7_)

T 1 .
¢ /2(7; + 2)V2(1) Y2900 (7) = —i(27 — 1)/ 2Y00(7).

Similarly we obtain

903 (STS7) = /4 (= L 1+ 29)!/29, (~ 1 +2) =

1
2

. i 1 1
e (=~ 4 2)120 0 (= 2) = (27 = 1) (),

910(ST?ST) = —i(2r — 1)1/2190%@).
Applying Lemma 6.2, this shows that

7900(7')47 79%0(7')47 Jo (7')4 (6.11)
are weak modular forms with respect to the group I'(2). This group has three cusps
represented by 0,1, and co. Since I's, is generated by the matrices +£72, we see that
oo is the cusp of I'(2) of index 2. Since the subgroup I'(2) is normal in I'(1) all cusps
have the same index. Also it is enough to check the condition of holomorphicity only
at one cusp, say the co. By formula (4.6) 945(7)* has infinite product in q% =i
with only non-negative powers of ¢. Thus the functions (6.11)) are modular forms of
weight 1 with respect to I'(2). Since

T m m
Iio(r) =22 [T (1 -a™) (1 +¢™)",

m=1

we see that 194;0 is a cusp form.
2
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6.4 We know that any elliptic curve is isomorphic to a Hesse cubic curve. Let us
give another cubic equation for an elliptic curve, called a Weierstrass equation. Its
coefficients will give us new examples of modular forms. Recall that dim Th(k, A;)a =
k. Let use <, > to denote the linear span. We have

Th(1,A-)11 =< P11 (z;7) >=< T >;

1
2

[N

11
22

Th(2,A,) =< T?, X' >,
Th(3,A.)11 =< T TX' )Y >,

for some functions X’ € Th(2,A-),Y’ € Th(3,A;)
tions

Nf=
N[=

11 Now the following seven func-
T6, ,114)(/7 T2X127 Xl37 TSY/7 TX,Y,, Y/2
all belong to the space Th(6, A;). They must be linearly dependent and we have

aT® +bT*X"? + T X"? +dX"® 4+ eT?Y' + fTX'Y' + gY'"* = 0. (6.12)
Assume g # 0,d # 0. It is easy to find
X =aX+BT? Y =~Y+6XT+wl?
which reduces this expression to the form
YT — X® — AXT* — BT® =0, (6.13)
for some scalars A, B. Let
() = X/T?,  pi(2) =Y/T".
Dividing (6.13) by T° we obtain a relation
p1(2)* = p(2)* + Ap(2) + B. 6.14)

(
Since both X and T? belong to the same space Th(2, 7) the functions p(z), p1(z) have
periods A € Z + 7Z and meromorphic on C. As we shall see a little later, p1(z) = %.
Consider the map

E.=C/A - P z— (T(2)*,T(2)X(2),Y(2)).

Since T'(2)*,T(2)X(z),Y (z) all belong to the same space Th(3,AT)%,% this map is
well-defined and holomorphic. It differs from the map from Example 3.2 only by a
composition with a translation on F, and a linear change of the projective coordinates
coordinates. This is because, for any f € Th(k; A) we have

b+ ar

erilatTr2(=ra)l g, 4 ) € Th(k; A)as

(see Lecture 3). So it is an isomorphism onto its image. The relation (6.13) tells us
that the image is the plane projective curve of degree 3 given by the equation

y’t —a® — Azt® — Bt® =0, (6.15)

Now it is clear why we assumed that the coefficients d, g in (6.12) are not equal to
zero. If g = 0, we obtain an equation f(z,y,t) = 0 for the image of F, in which y
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enters only in the first degree. Thus we can express y in terms of x,¢ and obtain that
E, is isomorphic to P*(C). If d = 0 we obtain that f could be chosen of degree 2.
Again this is impossible. Note that we also have in (6.13)

4A% +2TB*. #0 (6.16)

This is the condition that the polynomial 2 + Az? + B does not have a multiple root.
If it has, (6.13) does not define a Riemann surface. A cubic equation of the form (6.15)
with the condition (6.16) is called a Weierstrass cubic equation.

We know from Lecture 3 that T = 19%%(2;7’) has simple zeroes at the points

z =X € A;. Since X does not vanish at these points (it is a linear combinations of T2
and Yo0(2;7)?), p(2) has poles of order 2 at z € A. Differentiating (6.14), we obtain

201(2)p1(2)" = (Bp(2)” + A)p(2)".

Let p1(z1) = 0. If 3p(z1)*> + A = 0, the polynomial z® + Az + B is reducible since
©(21) must be its double root. So, pi(z) has common roots with p(z)’. Now both
functions have a pole of order 3 at points from A. This shows that the function g1 /¢’
has no poles and zeroes, hence it is constant. Let cp1 = p. Replacing o1 by 31, @
by ¢?p, A by ¢*A, B by ¢®B we may assume that

o1(2) = (2. (6.17)
Let

p(z) = a0z 24 an2? 4+ ...

be the Laurent expansion of p(z) at 0. Note that o(z) must be an even function since
all functions in Th(2,A,) are even. We have

01(2) = p(2) = —2a_22"> 4+ 29z +....

Plugging in the equation (6.11) we obtain 4a%, = a®, hence a_s = 4. Finally, if we
replace p(z) with p(z)/4 we can assume that

p(2) =22+ 22”4 caz + ..., (6.18)

and

9(2)"* = 4p(2)" - g20(2) — gs. (6.19)
Here we use the classical notation for the coefficients of the Weierstrass equation.
Differentiating (6.18) we find

o(z) = —227° + 20z + 4caz® + ..., (6.20)
Plugging this in the Weierstrass equation (6.19), we easily get
0(2)"? — 4p(2)° = —20c227 % — 28cs + 2°(...).
Thus the function p(2)'? — 4p(2)® + 20cap(z) + 28c4 is holomorphic and periodic. It
must be a constant. Since it vanishes at 0, it is identical zero. Comparing this with

the Weierstrass equation, we find that

g2 = 20027 gs = 2804. (6.21)
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After all of these normalizations, the elliptic function p(z) with respect to A,
is uniquely determined by the conditions (6.18) and (6.19). It is called called the
Weierstrass function with respect to the lattice A;.

One can find explicitly the function p(z) as follows. I claim that

p)=6() = 5+ 3 (ﬁ - (6.22)

AeA\{0}

First of all the series (6.22) is absolutely convergent on any compact subset of C not
containing 0. We shall skip the proof of this fact (see for example [Cartan])[?]. This
implies that ¢(z) is a meromorphic function with pole of order 2 at 0. Its derivative
is a meromorphic function given by the series

$(z) =2 ﬁ

It is obviously periodic. This implies that ¢(z) is periodic too.

Since ¢(z) is an even function, ¢(z)’ is odd. But then it must vanish at all A € A.
In fact

¢'(=A/2) = ¢ (A\/2) = =¢/(=A/2+ X) = =¢/(A/2).

The same argument shows that g(z)" vanishes at the same points. It follows from the
Cauchy residue formula that the number of zeroes minus the number of poles of a
meromorphic double periodic function inside of its fundamental parallelogram is equal
to zero (see computations from Lecture 3). This shows that ¢’ and @’ has the same
set of zeroes and poles counting with multiplicities. This implies that ¢'(z) = cp(z)’
for some constant ¢. Now comparing the coefficients at 272 we see that ¢ = 1. So
p(z) = ¢(2)". After integrating we get p(z) = ¢(z)-+constant. Again comparing the
terms at 272 we get ¢(z) = p(z). This proves (6.22).

After differentiating p(z) at 0 we obtain

1 1
Co = 3 E ﬂ, Cq4 = 5 E F
AeA\{0} AeA\{o}

Remark 6.2. Now it is time to explain the reason for the names “elliptic functions”
and “elliptic curves”. We know that the Weierstrass function p(z;7) is a solution of

the differential equation (42)* = 42® — gz — gs. Thus the function z = ¢~ '(z) is
given, up to adding a constant, by the indefinite integral

2= / A= (6.23)
4x3 — gox — g3

This is called an elliptic integral. Of course, the function z = p(z) does not have single-
valued inverse, so one has to justify the previous equality. To do this we consider a
non-empty simply connected region U in the complex plane C which does not contain
the roots e1, ez, e3 of the polynomial 42> — gox — g3. Then we define f : U — C by

> dx
flw) = / T

This is independent of the path from u to co since U is simply connected. Using
analytic continuation we obtain a multivalued holomorphic function defined on C \
{e1, e2,e3}. Using the chain rule one verifies that p(f(u)) = +u. So, f is well-defined
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as a holomorphic map from C\ {e1, e2,e3} to (C/A-)/(z — —z). It can be shown that
it extends to a holomorphic isomorphism from the Weiertrass cubic y? = 4x> — gox — g3
onto (C/A;) \ {0}. This is the inverse of the map given by z — (p(2), p(2)"). As was
first shown by Euler, the elliptic integral (6.23) with special values of g2 and g3 over
a special path in the real part of the complex plane = gives the value of the length of
an arc of an ellipse. This explains the names “elliptic”.

6.5 Next we shall show that, considered as functions of the lattice A = Z + Z7, and
hence as functions of 7, the coefficients g2 and g3 are modular forms of level 4 and 6,
respectively. Set for any positive even integer k:

1
AeA\{0}

Assume || > R > 0 and k > 2. Since

NG // |z + iy| " dzdy =
| | |z+iy|>R

27T o

/ r~ " drde = 27r/r17kdr,
R R

0

,\ez+TZ\{o}

we see that Ej(7) is absolutely convergent on any compact subset of H. Thus Ej(7)
are holomorphic functions on H for k > 2. From (6.21) we infer

g2 = 60E4, g3 = 140F. (6.24)
We have
BETED S S T -
(m,n)#0
(40" > [ma+ny)r+ (mB+nd) ™" = (y7+8) Br(7).
(m,n)#£0

This shows that Fj(7) is a weak modular form with respect to the full modular group
I'(1). We can also compute the Fourier expansion at the cusp co. We have

1
B= ¥ et S (S )
(m +nT)
mezn{o} nezZ\{0} Smez
Since k is even, this can be rewritten in the form

(=23 2D (3 o) =260+ 3 (D )

meN neN meZ neN mezZ

1
S)ZZE, Res>1

meN

where

is the Riemann zeta function. Now we use the well-known formula (see for example
[Cartan], Chapter V, §2, (3.2)):

oo

meot(nz) = Z (z+m)™ "

meZ
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Setting t = €*™** we rewrite the left-hand side as follows:
Ccos Tz e 4 e t+1 >
meot(mz) =7 = im—— ) =i 1-2 t™
(2) sinmz ez — e*mz) t—1 in( Z )

Differentiating k — 1 > 2 times in z, we get

(k—l)!i(z—km 27mkim
meZ m=1

This gives us the needed Fourier expansion of Ej (7). Replace in above z with nr, set
g = e*™" to obtain

Ei(7) +Z 27” imk g (6.25)

nEN m=1

It is obviously convergent at ¢ = 0. So, we obtain that Ej(7) is a modular form of
weight k/2 with respect to the full modular group I'(1). It is called the Eisenstein form
of weight k/2. Recall that k must be even and also k£ > 4. One can rewrite (6.21) in
the form

Ey (1) = 2¢(k)

, (6.26)

where

= Z d" = sum of n*" powers of all positive divisors of m.

dlm

Now we observe that we have 3 modular forms of weight 6 with respect to I'(1).
They are g5 = 603E3, g3 = (140)?EZ, A. There is a linear relation between these 3
forms:

Theorem 6.1.
(2m)A = g5 — 27g3.

Proof. First notice that g5 — 27¢2 is equal to the discriminant of the cubic polynomial
496 - ggm — g3 (this is the reason for naming A the discriminant). Thus the function
g3 — 2793 does not vanish for any 7 € H. Since A is proportional to a power of 191 1

and the latter does not vanish on #H (because ﬂ%%(z 7) has zero of the first order at

0), we see that A also does not vanish on H. Now consider the ratio g5 — 27¢3/A. Tt
has neither zeroes nor poles in H. Let us look at its behaviour at infinity. Let

=Y o3(n)g", Y =) os(n)g"
n=1 n=1

We use the well-known formula (see, for example,[Serre][?]), )

2r—1

(@)r

where B; are the Bernoulli numbers defined by the identity

2r
Bgrﬂ' 5

¢(2r) =

24

> X
1
2 DT By

T

NJ\H

et —1
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In particular, 120¢(4) = (2m)*/12, 280((6) = (27)®/216 and we can write

1 1 Y
= 2n)'= +20X =2n)[— - =].
g2 = (2m) 12+ 0X], g¢3=(2m) [216 3]

This gives
3 2 12 2 3 2
g5 — 2793 = (2m) °[(BX + 7Y)/12 + 100X~ + 20X~ — 42Y"] =

2n)2q+¢*(...).
Now from Example 6.1 we have A(7) = g+¢>(...). This shows that the ratio R = g3 —
27¢3 /A is holomorphic at co too. This implies that R is bounded on the fundamental
domain D of I'(1). Since R is invariant with respect to I'(1) we see that R is bounded
on the whole upper half-plane. By Liouville’s theorem it is constant. Comparing the
coefficients at g, we get the assertion. (|

6.6 Recall that we constructed the modular forms g2 and g3 as the coefficients of
the elliptic function p(z;7) in its Taylor expansion at z = 0. The next theorem gives
a generalization of this construction providing a convenient way to construct modular
forms with respect to a subgroup of finite index I' of SL(2,Z).

Theorem 6.2. Let ®(z;7) be a meromorphic periodic function in z with respect to
the lattice Ay = Z + Z7. Assume that, as a function of T, it satisfies

a( z : at +

YT 46 yT 46

)= (T +0)"®(x7), V (: ?) ercr()

Let gn(T) be the n-th coefficient of the Taylor expansion of ®(z;7) at zo = xT +y for
some z,y € R. Then

aT + mtn
) = (4 (),

for any M € SL(2,7Z) such that (z',y') = (z,y) - M = (z,y) mod Z*.

gn(

Proof. Use the Cauchy formula

ar+p, 1 Pz + 2 2Tt8 4y oTHB)

~yT+6 yT+6
9n( YT + 8 2mi zntl *
T4+ T 74+68) . at
i (I)(Z('v + )+w($T:6/3)+y(v + ); Wi?)dz
2mi Zntl -
1 m _n
omi }{ O(2(y7 +6) + x(ar + B) + y(y7 + 6);7) (v + 8) 2" dz =
1 O(z(yr +6) + 't +y;T) (YT + )™
27 zntl
1 D(z(y7+ )+t +y;7)(9T + 6™
— dz.
271 zntl

here we integrate along a circle of a small radius with center at 0 in a counterclockwise
direction.
After substitution z(yT + §) = 2’, we obtain

ar +

) = (0 g ().

gn(
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Ezample 6.4. We apply the previous theorem to ®(z;7) = p(z) and z = % In this
case

[ =To(2) = {(?Y‘ ?) €T(1): 2]}
Now, replacing z with z/(y7 4 4) in (6.22), we get
z . OZT+B _ 2r —2 1
P(77+5’77+6)_(77+6) [+ Z —m(’yT+5)+n(aT+ﬂ)]'

z
(m,n)#(0,0)
Since Z + Z7 = Z(y7 4+ 8) + Z(at + ), we get finally that

z ar+p

s WJH;) = (y7+6)?p(2; 7).

o(

Thus p(z; T) satisfies the assumption of the Lemma with m = 2. Let M € I'(1). Since

(0,%) - M — (3,0) € Z* if and only if M € I'¢(2) we obtain that the 0-th coefficient
go(7) = p(3) of the Taylor expansion of p(z) at 5 satisfies

1 ar+p

1
— 2 .
o §,7T+5)—(w+6) o(5;7).

2

Similarly, if we replace % with 7 and 3 + % we get that

o D = Grroregin, v(3 4) e,
where _ .
r0(2)={(‘;‘ ?)er(1):2|5}=(71 O)FO(Q) ((1) _0>
p(%+%;j:if):(w+6)2p(g+%;7)-

We skip the verification that p(Z) and p(2) satisfy the regularity condition at the
cusps. Since both T'g(2) and T'%(2) contain I'(2) as its subgroup, we see that

are modular forms of weight 1 with respect to I'(2).

Exercises

6.1 Show that p(z) is a time independent solution of the Kortweg-de Vries partial
differential equation
Ut = Uppes — 120Uz, u = u(z, t).

6.2 Compute the first two coefficients cg, cs in the Laurent expansion of p(z).
6.3 Show that p(z) = —;—:2 log 19%%(2; T)+constant.

6.4 Let E. \ {0} — C? be the map given by z — (p(2), p(2)’). Show that the images
of the non-trivial 2-torsion points of E- are the points («s,0), where a; are the zeroes
of the polynomial 42° — gox — gs.
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6.5 Show that
p(z1)  ¢'(z) 1
det | p(z2) ¢'(22) 1] =0
rp(zs)  ©'(z3) 1
whenever z; + z2 + z3 = 0. Deduce from this an explicit formula for the group law on
the projective cubic curve y*t = 4z — gaat? — gst®.

6.6 (Weierstrass (-function) It is defined by

1 1 1 z
Z(Z;A)Ig-i- Z (Tw—*—;—’—E)

weA\{0}
Let A = Zwy + Zws. Show that
(i) Z'(2) = —p(2);
(ii)) Z(z+wi) = Z(z) + ni,i = 1,2 where n; = Z(w;i/2);
(i) Mmws — Nowr = 2mi;
(iv) Z(Az; A~ A) = A1 Z(2;-A), where X is any nonzero complex number.

6.7 Let ¢(z) be a holomorphic function satisfying

0(2)' /d(2) = Z(2),
(i) Show that ¢(—2) = —¢(2);
(i) B(z +wi) = —em T2 g(2);
(iii) ¢(z) = o(z), where o(z) is the Weierstrass o-function.

6.8 Using the previous exercise show that the Weierstrass o-function o(z) admits an
in finite product expansion of the form

- z £+l(£)2
— 1- ZYeat2(S
o(z) ==z H ( w)e

weA\{0}

which converges absolutely, and uniformly in each disc |z|] < R.

6.9 Let E. be an elliptic curve and y? = 42> — gox — g3 be its Weierstrass equation.
Show that any automorphism of E; is obtained by a linear transformation of the
variables (x,y) which transforms the Weierstrass equation to the form y? = 42® —
c*gax — P g3 for some ¢ # 0. Show that F, is harmonic (resp. anharmonic) if and only
if g3 = 0 (resp. g2 = 0).

6.10 Let k be an even integer and let L C R* be a lattice with a basis (e1y...,ek).
Assume that ||v]|* is even for any v € L. Let D be the determinant of the matrix
(ei-e;) and N be the smallest positive integer such that N||v*||? € 2Z for all v* € R*
satisfying v* - w € Z for all w € L. Define the theta series of the lattice L by

Or(r) = Z #{v e L:||v|]> =2n}e>"".

n=0

(i) Show that 6r(1) =3, ., emimlivl®.

(ii) Show that the functions ©(0,7)* discussed in the beginning of Lecture 6 are
special cases of the function 6y,.
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(iii) Show that 0 (7) is “almost” modular form for the group

To(N) = {(j g) € SL(2,Z) : N},

ie.
ar +

HL(’VT—I—(S

)= G+ o, (3 F) ero),

k
where x(d) = (%) is the quadratic residue symbol.

(iv) Prove that 0z (7) is a modular form for I'g(2) whenever D = 1 and k& = 0 mod
4.

6.11 Let ®(z;7) be a function in z and 7 satisfying the assumptions of Theorem 6.2
(such a function is called a Jacobi form of weight m and index 0 with respect to the
group I'). Show that

(i) p(z;7) is a Jacobi form of weight 2 and index 0 with respect to I'(1);
(ii) o(z;1,7) is a Jacobi form of weight 1 with respect to I'(1).

6.12 Let n be a positive integer greater than 2. Consider the map of a complex torus
E. \ {0} — C" given by the formula

n—1

z— (1, @(Z)v cees @(Z)Tv @(z)lv p(z)go(z)', s p(z)Tp(z),)
if n is odd and

/ n—4

,0(2), 9(2)p(2) .., 9(2) 2 p(2))

3

z—= (1,90(2),...,0(2)

if n is even. Show this map extends uniquely to a holomorphic map f, : E, — P".
Show that f, is an isomorphism onto its image (a normal elliptic curve of degree n).
Find the image for n = 4.

6.13 Let g = 2™ v = 2™,
(i) Show that the function

1 1 1
X=> —5t 2 @R =gy

1 - 1
rez (q/?v2 —q7/2072)2 rEZ,r#£0

coincides with p(z).

(ii) Using (i) show that g(z; 7) considered as a function of 7 has the following Fourier
expansion
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Lecture 7

The Algebra of Modular
Forms

7.1 Let I' be a subgroup of finite index of I'(1). We set
M (T') = {modular forms of weight k with respect to I'},

We also denote by My (I')° the subspace of cuspidal modular forms. It is clear that
My (T) is a vector space over C. Also multiplication of functions defines a bilinear
map

M (T) x My(T) = M4 (T).

This allows us to consider the direct space

M(T) = é My(I) (7.1)

k=—oc0

as a graded commutative algebra over C. Since My (T') N M;(T') = {0} if k # I, we
may view M(T") as a graded subalgebra of O(H).
Notice that

M) = é M,(T)° (7.2)

k=—oc0
is an ideal in M(T).
We shall see later that there are no modular forms of negative weight.

7.2 Our next goal is to prove that the algebra M(T") is finitely generated. In partic-
ular each space My (T") is finite-dimensional.

Let f(z) be a meromorphic function in a neighborhood of a point a € C and let

oo

[ =3 enlz—a)"

n=m

be its Laurent expansion in a neighborhood of the point a. We assume that ¢, # 0
and set v4(f) = m. We shall call the number v,(f) the order ( of zero if m > 0 or of
pole if m < 0) of f at a. If f is meromorphic at co we set

Voo (f) = vo(f(1/2)).

67
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Note that when f is a modular form with respect to a group I" we have

ver(f) =v-(f), VgeT.
For each 7 € H let

2 ifrel(1)-4
m,; =<3 ifrel(1).e2™/3, (7.3)

1 otherwise.

Lemma 7.1. Let f(7) be a modular form of weight k with respect to the full modular

group T'(1). Then
v-(f) k
E ’ AP

ms
TEH/T(1)

Proof. Consider the subset P of the modular figure D obtained as follows. First delete
the part of D defined by the condition Im 7 > h for sufficiently large h such that f has
no zeroes or poles for Im 7 > h. Let Cr(p), Cr(p?),Cr(i) be a small circle of radius
r centered at p = e™/3 at p? and at i, respectively. Delete from D the intersection
with each of these circles. Finally if f(z) has a zero or pole a at the boundary of D
we delete from D its intersection with a small circle of radius r with center at a.

Fig.1
Applying the Cauchy Residue Theorem we obtain

LMoy =y el

2mi Jop  f TEP TEP
When we integrate over the part P; of the boundary defined by Im 7 = h we obtain
1 fldz

21t Jop,

= v (f).
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In fact, considering the Fourier expansions of f at oo, we get

f(T) _ Z aneQ'/ri'nT7
n=voo (f)
fln) = Z (2min)a,e*™ 7.
n=voo (f)

Use the function ¢ = ™7 to map the segment {r : |[Re 7| < 3,Im 7 = h} onto the
circle C': |q| = e~ 2™ When we move along the segment from the point % + ih to the
point —% + ¢h the image point moves along the circle in the clockwise way. We have

A a0 rive(e D e
2mi Jop, f 2w Jo 2migau(pygre D+ 0 0T

If we integrate along the part P of the boundary of P which lies on the circle
Cr(p?) we get
1 fldr 1
= _gyp2 (f)

im —
r=0 278 Jop, [

This is because the arc P> approaches to the one-sixth of the full circle when its radius
goes to zero. Also we take into account that the direction of the path is clockwise.
Similarly, if we let 0Ps = 9P N Cy(i), 0Py = 9P N Cr(p), we find

. 1 fldr 1
L A LU
. 1 fldr 1
lim —— = —~u,(f).
TE}% 21 oP, f 6”P(f)

Now the transformation T': 7 — 7 + 1 transforms the path along 0P from —% + ih
to p? to the path along the boundary from the point p to the point % + ¢h. Since
our function satisfies f(7 + 1) = f(7) and we are moving in the opposite direction
along these paths, the two contributions to the total integral cancel out. Finally, if we
consider the remaining part of the boundary, and use the transformation S : 7 — f%

we obtain

AF(Z) Ao A df
e G R

When we move from p? to i the point S -7 moves from p to i. This easily gives us that
the portion of the integral over the remaining part of the boundary is equal to (when

r goes to zero)
1 —2kdr 1 k
- - ok(——) ="
2mi [y T ( 12) 6’

where «y is the part of the circle 7 = 1 starting at p? and ending at i. Collecting
everything together we obtain the assertion of the lemma. O

Theorem 7.1. M (I'(1)) = {0} if k < 0. If k > 0, we have

[k/6] if k=1 mod (6)

dim M(['(1)) = {[R/G} +1 otherwise.
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Proof. Let f(r) € My(I'(1)). Then v; > 0 for all 7 € H, and Lemma 7.1 implies
that % =A+ % —+ % for some non-negative integers A, B, C. Clearly this implies that
dim M (I’(1)) = {0} when kK < 0 or k =1. If kK = 2 we must have A= B =0,C = 1.
Since f € M2(I'(1)) we have

vp(f) =vp2(f) = 1.

In particular, this is true for g. For any other f € Mj3(I'(1)) we have f/g2 is I'(1)
invariant and also holomorphic at co (since gz is not a cusp form). This shows that
f/g2 is constant and

M2 (I'(1)) = Cga.
Similar arguments show that
Ms(I(1)) = Cgs,
Ma(I'(1)) = Cg3,

M;5(I'(1)) = Cgags.

This checks the assertion for k¥ < 6. Now for any cuspidal form f € My(I'(1)) with

k > 6 we have f/A is a modular form of weight & — 6 (because A does not vanish on
‘H and has a simple zero at infinity). This shows that for k£ > 6

M (P(1))° = AM_(D(1)). (7.4)
Since My (T'(1))/M(I'(1))° =2 C (we have only one cusp) we obtain for k > 6
dim M (I'(1)) = dim M _¢(I'(1)) + 1.
Now the assertion follows by induction on k. O

Corollary 7.1. The algebra M(T'(1)) is generated by the modular forms g» and gs.
The homomorphism of algebras ¢ : C[T1,T2] — M(T'(1)) defined by sending Th to g2
and T> to g3 defines an isomorphism between M(I'(1)) and the algebra of complex
polynomials in two variables.

Proof. The first assertion is equivalent to the surjectivity of the homomorphism ¢. Let
us prove it. We have to show that any f € M(I'(1)) can be written as a polynomial
in g2 and g3. Without loss of generality we may assume that f € M(T'(1))y for some
k > 0. Write k in form k = 2a + 3b for some nonnegative integers a and b. Since g5g5
does not vanish at infinity, we can find a constant ¢ such that f — cg3g} is a cuspidal
form. By (7.4), it is equal to gA for some g € M(I'(1))x—¢. Since A is a polynomial
in g2 and g3, proceeding by induction on k we prove the first assertion. To prove the
second assertion we use that any element F'(71,T%) from the kernel of ¢ can be written
uniquely as a sum of polynomials G4 satisfying

Ga(TTy, 7°t3) = 70Ga(Ty, Tn)

for some d > 0 and any 7 € ‘H. In fac't, writing F' as a sum of monomials in T, T we
define G4 as the sum of monomials T7TJ entering into F' such that 2i + 3j = d. Since

F(g2(=1/7), 93(=1/7)) = F(7°g2,7°g5) = 0,

each G4 must belong to the kernel of ¢. This allows us to assume that F = G4 for
some d. Dividing by T4 we obtain Ga(gs, g3)/95 = G(g3/g3) = 0 for some polynomial
G in one variable T' = T1 /T5. Since C is algebraically closed, g%/gg must be a constant.
But this is impossible since gs vanishes only at I'-i and g» vanishes only at I'(1)-p. O
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Corollary 7.2. The ideal of cuspidal modular forms M°(T'(1)) is generated by A.

Proof. We have seen already in (7.4) that M (T'(1))° = AM_(T'(1)). Also we have
My (T(1))° = {0} for k < 6. This checks the assertion. O

7.3 Let us give some examples.

Example 7.1. We know that the Eisenstein series Far is a modular form of weight
k with respect to T'(1). Since M4(T'(1)) = Cg3 = CEj3, comparing the constant
coefficients in the Fourier expansions we obtain

) e
"= ¢y

Comparing the other coefficients we get a lot of identities between the numbers o, (n).
For example, we have

or(n) = o3(n) +120 Y os(m)os(n —m). (7.5)
o<m<n
Similarly we have
_ €10
F1o = s¢ayee P

This gives us more identities. By the way our old relation
(2m)"?A = g5 — 27g3

gives the expression of the Ramanugjan function 7(n) defined by
A=qJJa-g"*=> rn)q"
m=1 =

in terms of the functions ox(n):

65 691 691
7(n) = ﬁan(n) + ﬁ%(”) T3 Z os(m)os(n —m). (7.6)

0<m<n
We shall prove in Lecture 11 that 7(n) satisfies

7(nm) = 7(n)r(m) if (n,m) =1,

k+1 k*l)

@) = 1(p)T") - p"'r(p if p is prime, k > 0.

Ezample 7.2. Let L be a lattice in R™ of rank n such that for any v € L the Euclidean
norm ||v||? takes integer values. We say that L is an integral lattice in R™. If (v1, . .., vn)
is a basis of A, then the dot products a;; = v; - v; define an integral symmetric non-
degenerate matrix, hence an integral quadratic form

Q = Z A3 TiTj.
ij=1
Obviously for any v = (a1, ...,an) # 0 we have

Q(v) = |lv]|* > 0.
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In other words, @) is positive definite. Conversely given any positive definite integral

quadratic form @Q as above, we can find a basis (e, ..., e, ) such that @ diagonalizes,
i.e. its matrix with respect to this basis is the identity matrix. Let ¢ : R® — R"
be the linear automorphism which sends the standard basis (e1,...,es) to the basis

(el,--.,€,). Then the pre-image of the standard lattice Z™ = Zey + ... + Zey, is an
integral lattice L with the distance function Q.
Let us define the theta function of the lattice L by setting

OL(r) =Y re(m)g™ = ¢¥"2, (7.7)

m=0 veEL

where

ro(m) =#{ve L: Q) =2m}.
(see Exercise 6.10). Since rr,(m) < (2m)™/? (inscribe the cube around the sphere of
radius v2m), and hence grows only polynomially, we easily see that 61 (7) absolutely
converges on any bounded subset of H, and therefore defines a holomorphic form on
H.

We shall assume that L is unimodular, i.e. the determinant of the matrix (a;;)
is equal to 1. This definition does not depend on the choice of a basis in L and is
equivalent to the property that L is equal to the set of vectors w in R™ such that
w-v € Z for all v € L. For example, if L is the standard lattice Z" we see from
Lecture 4 that

Ozn (1) = ©(0,7)".
Repeating the argument from the beginning of Lecture 4 we obtain that, for any
unimodular lattice L,
0r(—1/7) = (—iT)"?0L (7). (7.8)
Also, if we additionally assume that L is even, i.e. Q(v) € 2Z for any v € L, we
obviously get
6’,;(7 =4 1) = GL(T).

In particular, if 8|n we see that 61 (7) is a modular form with respect to I'(1). It is
amazing that one does not need to assume that n is divisible by 8. It is a fact! Let us
prove it. Assume n is not divisible by 8. Replacing n by 2n (if n is even)(resp. 4n if n
is odd), and L by L@ L (resp. by L® L @® L @ L), we may assume that n is divisible
by 4 but not by 8. By (7.8) we get

0r(—1/7) = —7"201.(7).
Since 6y, is always periodic with respect to 1, this implies
9L|%ST = —0L|%T = —0r.

Obviously this contradicts the fact that (ST)® = 1. Now we know that for any even
unimodular lattice
0r € My, ,4(T(1)). (7.9)

Now let n = 8. Since M2(I'(1)) = CE4 we see that 01 is proportional to the
Eisenstein series F4. Comparing the constant coefficients we see that

0L = Ea/2C(4).

In particular, for any m > 1,
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rr(m) = 24003(m). (7.10)

In fact there exists only one even unimodular lattice in R® (up to equivalence of
lattices). The lattice is the famous FEs lattice, the root lattice of simple Lie algebra of
type Es.

Fig.2

Here the diagram describes a symmetric matrix as follows. All the diagonal el-
ements are equal to 2. If we order the vertices, then the entry a;; is equal to —1
or 0 dependent on whether the i-th vertex is connected to the j-th vertex or not,
respectively.

Take n = 16. Since My4(I'(1)) = CFEs, we obtain, by comparing the constant
coefficients,

0L = Eg/2((8).
In particular, we have

rr(m) = 1607(m)/Ba, (7.11)

where By is the fourth Bernoulli number (see Lecture 6). There exist two even uni-
modular lattices in R'®. One is Es @ Es. Another is I';g defined by the following
graph:



74 LECTURE 7. THE ALGEBRA OF MODULAR FORMS

Now let n = 24. The space M(;(F(l)l;ligs.?;panned by A and Ei12. We can write
O = ;Em + crA.
2¢(12)
This gives
rr(m) = 623?)011(771) + cpT(m), (7.12)

where 7(m) is the Ramanujan function (the coefficient at ¢™ in A). Setting m = 1,
we get
65520

CL :'I"L(l) W

(7.13)

Clearly, cr, # 0.

Except obvious examples Es @& Fs @ Es or Eg @ I'16 there are 22 more even uni-
modular lattices of rank 24. One of them is the Leech lattice A. It differs from any
other lattice by the property that ra(1) = 0. So,

65520
re(m) = ~5o1

(o11(m) — 7(m)), (7.14)
In particular, we see that
7(m) = o11(m) mod 691.

This is one of the numerous congruences satisfied by the Ramanujan function 7(m).

7.4 Our goal is to prove an analog of Theorem 7.1 for any subgroup of finite index
I of T(1). Let I'Y C T be two such subgroups. Assume also that I' is normal in T and
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let G =T'/T’ be the quotient group. The group G acts on My (I"”) as follows. Take a
representative g of § € G. Then set, for any f € My(T'),

g-f=flxg.

Since f|rg' = f for any g’ € I this definition does not depend on the choice of a
representative.
The following lemma follows from the definition of elements of My(T').

Lemma 7.2. Let TV be a normal subgroup of T' and G = T/T’. Then
Mi(T) = Mi(T) = {f € Mx(T") : g- f = f,¥g € G}

It follows from this lemma that the algebra M(T') is equal to the subalgebra of
M(T’) which consists of elements invariant with respect to the action of the group
['/T’. Let n be the order of the group G = I' /T (recall that we consider only subgroups
of finite index of I'(1)). For any f € M(I") we have

[Tt =0

geG

since the factor of this product corresponding to 1 is equal to zero. We have
b 4+ Ry =0, (7.15)

where h; are symmetric polynomials in ¢g - f,g € G. Clearly they are invariant with
respect to G and hence, by Lemma 7.2, represent elements of M(T"). In particular we
see that for any normal subgroup I" of I'(1)

Mi(D) = {0}, k<O.

In fact, any modular form of negative weight k will satisfy an equation (7.6) where
we may assume that each coefficient h; is a modular form of weight ik with respect to
I'(1). However no such modular forms exist except zero. If I" is not normal we choose
a normal subgroup of finite index I’ of I and apply Lemma 7.2.

Lemma 7.3. Let B be any commutative algebra over a field F without zero divisors
and A be a Noetherian subalgebra of B. Assume that each element b € B satisfies a
monic equation with coefficients in A:

"+ ab" '+ .. . 4+a,=0

(we say in this case that that B is integral over A). Also assume that the field of
fractions of B is a finite extension of the field of fractions of A. Then B is finitely
generated F-algebra if and only if A is finitely generated F-algebra.

Proof. This fact can be found in any text-book in commutative algebra and its proof
will be omitted. O

Theorem 7.2. For any subgroup T' of finite index of I'(1) the algebra M(T') is a
finitely generated algebra over C.
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Proof. Let I be a normal subgroup of finite index in I'(1) which is contained in T'. Tt
always can be found by taking the intersection of conjugate subgroups g~ ! -T'-g,g €
I'(1). We first apply Lemma 7.3 to the case when B = M(I"), A = M(T'(1)). Since
A 2 C[T1, T3] is finitely generated, B is finitely generated. It follows easily from (7.15)
that the field of fractions of B is a finite extension of the field of fractions of A of
degree equal to the order of the group I'/T’. Next we apply the same lemma to the
case when B = M(I"), A = M(T). Then B is finitely generated, hence A is finitely
generated. O

Corollary 7.3. The linear spaces My(T') are finite-dimensional.

Proof. Let fi,..., fr be a set of generators of the algebra My (I"). Writing each f; as
a linear combination of modular forms of different weights, and then adding to the set
of generators all the summands, we may assume that My (I") is generated by finitely
many modular forms f; € My, (I'),i = 1,...,n. Now My(T") is spanned as a vector
space over C by the monomials ffl f{‘ where k191 + ...+ inkn = k. The number
of such monomials is finite. It is equal to the coefficient at ¢t* of the Taylor expansion
of the rational function .
1
j

=1

O

In the next lecture we shall give an explicit formula for the dimension of the spaces

M (D).

Exercises

7.1 Find a fundamental domain for the principal congruence subgroup I'(2) of level 2.
7.2 Using Exercise 7.1 find and prove an analog of Lemma 7.1 for the case I' = I'(2).

7.3 Let n = 8k. Consider the subgroup I';, of R"™ generated by vectors v = (a1,...,an)
with a; € Z and a1 + ... + an € 2Z and the vector (%,,%)

(i) Show that I', is an even unimodular lattice in R™.

Show that I's is isomorphic to the lattice Es defined in the lecture.

Show that I'1¢ can be defined by the graph from Fig.3

Show that I'16 is not isomorphic to I's @ I's.

Compute the number of points (z1,...,zs) € R® such that 2x; € 2Z,2; — x; €
Zyx1+...+xs €2, 23 + ...+ 22 = 2N, where N = 1,2.

7.4 Let L C R" be an integral lattice not necessary unimodular. Using the Poisson
formula from Lecture 4 show that

— (Tyn2_1
HL(_;)_(Z) D;/QGL*(TL
where L* is the dual lattice defined by L* = {v € R" :v-z € Z for all z € L} and Dy,
is the discriminant of L defined by Dy = #L* /L.

7.5 Let C be a linear subspace of Fy (a linear binary code). Let Lo = %T‘_I(C),

where 7 is the natural homomorphism Z™ — F3.
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(i) Show that Lc¢ is an integral lattice if and only if for any = = (e1,...,€e,) € C
the number wt(z) = #{i : &; # 0} (called the weight of z) is divisible by 4. In
this case we say that C' is a doubly even linear code.

(ii) Show that the discriminant of the lattice L¢ is equal to 2"~ 2% where k = dim C.

(iii) Let C* = {y € F§ : 2 -y = 0,Vz € C}. Show that Lc is integral if and only if
ccct
(iv) Assume C is doubly even. Show that L1 = Lg. In particular, Lo is a uni-

modular even lattice if and only if C' = C* (in this case C is called a self-dual
code).

(v) Let C C F3 be a self-dual doubly even code. Show that n must be divisible by
8.
7.6 Let A(T) =9(0;7),B(1) = 19%0(0; T).
(i) Show that

V2 V2

(ii) Show that the expression A*B*(A* — B*)* is a modular form of weight 6 with
respect to I'(1).

(iii) Show that A*B*(A* — B*)* = 16A(7).

(iv) Show that A® + 14A*B* + B® = 35 Ea(7).

7.7 Let C' C F3 be a linear code. Define its weight enumerator polynomial by

WC(X, Y) _ Z Xn—wt(z)th(z) _ ZAZXH_ZYZ,
zeC =0

where A; is the number of z € C with wt(z) = 4.

(i) Show that
O, = We(A, B).

(ii) Prove MacWilliams’s Identity:

Wei (X,Y) = W%CWO(X FY, X —Y).

(iii) Using Theorem 7.1 show that for any self-dual doubly even code the enumerator
polynomial We(X,Y) can be written as a polynomial in X’ = X®++14X4y*4+Y?®
and Y/ = X*Y*4(X* — Y*)* (Gleason’ Theorem). where A, B are defined in the
previous problem.

(iv) Deduce from (iii) that the enumerator polynomial W (X,Y') of any doubly
even self-dual linear code is a symmetric polynomial in X, Y (i.e. We(X,Y) =
We (Y, X)). Give it an independent proof using only the definition of We (X, Y).

7.8 Let C be a self-dual doubly even linear code in F3* and 0z, (7) = 3. rr. (m)q™ be
the thet_a funqtion of the even unimodular lattice Lo associated to it and We(X,Y) =
ST A XY™ be its weight enumerator polynomial.
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(i) Show that

Tre(2) =48 + 1644, 11, (4) = 2°As + 6404, + 1104.

(ii) Using (7.13) show that Ag = 759 — 4A4.

7.9 Let A = §;2_ A, be a commutative graded algebra over a field F. Assume A
has no zero divisors, Ap = F -1 and dim Ay > 1 for some nN > 0. Show that A, =0
for n < 0. Apply this to give another proof that My(I") =0 for k£ < 0.

7.10 Find an explicit linear relation between the modular forms Ei16, E2 and E4E1o,
where Fsj denotes the Eisenstein series. Translate this relation into a relation between
the values of the functions o4(m).

7.11 Let f(7) be a parabolic modular form of weight k with respect to I'(1).
(i) Show that the function ¢(7) = |f(7)|(Im 7)* is invariant with respect to T'(1).
(ii) Show that ¢(7) is bounded on H (it is not true if f is not cuspidal).

(iii) Show that the coefficient a, in the Fourier expansion f(7) = Y ang™ can be
computed as the integral

1
an = / f(x + iy)e 2™ gy
0

(iv) Using (iii) prove that |a,| = O(n*) (Hecke’s Theorem).

7.12 Let L be an even unimodular lattice in R® and 71, (m) be defined as in Example
7.2. Using the previous exercise show that

8k
rL@n)::Eg;aM,luny+cunfky

7.13 Let L = Es @ Es @ Es. Show that

1 432000
0, = E A
LEay T Teon




Lecture 8

The Modular Curve

8.1 In this lecture we shall give an explicit formula for the dimension of the spaces
My, (T"), where T is any subgroup of finite index in SL(2,7Z). For this we have to apply
some techinique from algebraic geometry. We shall start with equipping H* /T’ with a
structure of a compact Riemann surface.

Let T be a subgroup of SL(2,R). We say that I is a discrete subgroup if the usual
topology in SL(2,R) (considered as a subset of R*) induces a discrete topology in
I'. The latter means that any point of I' is an open subset in the induced topology.
Obviously SL(2,7Z) is a discrete subgroup of SL(2,R). We shall consider the natural
action of SL(2,R) on the upper half-plane H by Moebius transformations.

Lemma 8.1. Any discrete subgroup I' of SL(2,R) acts on H properly discontinuously.

Proof. Observe that the group SL(2,R) acts transitively on H (view the latter as a
subset of R? of vectors with positive second coordinate). For any point z € H the
stabilizer group is conjugate to the stabilizer of say z = i. The latter consists of
matrices (24) € SL(2,R) such that a = d,b = —c. It follows that this group is
diffeomorphic to the circle {(a,b) € R? : a® + b* = 1}. This shows that the map
f : SL(2,R) — H defined by f(g) = g -1 is diffeomorphic to a circle fibration over
H. This easily implies that pre-image of a compact set is compact. Let A, B be two
compact subsets in H. We have to check that X = {g € " : g(A) N B # 0} is finite.
Clearly, g(A)N B # () if and only if gg’ = ¢”’ for some ¢’ € f~1(A),¢” € f~'(B). Since
A" = f71(A) and B’ = f~!(B) are compact subsets of the group SL(2,R) the set
B’ - A~ is also compact. In fact, this set is the image of the compact subset B’ x A’
of SL(2,R) x SL(2,R) under the continuous map (¢’,g"”) — ¢’¢”~*. Thus X is equal
to the intersection of the discrete subset I' with a compact subset of SL(2,R), hence
it is a finite set. O

Applying the previous Lemma and Theorem 2.2 we obtain that # /T has a structure
of a Riemann surface and the canonical map

7 H — H/T (8.1)

is a holomorphic map.
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Ezample 8.1. Let I' = I'(1). Let us show that there exists a holomorphic isomorphism
H/SL(2,Z) = C.

This shows that the set of isomorphism classes of elliptic curves has a natural structure
of a complex manifold of dimension 1 isomorphic to the complex plane C. Since g5
and A are of the same weight, the map

H—PYC), 7 (g92(7) A(7))

is a well defined holomorphic map. Obviously it is constant on any orbit of I'(1), hence
factors through a holomorphic map

f:H/T(1) — PY(C).

Since A does not vanish on H, its image is contained in P'(C) \ {00} = C. I claim
that f is one-to-one onto C. In fact, for any complex number ¢ the modular form
f = g5 — cA is of weight 6. It follows from Lemma 7.1 that f has either one simple
zero, or one zero of multiplicity 2 at the elliptic point of order 2, or a triple zero at
the elliptic point of index 3. This shows that each ¢ € Z occurs in the image of j on
‘H /T and only once.

We leave to the reader the simple check that a bijective map between two complex
manifolds of dimension 1 is an isomorphism.

Notice that the explicit isomorphism #H/SL(2,Z) — C is given by the holomorphic
function T — g5 /(g5 — 27¢3). The function

. 172845 1728(2m) 2 g5
i(r) = g5 (2m)“gs

- - 8.2
g5 — 2793 A (52

is called the absolute invariant. The constant factor 1728 = 123 is inserted here to
normalize the coefficient at ¢~ for the Fourier expansion of j at oo:

j(r)y=q "+ 744 + Z eng™, q=¢>"m. (8.3)
n=1
We have proved that
E, 2 B < j(r) = (7). (8.4)

The coefficients ¢, in (8.3) have been computed for n < 100. The first three are
c1 = 196884, co = 21493760, c3 = 864299970.

They are all positive and equal to the dimensions of linear representations of the
Griess-Fisher finite simple group (also called the Monster group).

8.2 The Riemann surface H/I' is not compact. To compactify it we shall define a
complex structure on

H*/T' = H/T U {cusps}. (8.5)
First we make H* a topological space. We define a basis of open neighborhoods of co
as the set of open sets of the form

Us={r€H :Im 7> c}U{c0}, (8.6)
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where c is a positive real number. Since SL(2,Z) acts transitively on H* \ H we can
take for a basis of open neighborhoods of each z € QQ the set of g-translates of the sets
U. for all ¢ > 0 and all g € SL(2,Z) such that g - oo = z. Each g(U.) is equal to the

union of the point x and the interior the circle of radius r = ﬁ touching the real
line at the point x. In fact, if g = (: ?), we have x = a/y and
_ Im 7
Ul={reH:Img ' 7>ct={reH: —————— >¢c} =
9(U) = { g b=lren: g >

' . (8.7)

2
2720) < 47462}'

{T:ac—i—iy:(ac—%)Q—i—(y—

Now the topology on H*/T is defined as the usual quotient toplogy: an open set in
H* /T is open if and only if its pre-image in # is open. Since |y| > 1 in (8.7) unless
g € I's, we can find a sufficiently large c such that

P ={g€l:g(U)NU.#0}.
Now, if x = g1 - o0 we deduce from this that

Iy =giToogr ' ={g €T : g(g1(Ue)) N1 (Ue) # 0} (8.8)

This shows that the pre-image of some open neighborhood of a cusp on H* /T is equal
to the disjoint sum of open neighborhoods of the representatives of this cusp.

Theorem 8.1. Let I' be a subgroup of finite index in SL(2,Z). The topological space
H* /T admits a unique structure of a compact complexr manifold of dimension 1 such
that H /T is an open submanifold.

Proof. To warm up let us first see this in the case I' = SL(2,Z). We saw in Example
1 that H/T'(1) 2 C. The complex plane C admits a natural compactification. It is the
Riemann sphere P!(C) = C U {co}. The point co represents the unique cusp of T'(1).
Thus we see that

H* /T = P'(C). (8.9)

Now let us consider the general case. The canonical holomorphic map 71y : H —
H/T'(1) is equal to the composition of the holomorphic maps nr : H — H /T and
mryra) - H/T — H/T(1). It extends to the composition of continuous maps

mray M IS m AN g r(1) 2 P ().

First we see that the orbit space H*/T" is a Hausdorfl topological space. This is
obviously true in the case I' = I'(1). Since #/I' is Hausdorff, we can separate any
two points which are not cusps. Since we can separate co on H*/I'(1) from any finite
point, we can separate any pre-image of co in H*/T'(1), which is a cusp on H*/I'(1),
from a point on H/T". Finally we can separate any two cusps in #H/T" since the pre-
image nlf(l)_l(U) of an open neighborhood U of co € H*/T'(1) is equal to the disjoint
union of open neighborhoods of points in #* \ # = P'(Q). The pre-image 7} (V(c))
of an open neighborhood V(¢) of a cusp ¢ = I' -z € H*/T is the disjoint union of
open neighborhoods of points belonging to the orbit I' - . Obviously for two different
T-orbits ¢ and ¢’ these sets are disjoint. Thus the open sets V(¢) and V (¢) are disjoint.
Let U = ¢1(U.) be a neighborhood of a representative x = g1 - co of some cusp ¢ of
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I'. The natural inclusion U — H* factors through the map U/T'; — H*/T';. Taking ¢
small enough and using (8.8) we see that this map is injective. Its image is an open
neighborhood U of the cusp ¢ € H*/T". Let h be the index of the cusp. Then T,
(1) mih) and hence the map 7 — 2™/ sends U/Ty into C
with the image isomorphic to an open disk. This defines a natural complex structure
on the neighborhood U. Notice that it is consistent with the complex structure on
UNH/T = U\{c}. Also it is easy to see that the map 71}y extends to the composition
of holomorphic maps.

It remains to prove the last assertion, the compactness of H*/T". First of all, we
replace I' by a subgroup of finite index I which is normal in I'(1). Then

consists of matrices £ <

/T = (H"/T")/(T/T), H'/T(1) = (H"/T')/(T/T(1))
It remains to use the following simple fact from topology: (]

Lemma 8.2. Let G be a finite group acting continuously on a topological space X .
Then X 1is compact if and only if X/G is compact.

Proof. Consider the projection 7 : X — X/G =Y. It is a surjective map. It is obvious
that the image of a compact space is compact. Assume that Y is compact. Take an
open cover {U;} of X. Then replacing U; with Ugeag(U;) we may assume that each
U; is G-invariant. Since U; = 7~ (7 (U;)) the sets m(U;) are open in Y. Since Y is
compact we can find a finite subcover of {w(U;)}. This will give us a finite subcover

Remark 8.1. The assertion of the previous theorem does not extend to any discrete
subgroup of SL(2,R). For example, if we take I' = {1}, the space H* = H"/{1}
does not have any complex structure. In fact, any open neighborhood U of oo, after
deleting oo, must be isomorphic to the punctured open unit disk {z € C: 0 < |z| < 1}.
The latter space is not simply-connected (its fundamental group is isomorphic to Z).
However U \ {o0} can be always chosen to be equal to Im 7 > ¢ which is simply-
connected. However, there is a large class of discrete subgroups of SL(2, R), including
subgroups of finite index in SL(2,Z), for which the assertion of the theorem remains
true. These groups are called fuchsian groups of the first kind.

Definition. The compact Riemann surface #*/I" is called the modular curve associ-
ated to the subgroup I" of SL(2,Z) and is denoted by X(T').

8.3 Now let us discuss some generalities from the theory of compact Riemann sur-
faces. Let X be a connected compact Riemann surface and f be a meromorphic
function on X. This means that the restriction of f to any open neighborhood U is
equal to the quotient of two holomorphic functions on U. Assume f # 0. For each
point € X we can define the order v, (f) of f at = as follows. First we identify a
small neighborhood U of x with a small neighborhood V' of 0 in C. Then f is equal
to the pre-image of a meromorphic function on V' which admits a Laurent expansion
anz" + an+t1 2" 4 . with an # 0 for some integer n. We set

ve(f) =n.

It is easy to see that this definition does not depend on the choice of an isomorphism
between U and V. When v, (f) > 0 (resp. vz(f) < 0) we say that v, (f) is the order of
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zero (resp. the order of pole) of f at . We have the following easily verified properties

of vy (f):

Lemma 8.3. Let x € X and f,g be two meromorphic functions on X. Then
(i) va(£9) = va(f) + v2(0):
(i) va(f + g) = min{va(f),va(9)} if f + g #0.

A meromorphic function on X is called a local parameter at x if v (f) = 1. Lemma
8.3 (i) allows us to give an equivalent definition of v;(f). It is an integer such that for
any local parameter t at x, there exists an open neighborhood U in which

Fo e
for some invertible function € € O(U).

Let Div(X) be the free abelian group generated by the set X. Its elements are
called divisors. One may view a divisor as a function D : X — Z with finite support.
It can be written as formal finite linear combinations D = Y a,x, where a, = D(z) €
Z,x € X. For any D =) a,z € Div(X) we define its degree by the formula:

deg(D) = Zaz. (8.10)

There is an obvious order in Div(X) defined by choosing positive elements defined
by positive valued divisors. We say D > 0 if D is positive or equal to 0.

For any nonzero meromorphic function f we define the divisor of the function f
by

div(f) =Y va(f)a. (8.11)
zeX

Here we use the compactness of X to see that this sum is finite. Using Lemma
8.3, we see that divisors of functions (principal divisors) form a subgroup P(X) of
Div(X). Two divisors from the same coset are called linearly equivalent. The group
Div(X)/P(X) is called the group of classes of divisors.

Finally we introduce the space

L(D) = {f € M(X)" : (f) + D > 0}. (8.12)

The famous Riemann-Roch theorem provides a formula for the dimension of this space.
In order to state it we need two more ingredients in this formula. The first one is the
notion of the canonical class of divisors.

Definition. Let U be an open subset of a Riemann surface X and t : U — C is
a holomorphic function defining an isomorphism from U to an open subset of C. A
meromorphic differential on U is an expression w of the form

w= f(b)dt,

where f(t) is a meromorphic function on U. A meromorphic differential on X is a
collection w = {f(tv)dtv} of differentials on open subsets U as above which cover X.
It must satify the following compatibility property: if two open sets U and U’ overlap
then

dtys

Y
fuv=fu div
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when restricted to UNU’. Here ddtt—i’/' is the derivative of the function gy, y = ty- ota1 :
tu(UNU') =ty (UNT').

Two meromorphic differentials are said be equal if they coincide when restricted
to the subcover formed by intersections of their defining covers.

Let w = {f(tv)dtu} be a meromorphic function on X. Define
Ve (w) = vz (fu). (8.13)

Since the function CZ—UU’ is invertible at x, we see that this definition is independent of

the choice of an open neighborhood U of z. The divisor
div(w) = Z Ve (w)z. (8.14)

is called the divisor of the meromorphic differential w
Since X is compact and hence can be covered by a finite set of locally compact
subsets, we see that div(w) is well-defined.

Lemma 8.4. Letw and w’ be two meromorphic differentials on X. Then their divisors
div(w) and div(w’) are linearly equivalent.

Proof. Without loss of generality we may assume that w and w’ are defined on the
same open cover and use the same local parameter functions ty. If w = fudty and
w’ = fysdty then the collection of meromorphic functions fir/ f{; define a meromorphic
function F' on the whole X (since fu/fur = fi;/f{; for any two overlapping open
subsets in the cover). It follows from the definition that

div(w) = div(w’) + div(F).
This proves the assertion. O

Definition. The class of linear equivalence of the divisor div(w) of a meromorphic
differential is called the canonical class of X and is denoted by Kx.
8.4 We can state (without proof) the following:
Theorem 8.2. (Riemann-(Roch) For any divisor on X,
dim L(D) = deg(D) + dim L(Kx — D)+ 1—g

for some non-negative integer g, called the genus of X.

Note that the space L(D) depends only on the linear equivalence class of D. In
fact, if D’ = D + div(f), then the map g — gf establishes a bijective linear map from
L(D’) onto L(D). We use this remark to explain the notation L(Kx — D) (where

Kx is not a divisor but rather a class of divisors). This remark, together with the
Riemann-Roch formula proves the following:

Corollary 8.1. Linearly equivalent divisors have the same degree. In particular, for
every mon-zero meromorphic function f on X,

deg(div(f)) = 0. (8.15)
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Proof. Replacing D with D + div(f), we do not change the dimensions of the spaces
L(D) and L(Kx — D) but change deg(D) by deg(D + div(f)) = deg D + deg(div(f)).
It follows from Riemann-Roch that deg(div(f)) = 0. O

Corollary 8.2.
deg Kx = 2¢g — 2.

Proof. Take D = 0 and use that L(0) = O(X) = C. Here we use that a holomorphic
function on compact Riemannian surface is constant. This gives

g=dimL(Kx). (8.16)
Now take D = Kx and get deg(Kx) = 2g — 2. O
Theorem 8.3. Let b;(X) = dim H;(X,R) be the Betti numbers of X. Then
b =29, bo=bs = 1.

Proof. Since X is a connected compact manifold of dimension 2, this is equivalent to

e(X) =Y (~1)'bs(X) =2 — 29 = — deg(Kx). (8.17)
1=0

Let f be a non-constant meromorphic function on X (its existence follows from the
Riemann-Roch theorem). It defines a holomorphic map f : X — P*(C). For any point
z € X set

vo(f — 2 if f(x) =2+# 0
e (f) = ( ) . (=) (8.18)
—ua(f) i (@) = oo,
It is a positive integer. Since deg(div(f — z)) = 0 we obtain
Dol = > el (8.19)

z€f~1(2) z€f=1(o0)
Notice that, for any « € X,
ex(f) -1 if f(z) # o0
—ea() =1 f(x) =
Here df is the meromorphic differential defined locally by %dt, where ¢ is a local
parameter at x. Since the degree of df is finite we obtain that there are only finitely

many points z € X such that ex(f) > 1. In particular, there is a finite subset of points
S ={y1,...,ys} in P}(C) such that, for any y ¢ S

Y el =n=#") (8:21)

z: f(z)=y

Ve (df) = { (8.20)

Q.

Taking into account the formulas (?7)-(8.21), we obtain

29-2=> wdivd) = D (e(H =D+ > (—ea(f)—1)=

z€X y: f(y)#oo y:f(y)=o0
Dlea(H =1 =2 D ea=D (ea(f) =D =2m= (599
reX f(z)=00 reX

D> (n—#1"(y) —2n.

yey
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This is called the Hurwitz formula. The number n here is called the degree of the
meromorphic function f. Formula (8.21) says that this number is equal to #f ' (y)
for almost all y € P*(C).

We shall define the triangulation of X as follows. Take a triangulation 7~ of P*(C)
in which each point y; is a vertex. Consider the pre-image 7' of this triangulation
in X. Since, the restriction of f to P*(C)\ S is a covering map, the open cell of our
triangulation are equal to connected components of the pre-images of open cells of the
triangulation of the sphere. Let do, d1,d2 be the number of 0-,1-, and 2-cells 7. Then
we have nd; 1- and ndz 2-cells in 7'. We also have 3°, ¢ #f ' (y) O-cells in T'. By
the Euler formula we have

e(X)=>_#f '(y) — nd + ndy =

yeSs
Do#T W) Fn(e®(C) —n#S =20 - (n—#f7'(y))-
yeS yeS
Comparing this with (8.22) we obtain the assertion of the Theorem. O

Ezample 8.2. Let X = P*(C). Take w = dz on the complement of co and w = —z2d%
on the complement to 0. Then div(w) = —200. Hence deg(K x) = —2. This shows that
g = 0 for the Riemann sphere. Of course this agrees with the topological definition of
the genus.

Ezample 8.3. Let X = E. be a complex torus. The holomorphic differential form
w = dz on C is invariant with respect to translations. Hence it descends to a 1-
differential on X. Obviously its divisor is zero. Thus deg(Kx) = 0 and the genus
equals 1. Again this agrees with the topological definition.

8.5 Let us compute the genus of the Riemann surface X = H*/T". Consider the
meromorphic function j(7). Since it is a meromorphic modular form of weight 0 with
respect to I'(1) it is a also a meromorphic modular form of weight 0 with respect to I'.
Hence it can be considered as a meromorphic function on X. Let 7 : X — H*/I'(1) be
the canonical projection. Since j, considered as a function on H*/T'(1) has a unique
simple pole at co, we may identify j with the pull-back 7*(z) of the coordinate function
z on P'(C). We use the Hurwitz formula (8.22) from the proof of Theorem 8.4. Let
z=T-7eX. If7¢T(1)-iUI()-pUTI(1)- 0o, then = has an open neighborhood
holomorphically isomorphic to an open neighborhood of 7 and an open neighborhood
of m(z). Since j — j(z) = 7" (z — j(z)), we see that e,(j) = 1. If 7 € I'(1) - ¢, and
I'; = {1}, then z has an open neighborhood isomorphic to an open neighborhood U of
T but j(z) = j(7) has an open neighborhood isomorphic to U/I'(1)-. This shows that
j—j(x) =7"(z — j(x)) vanishes at = with order 2, i.e. e;(j) = 2. If 7 € I'(1) - ¢, but
I'; # {1}, then z has an open neighborhood isomorphic to an open neighborhood U
of j(x), hence e, (f) = 1. Similarly we find that e,(f) =3if 7 € I'(1)-p and I'; = {1}
and ey (j) =1if 7 € I'(1)-p and I'; # {1}. Finally, if z is a cusp of index h, then = has
an open neighborhood U isomorphic to U./(T"), where U. = {7 : Im 7 > ¢} U oo, and
j(x) = co has an open neighborhood V' isomorphic to U./(T"). The restriction of 7 to
U is given by sending a local parameter in V to the h-th power of a local parameter
in U. Since 1/z is a local parameter oo, j has a pole at x of order h. This shows that
vz(j) = h and hence e, (j) = h.

To collect everything together and state a formula for the genus of X, let us make
the following:
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Definition. Let X = H*/T". A point « = I' - 7 is called an elliptic point of order 2
(resp, of order 3) if 7 € I'(1) -4 (resp. 7 € I'(1) - p) and I'; # 1.

Theorem 8.4. The genus of H* /T is equal to

%y T2 T3 Too
=1 _——— = — — —_—
9=t T T3 T
where ur is the index of T /T N(%1) in T(1)/(£1), r2 is the number of elliptic points of
T of order 2, r3 is the number of elliptic points of I of order 3, and r« is the number
of cusps of T.

Proof. Notice first that the number ur is equal to the degree of the meromorphic
function X (T') — X (T'(1)) = P'(C) defined by the j-function j : H — C. In fact, the
number of the points in the pre-image of a general z € C is equal to the number of
I-orbits in H contained in a I'(1)-orbit. Applying (8.22), we have

20-2=-2u+» (es(j)—1) =

xzeX
et Y @0+ Y @O0+ Y -,
J(x)=3(i) J(z)=3(p) J(z)=o00

We have (u — r2)/2 points over j(i) with e;(j) = 2 and (u — 73)/3 points over j(p)
with e, (j) = 3. Also by (8.21), the sum of indices of cusps is equal to p. This gives

29 —2==2p+ (p—7r2)/2+2(n—13)/3+ (1 — 7o),

hence woore m o
14 £ 2T Teo,
9= T T T T3 T 2

O

We shall concentrate on the special subgroups I" of I'(1) introduced earlier. They
are the principal congruence subgroup I'(N) of level N and

To(N) = {<: g) € SL(2,Z) : NI}

Obviously
['(N) C To(N).

Lemma 8.5. )
LN L =p3) ifN>2,

: PN_a (8.23)

KN = HT(N) = {

po.x = prgvy = [F(1) : To(N)] = N [T+,

p|N

where p denotes a prime number.

Proof. This easily follows from considering the action of the group SL(2,Z/N) on the
set (Z/N)2. The isotropy subgroup of the vector (1,0) is isomorphic to the group
of T'o(N)/T'(N) C SL(2,Z/N). It consists of matrices of the form (8 aél)' The

number of invertible elements a in the ring Z/N is equal to the value of the Euler
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function ¢(NN). The number of elements b is N. This gives the index of I'(N) in
I'o(N). The index of T'o(N) in I'(1) is equal to the number of elements in the orbit of
(1,0). It is the set of pairs (a,b) € Z/N which are coprime modulo N. This is easy to
compute. O

Lemma 8.6. There are no elliptic points for T'(N) if N > 1. The number of cusps is
equal to un/N. Each of them is of order N.

Proof. The subgroup I' = T'(N) is normal in T'(1). If I'; # {£1}, then gI'g™' =T}
for any g € I'(1) which sends 7 to 4. Similarly for elliptic points of order 3 we get a
subgroup of I fixing €?™*/3. Tt is easy to see that only the matrices 1 or —1 , if N = 2,
from I'(N) satisfy this property. We leave to the reader to prove the assertion about
the cusps. O

Next computation will be given without proof. The reader is referred to [Shimura].

Lemma 8.7. The number of elliptic points and cusps for the group To(N) is given by
the following formula:

i)
”_{?L.Nuﬂ;ln s (324
(i)
TB_{?LWOH;’J)) e (3.25)
(iii)
()

d|N,d>0

Here ¢ is the Euler function and (;) is the Legendre symbol of quadratic residue.
We have

) 0 if p=2,
(?) =<1 if p=1mod 4, (8.26)
—1 if p=3 mod 4,
5 if p=3,
(%) ={1 ifp=1mod 3, (8.27)

—1 if p=2 mod 3.

Applying the previous lemmas we obtain

Corollary 8.3. The genus gn of the Riemann surface X(N) = H* /T (N) is given by
the formula

(8.28)

oy — 14 2x0 N >,
0 if N =1.
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Here we use that —I ¢ I'(N) for N > 1. We know that the Riemann surface

X (1) = H*/T'(1) parametrizes isomorphism clases of elliptic curves.

For any elliptic curve E we denote by nFE the subgroup of N-torsion points. If
E = C/A we have

1
NE = AN

Theorem 8.5. There is a natural bijective map between the set of points of X(N) =
X(N) \ {cusps} and isomorhism classes of pairs (E, @), where E is an elliptic curve
and ¢ : (Z/N)* — NE is an isomorphism of groups. Two pairs (E,$) and (E',¢') are
called isomorphic if there exists an isomorphism f : E — E' of elliptic curves such

that fop = ¢'.

Proof. Let E = C/A. Then yE = %A/A. An isomorphism ¢ : (Z/N)* — yE is
defined by a choice of a basis in yE. A representative of a basis is an ordered pair of
vectors (a, b) from A such that (Na, Nb) is a basis of A. Replacing F by an isomorphic
curve, we may assume that A = Z + 77 for some 7 € H and (Na, Nb) = (1, 7). This
defines a surjective map from H to the set of isomorphism classes of pairs (F,¢).

Assume the pair (E-, (4, %)) is isomorphic to the pair (E,/, (4, Tﬁ/)) Since E. is
isomorphic to E; we get 7/ = i:rrf for some M = (: ?) € I'(1). The corresponding

isomorphism is induced by the isomorphism of C,z — z(y7 + J). It sends 1/N to
(y7 +0)/N and 7' /N to (ar + 8)/N. It is easy to see that

(ar+B)/N=7/N modulo A <= a=1 modulo N, S=0 modulo N

(y7v+3d6)/N=1/N moduloA <= d§=1 modulo N, v=0 modulo N.

This shows that 7 and 7’ define isomorphic pairs (E., ¢), (E,/,¢’) if and only if they
differ by an element of I'(NV). O

Remark 8.2. Since I'(IV) is an invariant subgroup of I'(1) the factor group
I'(1)/T(N) = SL(2,Z/N) acts naturally on X(N) and the orbit space is isomorphic
to X (1). If one uses the interpretation of H/I'(N) given in the theorem, then it is
easy to see that the action of an element o € SL(2,Z/N) is defined by sending the
isomorphism class of a pair (E, ¢) to the isomorphism class of the pair (E, o o ¢).

Theorem 8.6. There is a natural bijective map between the set of points of Xo(N)' =
Xo(N)\ {cusps} and isomorhism classes of pairs (E, H), where E is an elliptic curve
and H is a cyclic subgroup of order N of NE Two pairs (E, H) and (E’, H') are called
isomorphic if there ewists an isomorphism f : E — E’ of elliptic curves such that
F(H)=H'.

Proof. 1t is similar to the previous proof and is left to the reader. O
Remark 8.3. There is a natural interpretation of the cusp points as the isomorphism

classes of certain degenerate pairs (E, H) but to explain this is beyond of the scope of
these lectures.
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8.6 Finally we interpret the spaces My (') as the spaces L(D) for some D on the
Riemann surface X (I'). To state it in a convenient form let us generalize divisors to
admit rational coefficients. We define a Q-divisor as a function D : X — Q with a
finite support. We continue to write D as a formal linear combination D = Y azx
of points x € X with rational coefficients a;. The set of Q-divisors form an abelian
group which we shall denote by Div(X)qg. For any = € Q we denote by |z] the largest
integer less or equal than z. For any Q-divisor D = Y azx we set

D] = la.]z.

Theorem 8.7. Let

1T2 2 3 Too . 17‘00
D:§;$1+g Z $i+;q, D :nggci,

i=ri+1
where x1,...,xr are elliptic points of order 2, Ty 41,...,%r 24r, are elliptic points of
order 3 and ci,...,Teo are cusps. There is a canonical isomorphism of vector spaces

My (D) = L(kKx + |kD])), M)’ = L(kKx + |kD°)).
Proof. Let F € My(I"). We define its divisor

div(F) = Y va(F)z € Div(X)g,

zeX
by setting
éyf (F) ifx=T-7 is an elliptic point of order e,
Ve (F) = Q ve(F) if ¢ is a representative of a cusp z.

v-(F) if z =T - 7 is neither an elliptic point nor a cusp.

Here v.(F) = n, where an(z — 7)" +...,an # 0 is the the Taylor expansion of F' at
7. Similarly, v.(F) is the smallest non-zero power of ¢ = e2™/" which occurs in the
Fourier expansion of F' at the cusp c of order h.

Consider the j-function j : H — P'(C) as a meromorphic I-invariant function on
H. Its derivative satifies

d . ar+p

() =L ar+ B, d
J dTJ YT+ 6

YT 467 dr

ar+ B
YT+ 6

art + [

)= ()7 (S

) =4'(

).

(

This shows that ®(7) = j'(7)" satisfies

ar + f
T + 8

®( ) = (77 +6)*®(r).

So if we consider the ratio F(7)/®(7) we obtain a I'-invariant meromorphic function
on H. Obviously ¢ is meromorphic at the cusps. So this function descends to a
meromorphic function on X. Let us compute its divisor. Let z =I'-7 € X and ¢ be a
local parameter at . We know that v, (7> (t)) = e(x) where e(z) = 1,2 or 3 dependent
on whether z is not an elliptic point, an elliptic point of order 2, or an elliptic point
of order 3. Thus

v (F) (@) _

Ve (F/®) @)
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Let us compute v-(®). We know that

2 ifie (1),
v-(j—j(r)) =43 ife2™/® e(1)r,

1 otherwise.
This immediately implies that

1 ifiel(1)-r,
ve(j') =42 if P er(1) 7,

0 otherwise.

Thus
ve(®) = k(ez(j) — 1)/e().
Now, let x = ¢; be a cusp represented by ¢ € PH(Q). We used the local parameter
e*™7/" to define v.(F). Since j admits the Fourier expansion e ™2™ 4744+4¢1e*™ " +. ..

at 0o, we see that j' has the expansion —2mie ™2™ + ¢32mie™ ™ + ... at the cusp c.
This shows that v.(®) = —kh. So we get

div(F/®) = div(F) — k Z(%)x + f hics.

Comparing this with the computation of div(dj) in the proof of Theorem 8.5, we get

div(F) = div(F/®) + kdiv(dj) + kY (1—e(x) Dz +k f: ci.

elliptic =

Since div(F) > 0 we obtain that F/® € L(D'), where D’ is linearly equivalent to
kKx + | kD] as in the assertion of the theorem. Conversely, if ¥ € L(D’) we easily get
that FF = U® € M (). Finally, if F' is a cuspidal modular form, we have v, (F) > 0
at cusps. This easily implies that F/® € L(D' —c¢1 — ... — ¢r,.). This proves the
theorem. O

Corollary 8.4.

(2k —1)(g — 1) + kroo + 12| k/2] +73(2k/3] if k> 1,

dim M (") =
im ML) {g—l—roo—l if k=1.

(2k — 1)(g — 1)+ (k — Do + r2|k/2) +73|2k/3] if k> 1,

. 0 _
dim My ()" = {g k=1

Proof. This follows immediately from the Riemann-Roch theorem (since
deg(kKx + |kD|) > deg Kx, the space L(Kx — (kKx + |kD])) = {0}). O

Corollary 8.5. Let fo,..., fn be a basis of the space Mg(I'). Then the map
FrH=PYO), 7= (fo(r),..., fn (1)

defines an isomorphism from X (T) onto a projective algebraic curve in PN (C).
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Proof. We know this already when I' = I'(1). So we may assume that ur > 1. By
Theorem 8.5 we can identify the space Mg(I") with L(D), where

deg D = 6deg Kx + 6700 + 312 + 4r3 = 129 — 12 + 6700 + 372 + 473.

I claim that deg D > 2g + 1. If g > 0 this is obvious. If g = 0 we use the formula for
the genus from Theorem 8.4. It easily gives that

—1246rc +3r2+4r3 =p>29+1=1.
It follows from the proof of Theorem 8.8 that

ve(fi) = va(fi/i'"®) + D(@). (8.28)

Now we use the standard argument from the theory of algebraic curves. First of all the
map is well-defined. In fact, if all functions f; vanish at the same point z, we obtain
vz (fi) >0 for all i = 0,..., N, and hence v (fi/5'%) + D(z) —1>0fori=0,...,N.
This implies that L(D) = L(D — z). However, this contradicts the Riemann-Roch
theorem: since

deg(Kx — D) < deg(Kx — (D —=x)) =29—2—deg D+1 <0,

it gives dim L(D) = deg D+ 1—g > dim L(D —x) = deg D — 1+ 1 — g. Suppose
f(z) = f(z') = p € PY(C) for some x # x’. Without loss of generality we may assume
that p = (1,0,...,0) (to achieve this we make a linear transformation of coordinates).
It follows from (8.23) that f;/j'® € L(D —x —2'),i = 1,..., N. This contradicts again
Riemann-Roch. We have

deg(Kx —(D—z—12'))=29g—2—deg D+2=2g—deg D <0.

Thus N < dimL(D —z—12') =deg D—2+1—g=dimL(D)—2= N — 1. This
contradiction proves that our map is injective. To show that it is an isomorphism
onto the image, we have to check that its derivative at each point does not vanish. It
is easy to see that this is equivalent to the fact that L(D — z) # L(D — 2z) for any
x € X. This is proved by the similar argument as before using the Riemann-Roch
theorem. O

Corollary 8.6. Let R(X(T')) be the field generated by homogeneous fractions f/g,
where f,g are modular forms of the same weight. Then

Proof. 1t is easy to see that R(X(I")) is the field of rational functions on the image
of the curve X (T) in PY(C). Now we apply the Chow theorem that says that any
meromorphic function on a projective algebraic variety is a rational function. O

Exercises

8.1 Show that H* is not locally compact.
8.2 Find all N for which the modular curve X(N) = X(T'(N)) has genus 0 and 1.
8.3 Find all N for which the modular curve Xo(NN) = X (T'9(/V)) has genus 0.
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8.4 Find all normal subgroups I' of I'(1) for which the genus of the modular curve X (T")
is equal to 0. [Hint: Use Theorem 10.4 and prove that ro = ur/2,73 = ur/3, reo|pr].
8.5 Generalize the Hurwitz formula to any non-constant holomorphic map f: X — Y
of compact Riemann surfaces.

8.6 Show that the Moebius transformation 7 — —1/N7 defines a holomorphic auto-
morphism of finite order 2 of the modular curve Xo(N). Give an interpretation of this
automorphism if one identifies the points of Xo (V) with isomorphism clases of pairs
(E, H) as in Theorem 8.7.

8.7 Let
B

Iy (N) = {(j 5) €To(N):a=1 mod N}.
Give an analogue of Theorems 8.6 and 8.7 for the curve H/T'1(N).
8.8 Using Riemann-Roch theorem prove that any compact Riemann surface of genus
0 is isomorphic to P'(C).
8.9 Using Riemann-Roch theorem prove that any compact Riemann surface of genus
1 is isomorphic to a complex torus C/A.
8.10 Compute the dimension of the space M (Xo(11)).

8.11 Using the fact that % /T'(1) = C prove that any nonsingular plane curve of degree
3 in P?(C) is isomorphic to a complex torus.

8.12 Show that any modular curve of positive genus has at least two cusps.

8.13 Find the genus of the curve X (7). Show that the cuspidal forms of weight 1
define an isomorphism from X (7) onto a plane curve of degree 4.

8.14 Let N = 2,3,4,6,12 and k = 12/N. Show that the space of cuspidal forms
M;(T'(N))° is spanned by the function A(T)%
8.15 Consider the Hesse equation z® + y2 + 2% + vyzyz = 0 from Lecture 3.
(i) Show that it defines an elliptic curve E(y) together with an isomorphism ¢ :
(Z/3)® — 3E.
(ii) Show that the coefficient 7 considered as a function on H/I'(3) is a modular

function generating the field M (X (3)).

(iii) Show that the value of the absolute invariant function j(7) on the isomorphism
class of E(v) is equal to

) 216 _ A3)343
ity = Lk - ) -
(v* =27)
[Hint: Find its Weierstrass equation by projecting the curve from the point
(0,1,-1)]
8.16 Desribe explictly the action of SL(2,7Z/3) on the field M (X (3)) (see Remark 8.2)
as follows:
(i) Show that —I € SL(2,Z/3) acts identically.
(ii) Show that PSL(2,F3) = is generated by the elements T' = (1) and S = (92).
(viii) Show that PSL(2,Fs) acts on the field M(X(3)) by transforming its generator

v as follwos:T : a — €2™/3a, T : v — 66;2';.




94

LECTURE 8. THE MODULAR CURVE



Lecture 9

Absolute Invariant and
Cross-Ratio

9.1 Let
Tl = (al,bl)7 T2 = (a2,b2)7 T3 = (a3>b3)7 T4 = (a47b4)

be four distinct points on P*(C). The expression

ail bl as bg
b b
R = 192 O2] |44 Da| (9.1)
al b1 az b2
asz  bs|las ba

is called the cross-ratio of the four points. As is easy to see it does not depend on
the choice of projective coordinates of the points. Also it is unchanged under the
projective linear transformation of P*(C):

(z,y) = (azx + by, cx + dy).

If none of the points is equal to the infinity point co = (0,1) we can write each z; as
(1,2;) and rewrite R in the form

(22 — 21)(2a — 23)

R o) —m)

(9.2)

One can view the cross-ratio function as a function on the space
X =(EF(C)'\A

of ordered fourtuples of distinct points in P*(C). Here A denotes the “diagonal”, the
set of 4-tuples with at least two coordinates equal. The group GL(2,C) acts naturally
on X by transforming each (z1,z2,z3,24) in (¢g-x1,9 22,9 3,9 x4) and R is an
invariant function with respect to this action. In other words, R descends to a function
on the orbit space

R:X/GL(2,C) — C.

The following is a classical result from the theory of invariants:

95



96 LECTURE 9. ABSOLUTE INVARIANT AND CROSS-RATIO

Theorem 9.1. The cross-ratio R defines a bijective map
R: X/GL(2,C) — C\ {0, 1}.

Proof. Let (x1,z2,x3,24) € X. Solving a system of three linear equations with 4
unknowns a, b, ¢, d we find a transformation g : (z,y) — (ax + by, cx + dy) such that

g- (a27b2) = (170)7 g- (a37b3) = (071)7

g~(a4,b4):(1,1), g'(a’lvbl):(lv)‘)v

for some A # 0,1. We recall that two proportional vectors define the same point. This
allows us to choose a representative of each orbit in the form (X, 0, 00,1), where we
now identify points in P*(C) \ {co} with complex numbers. Since the cross-ratio does
not depend on the representative of an orbit, we obtain from (9.1)

R(z1,x2,x3,T4) = A

Since A takes any value except 0 and 1, we obtain that the image of R is equal to
C\{0,1}. Also it is immediate to see that A and hence the orbit is uniquely determined
by the value of R. O

Now let us take an orbit from X/GL(2,Z) represented by (), 0,00,1) and assign
to it the cubic curve given in affine coordinates by the Legendre equation :

EWN):y? —z(z—1)(z—)) =0. (9.3)

This equation can be easily transformed to a Weierstrass equation by a linear change
of variables ' = z + %,y' = 2y. In particular, we see that the functions (p(z) —
2 6(2)'/2) define an isomorphism from a torus E, = C/A, to E(X) for an appropri-
ate 7 € 7. We know that the zeroes of p(z)’ are the points in 2 A and hence the points
(z,y) = (0,0),(1,0), (A, 0) are the non-trivial 2-torsion points on E(\) (the trivial one
goes to the infinity point (0,1,0) € P?(C)). If we take the first two points as a basis
in the group of 2-torsion points 2 E(A) we obtain that E()\) defines an isomorphism
class of an elliptic curve together with a basis of its group of 2-torsion points. In other
words, F(\) represents a point in the moduli space H/T'(2). Conversely, given a point
in H/T'(2), we can represent it by the isomorphism class of some E; with a basis of
1 7

2F given by (5, Z) modulo A. The points

272

(o1, 22,25, 21) = (05 + 5),9(3), 00 9(5) (9.9

define an ordered 4-tuple of points in P'(C), and hence an orbit from X. Replacing 7
o748 " where (ij §) € T'(2), the point z; changes to (y7 + 6)%zi, i = 2,3,4

with 77 = e
(see Example 6.5). This shows that the cross-ratio R(x1,x2,x3,x4) does not depend
on the choice of 7 representing a point in H/I'(2). Together with Theorem 9.1, this

proves

Theorem 9.2. There is a natural bijection between the set of ordered 4-tuples of
distinct points in P*(C) modulo projective transformation and the points in H/T'(2).
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9.2 In view of this theorem the cross-ratio R can be thought as a function
R:H/T(2) — C.

The next theorem shows that this function extends to a meromorphic function on

X(2) = H*/T(2):

Theorem 9.3. The cross-ratio function R extends to a meromorphic function A on
X (2) which generates the field M(X (2)). It can be explicitly given by the formula

Ar) = 190% (05 7')4/1900(0; 7')4.

Proof. Tt follows from the previous discussion that, as a function on #, the cross-ratio
is given by

R = Rlo( + 3 o(p)h () = Z 2120 95)
We have
dim My (1(2)) = 1 — 2k + kpio/2 = k + 1. (9.6)

In particular
dim M, (T'(2)) = 2.

We have seen in Lecture 6 that 1930,194%0,193% and ©(%),9(5), p(%) are examples of
modular forms of weight 1 with respect to the group I'(2). There must be some linear
relation between these functions. The explicit relation between the first set is known

as Jacobi’s identity between theta constants:
9o = 194%0 + 193%. (9.7)

The proof easily follows from the transformation formulas for the theta constants from
Lecture 5. Write 93, = 0119410 + 0219& for some constants c1, c2. Replace 7 with —1/7
2 2
and use (5.8),(5.9) to obtain that ¢; = c2. Next replace 7 with 7 4+ 1 and use (5.3),
(5.4) to see that ¢c1 = c2 = 1.
The relation between the functions from the second set is the obvious one:

o(Toh) +0(2) + pl(5) =0. (9.5)

It follows from the Weierstrass equation (the sum of zeroes of the cubic polynomial
43 — gaxw — g3 is equal to zero).

Now let us find the relations between functions from the first set and and the
second one. We must have p(%) = 0119‘011 + 62194% for some constants ci,ca. Applying

the transformation 7 — 1 + 7 and using formulae (5.2)-(5.4) from Lecture 5, we see

that ¢; = 2c¢2. Using the Fourier expansion of p(%;T) given in Lecture 6, we obtain
—(27i)?

that CcC1 = — 6 Thus
1o o 21 1 4
p(5) = —(2m) (6190% + 13930)- (9.9)
Similarly we obtain
T _ n2 1 4 1 4
p(5) = @m) (5%, + 619%0)- (9.10)
T 1 7 o, 1 4 _ 1 4
@(5 + 5) = (2mi) (Eﬁoé Eﬂ%‘))' (9.11)
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Adding up we check the relation (9.8). Subtracting we obtain Thomae’s Formulae:

rb = p(3) — plr/2)

T 1
7T2194%o =@(§+§)—@(T/2)7 (9.12)
1 T 1
7721935 = 80(5) - @(5 + §)~

Now we can find an expression for the cross-ratio:
p(5+3) —0(3)
o(5) — o(3)

It remains to show that the function A\ = 194% /980 generates the field of meromor-
2
phic functions on X (I'(2)). The algebra M(T'(2)) contains the subalgebra C[92, ,930].

0i°
Using (9.6) we can compare the dimensions of the subspaces of homogeneous elements
of degree k to see that the algebras coincide. Thus

R= = 193%/030. (9.13)

wie| D

M(T'(2)) = ClJ, 3, ool. (9.14)

By Corollary 8.6, the field M(X(T")) is isomorphic to the field of quotients of the
algebra M(T"). This implies that A generates the field M (X (T'(2)). O

Definition. The modular function
A= 193% /90

with respect to I'(2) is called the lambda-function.

Let w : X(2) — X (1) be the natural holomorphic map defined by the inclusion
I'(2) Cc I'(1). The pre-image of the absolute invariant 7 (j) is a meromorphic function
on X (2) and hence must be a rational function in A. Let us find the explicit expression
for this rational function.

Theorem 9.4.
j:28(1—>\+>\2)3
A2(1—=N)?

Proof. We know that p(3),0(%) and p(% + Z) are the three roots 1,2, xs of the

equation 42® — gox — g3 = 0. Thus
g2 = —4(z112 + 123 + T23) = —2[(71 + T2 + 333)2—
(21 + 23 + 23)] = 2(2F + x5 + 7).
Applying formulas (9.9)-(9.11), we obtain

1 T 1 7 (2m)*
g2 = 2(@(5)2 + @(5)2 + @(5 + 5)2) = T(ﬂ%o + 793% + 194%0793%)- (9.15)

Using the Jacobi Theorem from Lecture 4 , we have

g5 — 27¢3 = (2m) A = (2m)"(2m) 0, ° = (2*)7"205, 9% 00

Nl
Wl
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Using (9.7), we get

12,98 8 4 94 \3
_ 172843 _(QW) (19%04'190%4'19%0190%) _

] = =
g5 — 2742 (24)7112193%198%01980

808 4 (94 4 \\3
2%(900 — 790%(7900 - 190%)) o8 (1—X+ )\2)3
75, 080 (Ut — Uip)? IOV

O

Note that there are exactly 6 = 3! values of A (counting with appropriate multi-
plicities) which give the same value of j. This corresponds to the orbit of I'(1) /T'(2)
SL(2,F2) 2 S3 in its natural action on X (2). This shows that there are 6 values of
the parameter A in the equation (9.3) which define isomorphic elliptic curves.

Exercises

9.1 Let p € P? (C) and I, l2, 13,14 be four distinct lines passing through p. For any line
[ in the plane not passing through p let p; =1Nl;,i = 1,2,3,4. Show that the cross-
ratio of the four points p1, p2, ps, p4 does not depend on the choice of an isomorphism
12 P!(C) and also does not depend on the choice of the line I.

9.2 Find the expression for gz in terms of the fourth powers of theta constants.
9.3

(i) Show that an unordered set of four points defines at most 6 different cross-ratia.

(ii) Find the sets of unordered 4 points for which the cross-ratio takes less than 6
values.

(iii) Show that the exceptional sets of points from (ii) correspond to harmonic or
anharmonic elliptic curves.

(iv) Verify that the function j = j(\) from Theorem 9.4 takes the same value at all
six cross-ratia.

(v) Show that there is a natural bijection between the sets of 4 distinct points
in P!(C) modulo projective transformation and isomorphism classes of elliptic
curves.

(i) Show that the permutation group Ss4 contains a normal subgroup H of order 4
which acts identically on P*(C)*/GL(2,C) via its natural action on P!'(C)* by
permuting the factors.

(ii) Show that Si/H = S3 = SL(2,F2) and the action of S4/H on the orbit space
(P}(C)*\ A)/GL(2,C) corresponds to the action of SL(2,F2) on X (2) under the
identification of (P'(C)*\ A)/GL(2,C) with X(2).

(i) Show that the affine curve y? = (1 — z?)(1 — Az?) is birationally isomorphic to
the curve y? = x(x — 1)(x + Az). Show that the exists an elliptic function sn(z)
(called the Jacobi sine function) such that (sn(z)")? = (1 —sn(2))?(1+ Asn(z)?).
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(ii) Define the Jacobi cosine function cn(z) by cn(z) = sn(z)’. Prove the addition
formula
sn(z)en(w) 4 sn(w)en(v)

sn(z +w) = 14 Asn(z)2sn(w)?




Lecture 10

The Modular Equation

10.1 1In this lecture we shall prove that the modular curve Xo(N) can be defined by
homogeneous algebraic equations with coefficients in Z. By reducing the coefficients
modulo a prime p we obtain a nonsingular projective algebraic curve over a finite field
F,, for all prime p except finitely many.

We shall start with the following

Lemma 10.1. Let T' and I” be subgroups of finite index in T'(1). Assume that there
exrists a matriz A = (?; g) € SL(2,R) such that I' C A™' -T - A. Then, for any
fe Mk(r)’

ar + 8 —2k /
A= 1) IMg.
fled = FETED) o7 4875 € M,
Proof. We have checked it in Chapter 6 for the case A € SL(2,Z). But this assumption
has not been used in the proof. O

Corollary 10.1. For f(7) € M(I'(1))r we have
F(NT) € M(Lo(N))k-

In particular,

f(NT)/f(T) € M(Xo(N)).

F= (\/ON —1/0\/N) : (10.1)

Proof. Take

We have, for any M € I'(1),

()6 )

) —v/N
—Npj e ’
Clearly, this implies that T'o(N) C F -T(1) - F~'. Now
fInF = f(=1/N7)(N27)"%* = f(N7)(N7)**(NT)"%* = N*f(NT).
This checks the assertion. O

101



102 LECTURE 10. THE MODULAR EQUATION

Ezample 10.1. Take N = 2 and f = A(7) € M(I'(1))s. We see that A(27)/A(7)
belongs to the space M(Xo(2)). Observe that ¢ = €*™7 changes to ¢®> when we
replace 7 with 27. So

_ I, (=g

A(2r)/A(r) = I, =gyt ¢ [Ta+am*=2"m*,  (102)

where f2(7) is the Weber function defined in (4.13). In particular, we see that

fat = 212 A(27)/A(T) (10.3)

is a modular function with respect to T'o(2). It follows from (10.2) that f3* has a simple
zero at the cusp co. The index of this cusp is equal to 1 since (§ 1) € [o(2). We know

from Lemma 8.5 that po,2 = [['(1) : To(2)] = 3. Thus I'g(2) has another cusp of index
2. Since 0 € I'g(2) - 0o we can represent it by 0. We have

3l (=1/7) = 2 A(=2/7)/A(=1/7) = 2 A(=1/(7/2)) /A(=1/7) =
2%(r/2) 2 A(r/2) /T A7) = A(r/2)/A(r) =

1 m
a2 [Ty (1= q"")" =q ﬁ(1+qm/2)_24
g (1 —gm)* o

This shows that §3* has a simple pole at the second cusp. Since f3* is obviously
holomorphic on H we conclude that it has a single pole of order 1. This implies that
the meromorphic function f3* : X¢(2) — P'(C) has degree 1 and hence maps Xo(2)
isomorphically onto P*(C). In particular, f3* being the inverse transform of the rational
function 2 on P'(C) generates the field of rational function on Xo(2):

D=

M(Xo(2)) = C(A(2r)/A(7)) = C(j3"). (10.4)

10.2 It follows from the Corollary 10.1 that j(N7) belongs to the field M (Xo(NV)).
This field contains the field M(X (1)) = C(j(7)) as a subfield and the degree of the
extension is equal to po,n. We shall prove that j(IN7) generates the extension, i.e.
M(Xo(N)) = C(j(7),j(NT)). We will also describe the algebraic relation between
j(7) and j(NT).

Lemma 10.2. For any natural N,

m).@f ‘f).m): || ra,

AcAn

where Ay is the set of integral matrices (¢ Y) withd > 0,ad = N,0 < b < d,(a,b,d) =
1. The number of elements in An is equal to po,n .

Proof. First of all the right-hand side is the set M (N) of integral primitive (i.e. with
g.c.d of entries equal to 1) matrices with determinant N. In fact, for any such matrix
we can apply row transformations with matrices from I'(1) to reduce it to upper
triangular form. By further row operations we can make d positive and b satisfy
0 < b < d. The number a will be the greatest common divisor of the first column of
the matrix, so is defined uniquely. Then d will be defined uniquely by the condition
ad = N and b will be defined uniquely by the above condition. It is obvious that the
left-hand side is contained in M (N). To prove the opposite inclusion, it suffices to
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show that each matrix A from Ay is contained in the left-hand-side. This follows from
the well known fact that each integral matrix can be transformed by integral row and
column transformations to the unique matrix of the form (g T?, ), where n|n’. The last
assertion can be checked by using elementary number theory. When N = p is prime,

we obviously have #.A4, = p+ 1. Now, if N is not prime we have

#AN =(N) = N[0 +p7") = po.n.

pIN

This can be proved by using the multiplicative property of the function 1(n) and the
formula

o) =3 b, ),

d|N (d7 %)

where ¢ is the Euler function. O

Lemma 10.3. Let f(7) be a modular function with respect to T'(1) which is holomor-
phic on H and admits the Fourier expansion f = > > cnq". Then f is a polyno-
mial in j(7) with coefficients in the subring of C generated by the Fourier coefficients
Coy.v.yC—p.

Proof. Observe first that » > 0 unless f is constant. Since the Fourier expansion of
j starts as ¢~ + ... we can subtract c_,j" from f to decrease the order of its pole
at 0co. Then we do it again, if needed, untill we get that the difference g has Fourier
expansion of the form ¢™ + ... with m > 0. Since g is holomorphic at infinity and
vanishes there, it must be zero. Since all the coefficients of the Fourier expansion of
j are integers, as a result we subtract from f a polynomial in j with coefficients in
Zlc—r,...,co] and obtain 0. O

Lemma 10.4. Let f : X — Y be a holomorphic map of compact Riemann surfaces.
Then f*: M(Y) = M(X) defines an algebraic extension of the field of meromorphic
functions. The degree of this extension is equal to the number of points in the pre-
image ™1 (y) (counting with multiplicities equal to the ramification indices) for any
yeyY.

Proof. We skip the proof of this lemma. One can learn about this fact in any intruduc-
tion book in algebraic geometry. O

Theorem 10.1. The field M(Xo(N)) is generated by j(r) and j(NT). There ex-
ists a polynomial ®n[X,Y] € Z[X,Y] such that F(j(NT),j(r)) = 0. The polyno-
mial On[X, j] € C(H)[X] is a minimal polynomial for j(NT) in the fields extension
M(Xo(N))/M(X(1)). Its degree is po,n. When N > 1, On[X, Y] is symmetric in X
and Y, and if N = p is prime,

On(X,Y) = XPH 4 yPT _ XPYP — XY mod p.
Proof. Let An be the set of matrices from Lemma 10.2. Consider the polynomial

w(N)

o= J] X-jA-1)=> snX™

A€AN

Its coefficients s, are symmetric functions in j(A - 7) and hence are holomorphic
functions on H. It folows from Lemma 10.2 that, for each M € T'(1) and A € An, we
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have AM = M'A’ for some M’ € T'(1), A’ € An. Thus j(A-(M-7)) = j(M'-(A"-7)) =
j(A’-7). Thus replacing 7 by M -1 defines a permutation among the functions j(A-7).
This implies that s, are modular functions with respect to I'(1). By Lemma 10.3, each
Sm is a polynomial in j(7) with coefficients belonging to the subring of C generated
by its Fourier coefficients. However, for any A = (27Y) € Ay, we have

2ni(aT+b) 2miaT 2mib a
e d =e d e d quCm

2miT 27i/d

where g = e , as usual, and (4 is the primitive d-th root of unity equal to e
Now, using the Fourier expansion of j(7) we obtain

. b 1 a
J(aT; )= ‘TTdCZ +¢(qu2)7 (10.5)

where ¢ is holomorphic at infinity. Since the coefficients of j are integers we see that
the coefficients of the Fourier expansion of each j(A - 7) belong to the ring Z[(4]. By
Lemma 10.3, the coefficients s, are polynomials in j(7) with coefficients in Z[¢{n].
Consider the automorphism of the cyclotomic field Q(¢x) which acts by sending (n
to ¢%, where (k,N) = 1. It is clear from (10.5) that this automorphism transforms
J(A-7) to j(A"- 1) for some other A’ € Ay. This shows that the functions s., are
invariant with respect to all such automorphisms, hence must be polynomials in j with
coefficients in Z.

Thus we can consider ® as an element of the ring Z[X, j]. Replacing the variable
j with Y we obtain the polynomial ®x(X,Y) € Z[X,Y]. This will be the polynomial
](\][ (1)) € An we obtain
OnN(j(NT)),7) = 0. The polynomial ®n[X, j] is of degree 1)(IN) and is irreducible since
its roots j(A - 7) are permuted transitively by the group I'(1). By Lemma 10.4, its
degree is equal to the degree of the extension M(Xo(N))/M(X(1)). Since ®n[X, j]
is the minimal polynomial for j(NT) over the field C(j) = M(X (1)), and its degree is
equal to the degree of the extension, we see that j(7) and j(N7) generate M (Xo(N)).
Next, replacing 7 with —1/N7 in the identity ®n(j(NT),7) = 0, we obtain

from the assertion of the theorem. First of all, taking A = (

PN (j(=1/7),4(=1/N7)) = ®n (], j(NT)) = 0.

Since ®n (X, j) is irreducible as a polynomial in X, the polynomial ® (5, X) must be
divisible by ®n (X, j). It follows from the Gauss lemma that

ON(X,Y) = c®n(Y,X), where ¢ = £1. If ¢ = —1, we have ®n(X,X) = 0, hence
®n(j,75) = 0. However, ®n (X, ) is irreducible over C(j) hence j cannot be its zero.
So ¢ =1 and we obtain that ® 5 (X,Y) is symmetric in X, Y. It remains to prove the
last property (Kronecker’s congruence relation).

. . . . 1
Assume N = pis prime. Then the set A, consists of matrices As = (0 ;) , 0<

0 1

1
that we have the following congruence for the Fourier expansion of j(As - 7) in ¢P

s<p,and Ap = (p 0). It follows from the formula (10.5) and the Fermat theorem

§(As 1) (@) = §(@)"? mod (1-¢p),

3(Ap - 7)(q) =j(q)" mod p.
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Here the congruence means that the corresponding Fourier coefficients satisfy the
congruence. The principal ideal (1 —(p) in the ring Z[(,] is prime and (1 —¢;)[p (since
(P21 i¢)(1 = ) = —p). This implies

®,(X,4(q)) = (X —4(9)") (X" —i(g)) mod (1 —Cp).

Let ®,(X,j) — (X — jP)(X? —j) =>_,, amX™. The previous congruence shows that
the coefficients an, are all divisible by (1 — (), and since they are integers, they must
be divisible by p. This proves the theorem. O

Definition. The equation ®n(X,Y) = 0 from the previous theorem is called the mod-
ular equation .

FEzample 10.2. Let p = 2. The modular equation in this case is
F(X,Y)= (X -Y)(X*-Y)+2"-3-31XY(X +V) - 2'3'5°(X* + Y*)+

2%.7.61-373XY +2°37 . 5%(X + V) —2"%3%5° = 0.

For N = 3 the modular equation was computed by Stephen Smith in 1878 9 (few
coefficients turned out to be wrong and corrected by Hermann, Crelle J. 274 (1973).
It has the form

F(z,y) = z(z + 2. 3. 53)3 —|—y(y—|—27 -3 53)3 — z3y3—|—

23.3%.312%% (x + y) — 2% - 3% - 9907y (2® + y°) + 2 - 3* - 13- 193 - 636727y +
2'6.3%.5% .17 263xy(x + y) — 2*' - 5° - 22973zy = 0.

Other cases where it was computed explicitly are N = 5,7,11. The last case took
20 hours on a VAX-780. It is a polynomial of degree 21 with some coefficients of order
1090,

Corollary 10.2. The modular curve Xo(N) is isomorphic to a nonsingular projective
algebraic curve defined over Q.

Proof. We assume that the reader is familiar with some basic notions in algebraic
geometry (first two chapters of [Shafarevich] suffices). The theorem says that Xo(N)
is birationally isomorphic to the plane affine curve ®n(z,y) = 0 defined over Q (i.e.
its equation is given by a polynomial with rational coeffcients). By homogenizing the
equation we obtain a projective curve defined over Q. Now we use the normalization
process. Since this process can be done over the same ground field, the normalized
nonsingular curve is also defined over Q. O

Remark 10.1. In fact, one can choose the equations defining X, (V) with coefficients
in Z. This allows one to reduce the coefficients modulo a prime number p to obtain a
projective algebraic curve over a finite field F,,. It follows from the Kronecker congru-
ence that the prime numbers p dividing N are “bad primes”, i.e. the reduction is a
singular algebraic curve. One can show that all others primes are “good primes”, i.e.
the reduction is a nonsingular algebraic curve. The reductions of the modular curve
Xo(N) modulo a good prime p are examples of curves over a finite field with “many
rational points” and are used in coding theory.

Definition. A holomorphic map between elliptic curves £/ — FE is called an isogeny of
order n if it is a homomorphism of groups whose kernel is a group of order n.
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Let E = C/A,E' = C/A’. Tt follows from the definition that any isogeny f : E' —
E can be lifted to a map f : C — C, z — az such that f(A’) C A. The kernel of this
map is the group o *A/A’ € C/A’. So its order is equal to the determinant of the
matrix A = (2 9%) such that

/ / ’ /
aw1 = aw; + bwy, awi = cw; + dws.

Here A = Zwi + Zwa, A = Zw} + Zwh,. We can change the bases to assume that

A= (d01 d02 ) is diagonal with di1|d2 and did2 = n. The pair (d1, d2) is defined uniquely
by the previous property and is called the type of the isogeny. The isogeny is called

cyclic if di = 1. In this case the kernel of the isogeny is a cyclic group of order n.

Corollary 10.3. Let E. be a complex torus corresponding to the lattice Z + 7Z. Then
the set of isomorphism classes of elliptic curves admitting a cyclic isogeny f : B/ — E
of order N consists of the isomorphism classes of elliptic curves E. where

O (j(),5(r)) = 0.

Proof. Let E' — E be a cyclic isogeny of order N. As we have explained before,
replacing the curves by isomorphic curves, we may assume that

EZC/Z(JJl + Zwo, E’:(C/Zwl + ZNws.

Further replacing them by isomorphic curves we may assume that w1 = l,ws =7 € H.
Thus the isomorphism class of E is determined by the value of j at 7, and isomorphism
class of E’ is determined by the value of j at N7. But the pair (j(NT), (7)) satisfies
the modular equation ®x(z,y) = 0. Conversely, if (j(7'),j(7)) satisfies the modular
equation, then j(7') = j(A - 7) for some matrix A = (&%) € An. This implies
that E = E,.,.. Since 7 and A -7 are both in the upper half-plane, we must have
7" = A-7 = (ar + b)/d. Replacing Z + Z7' with dZ + (at + b)Z which defines an
isomorphic curve, we see that dZ+ (aT+b)Z C Z+Z7 and hence there exists an isogeny
E, — E. whose kernel is given by the matrix A. Since (a,b,d) = 1, the elementary
divisors of this matrix are (1,ad). This shows that f is a cyclic isogeny. O

Corollary 10.4. Let 7 € Q(v/—d) where d is a positive rational number. Then the value
j(7) is an algebraic integer.

Proof. Let O be the ring of integers in the quadratic field Q(v/—d). It admits a basis
1,w. Let a € O such that its norm N is square-free. Then

aw=aw+b, «a=cw-+d.

Here the matrix M = (2 %) has determinant equal to the norm of c. Since the latter
is equal to the determinant of the matrix and is square-free, we have (a,b,c,d) = 1.
Also observe that w = A - w = Z:’Ig By Lemma 10.2, M = M'A, where M’ € T'(1),
and A € Ayn. This shows that

jw) =j§(M-w) =j(M'A-w) =j(Aw).

and hence j(w) satisfies the equation ®n (X, X) = 0. This equation is a monic poly-
nomial over Z, so that j(w) is an algebraic integer. We can write nT = aw + (3 for
some integers n, a, 8. Since @, (j(7),j(n7)) =0, j(7) is integral over the ring Z[j(nT].
So, it suffices to show that j(n7) is an algebraic integer. Since j(n7) = j(aw + ) =
jlaw) = j(—aw), we obtain, by the previous argument, that j(n7) is integral over
j(w). Since the latter is an algebraic integer, j(7) is an algebraic integer as well. [
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Remark 10.2. Notice that 7 € Q(v/—d) if and only if the lattice A, has complex
multiplication (see Lecture 2). By Exercise 2.6 this is equivalent to that E. has
endomorphism ring larger than Z. An elliptic curve with this property is called an
elliptic curve with complex multiplication . Viewing j as a function on the set of
isomorphism classes of elliptic curves, the previous corrollary says that the value of j
at the isomorphism class of an elliptic curve with complex multiplication is an algebraic
integer.

Remark 10.3. The classical Kronecker Theorem asserts that any finite abelian exten-
sion of Q with abelian Galois group can be obtained by joining roots of unity to Q.
Observe that a nth root of unity is the value of the function f(z) = €****/™ on Z.
Let K be an imaginary quadratic extension of Q and let a be an ideal in the ring of
integers of K. Then the set j(a) generates a maximal non-ramified extension of the
field K with abelian Galois group. This is the celebrated ” Jiigendtraum” of Leopold
Kronecker which was proven by himself when he had passed his youth age.

Corollary 10.5. A modular function f € C(j,jn) belongs to Q(4,7n) if and only if its
Fourier expansion at oo has all coefficients in Q.

Proof. Since j and jny has rational Fourier coefficients, we only need to prove the
sufficiency. Let f = R(j,jn) where R = P(z,y)/Q(z,y) is a rational function with
coefficients in C. Any automorphism o of C acting on C(j,jn) sends R to R° by
replacing the coefficients of R with its o-conjugates. This is independent of the choice
of R since the modular equation relating j and jn has coefficients in Q. Let f° denotes
the image of f under the action of o. I claim that

oo

@ =3 olend,

n=—r
where f(7) =>.0° . cng" is the Fourier expansion of f at co. Since
B(N)-1 _
i=0
it suffices to prove the assertion for f € C(j). Write

_ a0+ aij+ ...+ anj"
bo+bij+ ... +bmjm

(10.6)

Replacing f with f~! we may assume n > m. Multiplying by some integer power of
Jj, we may assume that ao, bo # 0. Since ao/bo is equal to the value of f at oo, it must
be a rational number. The difference (f — ¢2)/j has Fourier coefficients in Q, and has
representation in the form (10.16) with smaller n. Continuing in this way we arrive at
the case n = m = 0 where the assertion is obvious. O

10.3 Let us explain the meaning of the symmetry property of the modular equation.
Consider the map H — H defined by the formula 7 — —1/N. It is easy to see that the

matrix F = (_3ﬁ l/g/ﬁ) belongs to the normalizer of the group I'o(N) in SL(2,R),

i.e. FMF~! € T'o(N) for any M € To(N). This implies that the previous map factors
to a map of the quotient H/T'o(N) — H/T'o(N). It can be shown using some basic
algebraic geometry that it extends uniquely to a holomorphic map

Fr: Xo(N) — XO(N)
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Observe also that F? = —1 so that Fr? = identity. It is called the Fricke involution.
By taking the inverse transform of functions, the Fricke involution acts on modular
functions of weight k by

Fr*(f)() = f(=1/N7) = (N7)*" f(NT).
In particular,
Fr*(j(r)) = j(N7), Fr'(j(N7)) =j(=1/7) = j(7).

This implies that the Fricke involution acts on the modular equation by switching X
and Y.

Remark 10.4. Let Xo(N)" = Xo(N)/(Fr) be the quotient of the curve Xo(N) by
the cyclic group generated by the Fricke involution. One can find all numbers N such
that the genus of this curve is equal to 0. It was observed by A. Ogg that the list of
corresponding primes is the same as the list of all prime divisors of the order of the
Monster group, the largest simple sporadic finite group. This has been explained now.

Ezample 10.3. We know that R = A(27)/A(7) generates the field M(Xo(2)). The
Fricke involution acts on this generator as follows:

-V Vi o Co LN

T A(=1/21) T A(27)(27)12 = 312 (27) —o-12p-1

We know that every modular function with respect to the field I',(IN) can be
written as a rational function in j and jx with complex coefficients. In other words, it
belongs to the field C(j,jn). The next theorem characterizes functions which belong
to the field Q(j, jn).

Exercises

10.1 Prove that there exists exactly ¢ (IN) isomorphism classes of elliptic curves ad-
mitting a cyclic isogeny of order N onto a fixed elliptic curve.

10.2 Let f : E' — FE be an isogeny between elliptic curves of order N. Show that
there exists an isogeny f’ : E — E’ of the same order.

10.3 Show that the Fricke involution of H/T'g(/N) sends the point representing the
isomorphism class of the pair (E, A) (E is an elliptic curve and A is its cyclic subgoup
of orer N) to the pair (E’, A"), where E' = E/A, A’ = yE/A.

10.4 Let f,g be two modular forms of the same weight with respct to I'(1). Show
that, for any A € An the function f(A-7)/g(7) is a modular function with respect to
(AT'T(1)M) NT(1).

10.5 Show that ®(j(r),j(r)) = 0 for some N > 1 if and only if E, has complex
multiplication.

10.6 Let N =2,3,5,11 and k = 12/(IN 4+ 1). Show that the space of cuspidal forms
1

M (To(N))° is spanned by the function (A(T)A(NT))¥+T.

10.7 Let N = 2,3,6 and k = 6/N. Show that the space of parabolic forms My (T'(N))°
is spanned by the function A(r)Y/Y.
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1,7 .
10.8 Show that M(Xo(2)) = C(%) [Hint: use that f** = 191120/1712 and apply
2 2

the six crss-ratia formulas].

10.9 Generalize Example 10.1 by proving that the function ®(r) = (AA(?S))ﬁ gen-

erates the field M(Xo(N)) for N = 2,3,5,7,13 [Hint: Check that ®¥~! has one zero
and one pole of multiplicity N —1 and use the formula for the genus of X, (V) to check
that Xo(N) = P'(C)]

10.10 A modular function f € M(X(T")) is called a Hauptfunction for T" if it generates
the field M(X(I')) and admits a Fourier expansion at the cusp oo (of index h) of the
form ¢~ /" + Ym0 amq™'", where a,, are integers. An example of a Hauptfunction
is the absolute invarinat j.

(i) Show that the functions (A&\g) ) NT are Hauptfunctions for the group I'o(N)

when N =2,3,5,7.

(ii) Show that the function +®, where  is the parameter in the Hesse equation (see
Problem 3.6) is a Hauptfunction for I'g(3).

(iti) Show that the 27*) is a Hauptfunction for I'(2) (see Lecture 10).

B00(0;7)% 48 1 (057)°

S
91 ,(057)
Lo

(iv) Show that the function 4 is a Hauptfunction for I'(4).

10.11 Show that the fundamental domain for I'g(p) where p is prime, can be obtained
as the union of the fundamental domain for I'(1) and its translates by transformations
ST*, where k=0,...,p.

10.12 Find the expression of the absolute invariant j in terms of the generator ® of
the field of modular functions for I'g(2).

10.13 Prove that the cosets of I'(1) modulo I'g(N) can be represented by the matrices

(: f?) where (c,d) = 1,d|Nm0 < ¢ < N/d.

10.14 Prove the doubling identities:

219%0(27')2 = 1900(7')2 - 190;(7')2,

2

21900(27’)2 = 7900(7')2 + 190% (T)Z.
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Lecture 11

Hecke Operators

11.1 Let S and S’ be two sets. A correspondence between S and S’ is a subset
Z C 8 x S'. For example, Z could be the graph I'y of a map f : S — S’. One can
view Z as a multi-valued map from S to S’ as follows. Take s € S, and consider
the intersection {s} x S’ N Z. Then take the image Z(s) of this set under the second
projection prg: : S x S’ — S’. This is called the image of s under Z. We will
assume that Z is a finite correspondence meaning that each set Z(s) is finite (maybe
empty). Clearly, Z is completely determined by its images. When Z = Iy is the graph
correspondence we obtain the usual value of the map on s. The analog of compositions
of maps for correspondences is the following operation. Let Z' C S’ x S§” be another
correspondence. Set

Z'oZ =pri3((Z x 8") x (S x Z")),

where p13 is the projection map S x S’ x 8" — S x 8”. It is called the composition
of the correspondences Z and Z’'. It is easy to see that the value of Z' o Z at s € S
is equal to the union Uy ez(s)Z'(s"). In particular, when Z’ is a function f: S’ — S”
(identified with its graph), we have f o Z(s) = f(Z(s)).

One can view any finite correspondence as amap f : S — P(S’) fin, where P(S") fin
is the finite Boolean of the set S’, i.e. the set of finite subsets of S’. Using the
characteristic function of a set we can identify P(S’)in with the set of functions with
finite support which take values 0 or 1. Now let K be any commutative ring. For any
set X denote by K the ring of functions X — K with finite support. Its basis consists
of characteristic functions xy,} and can be identified with elements of X. This allows
us to write its elements as finite linear combinations of elements of X with coefficients
in K. We have encountered this notion when we defined divisors on Riemann surfaces.
By including 0,1 in K we can identify any correspondence Z C S x S’ with a function
Z:58 — K% . We have

Z(s)= Y 1-s. (11.1)

s'€Z(s)

Now we extend the notion of a correspondence by making the following:

Definition. Let K be a commutative ring and let S, S’ /be two sets. A finite K-
correspondence on the set S x S’ is a function Z : § — K° .

111
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We have a natural function

deg: K* 5 K, ¢— > ¢(s) (11.2)

s€Es

which is an analog of the degree of a divisor. If Z is a correspondence as in (11.1),
then deg(Z(s)) = #Z(s), where Z is considered as a multivalued map.

Since K%' is an abelian group with respect to the operation of addition of functions,
we see that the set of finite K-correspondences on S x S’ forms an abelian group.
In particular, take S = S’ and denote the set of finite correspondences on S x S
by Corr(S)k. It has two operations: an addition and the composition. The latter
generalizes the operation of composition of correspondences from above. For any
f 8 — K% denote by f its extension to a map K% — K° defined uniquely by

additivity:
f(z ass) = Zasf(s).
seS s€S
For any f,g € Corr(S)k we set
fogls) = flg(s)) (11.3)

We leave to the reader to verify that this defines a structure of an associative ring on
Corr(S) k. It is called ring of finite K -correspondences on the set S with values in K.
In fact, it is obviously an algebra over K (since K° is a K-algebra). When K = 7 we
skip the subscript in the notation.

Let Z be a finite K-correspondence on S x S’. Any function ¢ : ' — R with
values in a K-algebra R can be extended by additivity to a function q~5 K5 S R

using the formula
o( Z ays') = Z as d(s).

s'es’ s'es’

This allows us to define the inverse transform of ¢ under the correspondence Z:

If Z(s) =Y ,cq as s, then

ZX()(s) = Y awd(s). (11.4)

s'es’

Ezample 11.1. Let f: X — Y be a holomorphic map of compact Riemann surfaces.
Define a function r : X — Z by r(x) = ramification index of f at z. Recall that this
means that, taking a local parameter ¢ at f(z), the function ¢ o f has a zero at x of
order r(z). Consider f~! as a correspondence on Y x X given by the inverse f~*.
More precisely, f~* = {(y,2) €Y x X : f(z) = y}. Then

flz)=y

does not depend on y and is equal to the degree of the map f.
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11.2 We will be interested in the following situation. Let S be the set L of lattices
in C. Define a correspondence on L as follows

T(n)={(MAYeLxL: AN CA[A:AN]=n}. (11.5)
We take the natural inclusion of T'(n) in the product £ x L.

Lemma 11.1. Let A;, be the set of integral matrices (&) with ad =n and 0 < b < d.
Fiz a basis (w1,w2) of a lattice A. For any A € A, denote by A(A) the sublattice
Z(aws + bw1) + Zdws. Then the map A — A(A) is a bijection from the set A}, onto
the set T'(n)(A).

Proof. Note that the set A/, differs from the set A, used in the previous lecture only
by abandoning the primitivity property of the matrix. As in the proof of Lemma 2 in
this lecture, we show that any integral matrix with determinant n can be transformed
to a unique A € A, by integral row transformations. This shows that any sublattice
A’ € T(n)(A) has a unique basis of the form w} = dwi,w) = bwi + awz, and hence is
equal to a unique A(A) with A € A;,. O

Corollary 11.1.
deg T(n)(A) = > d. (11.6)

dln

For any nonzero complex number ¢ consider the correspondence R. on £ defined
by the function A — cA.

Lemma 11.2. The correspondences T'(n) and R. form a subring of the ring Corr(L).
They satisfy the following relations:

(i) T(m)oT(n)=T(mn) if (m,n) =1;
(i) T(p") o T(p) = T(p"*") +pT(p" ") o Ry, where p is prime;
(iii) T(n) o Ry = Rq o T(n);
() Rq o Ry = Rap.
Proof. The last two properties are obvious. To prove (i) we observe that

Tm)oT(m)={(A,A")eLxL:[A:AN]=n,[A:A"]=m for some A'}.

If (m,n) = 1, the finite abelian group A/A"” contains a unique subgroup of order m.
Its pre-image in A must be A’. This shows that

T(n)oT(m)={(AA")€LXL:[A:AN']=mn} =T(mn).

This proves (i). We have

T(p") e TE)(A) = D> anh
[A:A/]=pnt1
where
ap = #{A" AN =p,[A" A =p"}.
Now

"W = Y A,
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pT(p" ") o Rp(A) = pT (0" @A) =p Y bad,

[A:A’]:p7’+1
where

(11.7)

1 if A’ C pA.
bar =
0 if A" ¢ pA.

Comparing the coefficients at A’ we have to show that
(a) anr = 1if A’ ¢ pA;
(b) anr =p+1if A’ C pA.

Recall that ajs counts the number of A” of index p in A which contain A’ as a
sublattice of index p™. We have pA C A” C A. Thus the image A’ of A” in A/pA
is a subgroup of index p. In case (a) the image of A’ in the same group is a non-
trivial group contained in A’. Since the order of A is equal to p, they must coincide.
This shows that A” in A/pA is defined uniquely, hence there is only one such A”, i.e.
ay = 1.

In case (b), A” could be any subgroup of order p in A/pA. The number of subgroups
of order p in (Z/pZ)? is obviously equal to p + 1. O

Corollary 11.2. The correspondences T'(n) are polynomials in T(p)’s and
R,’s, where p runs through the set of prime numbers. In particular, T(n)’s and R,’s
generate a commutative subring H of Corr.

Definition. The subring H of Corr generated by the correspondences T'(n) and R,
is called the Hecke ring of I'(1).

11.3 Consider a function f on £; using definition (11.4) , we have
T(n)"(HA) = > fA). (11.8)
[A:A]=n

We apply it to the case when f is defined by a modular form of weight 2k with respect
to I'. Choose a basis (w1,w2) of A with 7 = ws /w1 € H. Then set

F) = (@)™ f (7). (11.9)

This definition is independent of the choice of the basis as above. In fact, if w) =
aws + fwi, w] = yws + dwi with some M = (: ’?) € SL(2,Z), we have
1\ —2k ry —ok ., 0w + Bwi
= 5 Q2 PRy
(64) ™ Fwhfh) = (o + 8un) (S22
Wi (yr + )T F(M 1) = wy Ff (7).
This function satisfies the property

fah) = a 2 f(A). (11.10)

Conversely given a function f on £ satisfying this property we can set f(7) = f(Z+Z7).
Then

ar +
YT +§

ar +
YT +6

£ )=f(Z+ )= (y7+8) * f(y7 + 0)Z + (ar + B)Z) =
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(y7+0) M f(Z+7Z) = (v7 +8) 7 £(7).
By property (iii) of Lemma 1, we obtain that T'(n) leave the set of functions f on H
satisfying (11.6) invariant.

Let Fj be the space of functions on £ of the form f where f € M(T'(1)).
Theorem 11.1. For any positive integer n and any non-negatve integer k,
To(Fr) C Fr.
Proof. Let f € M(I'(1))x and f € Fi. We know that
> fleN)y=c* F).
[A:A/]=n [A:A/]=n
This shows that T'(n)f = §, where g is a function on H satisfying g((z g) T) =

B
5

function on ‘H and at infinity. Applying Lemma 2, we have

(y7 + 8)"*g(r) for any (: € I'(1). We have to check that g is a holomorphic

9N =T fZ+72)= > flar+v)Z+dz)= Y d ¢ aT—|—b)
AcA, AcAl,

Thus

n=> 4k ATy ST fleAs (11.11)

AcAl, AcAl,
Clearly, g is holomorphic on H as soon as f is holomorphic. It remains to find its
behavior at infinity. Let
oo
f _ Z Cm627r7lmﬂ'
m=0

be the Fourier expansion of f at co. Then

oo

g= Z diQk(Z Cme27rim(a'r+b)/d)'

A€A;, m=0

Observe that

0 otherwise.

; d ifd
Z 62Trzmb/d _{ 1 |m7. (1112)

0<b<d
This gives
—2k+1 2wim’ar —2k+1 am’
g= E d ( E Crm’d€ ) = E d ( E Cmraq™™ ).
ad=n,a>1 m'EZ ad=n,a>1 m/EZ

Now let m = am’ we have d = n/a, so we can rewrite it as follows:
g=> 4" Y e e e2) =) bnd™ (11.13)
meEZ al(n,m),a>1 mez

Since ¢, = 0 for k < 0 we get b, = 0 for m < 0, so that g is holomorphic at co. Also
we see that, if ¢ = 0, then by = 0, i.e. T'(n) maps a parabolic form to a parabolic
form. O
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From now on we shall identify M(I'(1))» with F%. So we have linear operators
T(n) in each space M(T(1))x which also leave the subspace M(T'(1)) invariant.

To avoid denominators in the formulas one redefines the action of operators T'(n)
on the vector space M(I'(1))x by setting

T(n)f =n"*'T(n)"(f) =n**"" > flxA (11.14)

Ac A,

These operators are called the Hecke operators. Let
T(n)(D emg™) =Y bmg™ (11.15)
m=0 m=0

It follows from (11.9) that for prime n = p, we have

m if ,
b — {Cp ) if p fm (11.16)

Cmp + p?k- Cmyp if plm.

Also, for any n,
bo = O'Qk_1(n)00, bl = Cnp. (11.17)

11.4 We will be interested in common eigenfunctions of operators 7'(n), that is,
functions f € M (I'(1) satisfying
T(n)f =An)f for all n.

Lemma 11.3. Suppose f is a mon-zero modular form of weight 2k with respect to
I'(1) which is a simultaneous eigenfunction for all the Hecke operators and let > cng™
be its Fourier expansion. Then c1 # 0 and

T(n)f = "F.

Moreover, if co # 0 we have
Cn/Cl = ng_l(n).
Conversely, if co # 0 and the coefficients ¢, satisfy the previous equality, then f is a
simultaneous eigenfunction of Hecke operators.
Proof. In the notation of (11.11) we have

bm = A(n)cm, VYm,n.

If ¢; = 0, then b1 = A(n)ci = 0. But, by (11.12) we have ¢, = b1. This shows that
c¢n, = 0 for all n # 0. Thus f is constant, contradicting the assumption. So, ¢1 # 0,
and ¢, = b1 = A(n)c1 implies

Aln) = en/e.

If co # 0, we use (11.12) to get by = o2k—1(n)co = A(n)co. This gives

A(n) = o2k—1(n).
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Corollary 11.3. Keep the notation from the previous lemma. Assume f is normalized
so that c1 = 1. Then
CmCn = Cmn if (Mm,n) =1,

. 2k—1
CpCpn = Cpn+1 + P Cpn—1

where p is prime and n > 1.

Proof. The coefficient ¢, is equal to the eigenvalue of T'(n) on My (T'(1)). Obviously
CmCrn is the eigenvalue of T'(n)T(m) on the same space. Now we apply assertion (ii)
taking into account that the correspondence R, acts as multiplication by p~2* and
remember that we have introduced the factor n?*~! in the definition of the operator
T(n). O

Ezample 11.2. Let Eg(7) be the Eisenstein modular form of weight 2k, k > 2. We
have seen in (6.21) that its Fourier coefficients are equal to

2(27r)k02k_1(n)

cn =
921 kg,

(2k)!
Thus ¢, = c102x—1(n), and therefore Ei(7) is a simultaneous eigenvalue of all the
Hecke operators.

co = 2¢(k) =

Corollary 11.4.
oo2n—1(m)oak—1(m) = oak—1(mn) if (m,n) =1,

Ook—1(P)T2k—1(p") = o2r—1(p" ) + pF o1 (p" ),

where p is prime and n > 1.

Ezxample 11.3. Let f = A. Since f spans the space of cusp forms of weight 6 and this
space is T'(n)-invariant for all n, we obtain that f is a simultaneous eigenfunction for
all the Hecke operators. We have

A=q[Ja-gm*=> r(n)q"

m=1
We see that the Ramanujan function n — 7(n) satisfies
T(m)r(n) = 7(mn) if (m,n) =1, (11.18)

r(p)r(p") = 7(" ) +p"'r(»™"") if p is prime and n > 1, (11.19)

Recall from Number Theory that a function f : N — C is called multiplicative if
flmn) = f(m)f(n) if (m,n) = 1. It follows from above that the Fourier coefficients
¢, of any modular form which is a simultaneous eigenfunction of all the Hecke oper-
ators and normalized with the condition that ¢; = 1 define a multiplicative function.
Example 2 provides the function oa,—1(n). Of course, the fact that is multiplicative
is well-known and can be found in any text-book in number theory. The fact that
the Ramanujan function is multiplicative is not easy, and does not follow immediately
from its definition.
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11.5 One can say more about the Fourier coefficients of a cuspidal modular form

which is a simultaneous eigenfunction of Hecke operators. This is done by introducing

an inner product in the space M(I'(1))%.

Definition. Let f, g be two parabolic modular forms of weight k& with respect to I'.
Let D C H be the modular figure. The formula

(9 =5 [ F@g@m () drdr = [ fo+ iy)ale+ i)™ dedy
D D
defines a Hermitian inner product in the space My (I)°. Tt is called the Petersson

imner product .

Observe that the integral converges because at the cusps f(7)g(7) behaves like
O(e™¥) for some ¢ > 0. This is why we have to restrict ourselves to parabolic forms
only.

Lemma 11.4. For any A= (%) € GL(2,R) with det A > 0,

(fleA, geA) = (f, 9)-

Proof. We have

U o) = § [ fam)er +d) gD + - (r)* 2 =

% / F(AT)g(AT)|er + d|*Im (7)* drdr =
D

. /D F(AT)g(Ar)Im (A7) ~2d(Ar)d(AT) =

1/ f(T)mIm (T)Qk_QdeT'.
2 Jap
In particular, when we take A € T" we get that in the definition of the inner product

we can integrate over A(D) which is another fundamental domain for I". In fact, this
computation shows that for any measurable subset @Q of H and any A € I', we have

/D F(r)g(M)Im (1) 2drdr = / F(r)g(M)Im (r)*2drdr.

A(D)

This allows one to view (f,g) as the integral of the differential form
w = %f(T)g(T)Im (T)Qk*Qde?

over H/T. Since for any A € GL(2,R) with det A > 0, the set A(D) is another
fundamental domain for I', the see that the last integral in (11.14) is also equal to the
integral of w over H/I'. Hence, it is equal to (f,g). O
Theorem 11.2. The Hecke operators are Hermitian operators on the space My (T'(1))°
with respect to the Petersson inner product.



119

Proof. We have to check that

(T(n)f,g) = (f,T(n)g).

In view of Lemma 2 it is enough to check it when n = p is prime. We have

TP f.g)= > (fleg)= D (frghad™).

AeA, AeA,

Note that for any A € Aj;, we have pA~! is an integral matrix of determinant p. Thus
we can write as M A’ for some M € I'(1) and A € Aj,. This gives us that

(Tw)fr9)= Y (FaleMA) = > (f,9lA") = (}, T(p)g)-

Ale Al Al€ Al
O

Corollary 11.5. The space of parabolic modular forms My,(T'(1)° admits an orthonor-
mal basis which consists of eigenfunctions of all the Hecke operators T'(n).

Proof. This follows from a well-known fact in linear algebra: a finite-dimensional
Hilbert space admits an orthonormal basis of eigenvalues of any set of commuting
normal operators. O

Corollary 11.6. Let f be a cuspidal modular form which is a simultaneous eigenfunc-
tion for Hecke operators and let c,, be its Fourier coefficients. Then cn/c1 are totally
real algebraic numbers.

Proof. The numbers c¢,/c1 are eigenvalues of a Hermitian operator. They must be
real. To prove the algebraicity, let us consider the set My (Z) of modular form of
weight k for I'(1) with integral Fourier coefficients. Examples of such forms are the
normalized Eisenstein series Ej, = é?;ﬂlfkl
with respect to Hecke operators (as it follows from the formula for the Fourier coeffi-
cients of transformed functions). We can find a basis in this module which is a subset
of monomials (E3)*(F3)®, a + b = 2k. Thus the egenvalues of T'(n) being the roots of
the characteristic polynomial with integer coefficients must be algebraic numbers. [J

Ey(7). This set is a Z-module and invariant

Exercises

11.1 Let S be the set of finite-dimensional vector spaces over a finite field Fy of ¢
elements. For each positive integer n consider the correspondence T'(n) = {(V, W) :
W C V,dim V/W = n}. Show that the operators T'(n) generate a commutative subring
of the ring of correspondences Corr(S). Show that T'(n)T(m) = k(n,m)T(n + m),
where k(n,m) = #G(n,n + m)(Fy) (G(n,n + m) is the Grassmann variety of linear
subspaces of dimension n in Fjt™).

11.2 Show that the Hecke operators T'(n) together with operators R. generate a

commutative algebra H over C which is freely generated by the operators T'(p) and
Ry, where p is prime. The algebra H is called the Hecke algebra of the group I'(1).

11.3 Show that the vector subspace of Corr(L£)g spanned by the Hecke operators T'(n)
is a subalgebra of Corr(L)g.
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11.4 Consider the formal infinite series > ., T'(n)n~° with coefficients in the Hecke
algebra H of I'(1). Show that

ST = [ L—Twp *+Rp' >

p prime

11.5 Show that for any lattice L in C and a complex number s with Re s > 1, we have

]

D #T(n)(L)n™* = ((s)¢(s — 1),

where ((s) is the Riemann zeta function.

Let T be a subgroup of finite index in I'(1) and A be a subsemigroup of the group
GL(2,Q)" of rational 2 x 2-matrices with positive determinant which contains T' and
satisfies the property that, for any o € A, a-T'-a~' N T is of finite index in I' (e.g.
I'=T(1) and A = {0 € Mz(Z) : deto > 0}). Let H(I', A) be the free abelian group
with the basis formed by the double cosets [0] = 'oT', 0 € A.

(i) Show that, for any o € A, the double coset [0] is equal to a finite union of right
cosets I'o;, where o; € A.

(ii) If [o] = U0, 0] = Uljes0}, let c5 ., denote the number of pairs (7,j) €
I x J such that I'c;o; = I'a for a fixed a € A. Show that the formula

o] 1= > Golal

a:T'al’CTel'o’T

togeher with the addition law defines a stucture of an associative ring on H (I, A).
This ring is called the Hecke ring of (T, A).

(iii) Let ¢ be the adjugation involution in M2(Z) (i.e. «(M)M = det(M)I2).Assume
that A is invariant with respect to ¢. Show that H(T', A) is commutative if and
ounly if [t(o)] = [o] for any o € A.

11.7 Let S be the set of right cosets I'- 0,0 € A. For any o € A set Z, = {(T'e, ') €
SxS:T'-BCTlola}.

(i) Show that Z, depends only on the double coset [o] of o, so we can denote it by
Z[U] .

(iii) Show that [¢] = Z[,) defines a homomorphism of the Hecke ring H(I', A) to the
ring Corr!(S) of finite correspondences on the set S.

11.8 For any 0 € A let T, = (6To™')NT. Let 7 : H/Ty — H/T correspond to
the natural inclusion I'; C T and let 7o : H/T'v — H /T be the composition of an
isomorphism H /o 'T'o = H/T induced by the Méebius transformation 7 — o - 7 and
the natural projection map H /Ty — H /o 'To.

(i) Show that the composition of the correspondences 7 o m, ' defines a finite cor-
respondence C, on H/T. Here 7" is defined as in Example 1 from the lecture.

(ii) Show that C, depends only on the double coset I'oI'. Denote it by Ci.

(iii) Show that Zj,) — C[,) defines a homomorphism from the Hecke ring H(I', A)
to the ring Corr(H/T").
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11.9 Consider the Hecke ring H(I'(1), M2(Z)"). For any pair of positive integers a, b
with alb denote by T'(a,b) the double coset of the matrix (&9). For any positive
integer n set T'(n) = > ,_,. T(a,b).

(i) Show that T'(a,b)T(a’,b") = T(aa’,bb’) if (b,b") = 1.

(ii) Show that T'(p*,p™) = T(p,p)T(p"~*,p™ '), where p is prime.

(iii) Show that there exists an isomorphism of algebras H(I'(1), M2(Z)")®C and the
Hecke algebra H of I'(1) as defined in Exercise 11.2. Under this isomorphism
each element T'(n) is mapped to the Hecke operator T'(n), and each element
T'(a,a) is mapped to the operator Ry.

11.10 Let A(N) C M2(Z)* be the set of integral matrices with positive determinant
prime to N. Prove that the map I'(IV)oI'(N) — I'(1)oT'(1) defines an isomorphism
from H(T'(N), A(N)) onto H(T'(1), M2(Z)o™).

11.11 Let N > 1 and A be a fixed subgroup of (Z/NZ)*. Let A be the semigroup
of matrices o = (¢ %) € Mz(Z)" such that (deto, N) = 1, N|c and the image of a in
Z/NZ belongs to A. Let T be the group of invertible elements in A. For example,
I' = To(N) or I'1 (V). Consider the Hecke ring H(I', A). For any d € (Z/NZ)* let
a4 denote any representative of (¢ %) in SL(2,Z). For any pair of positive integers
a,b such that alb and (b, N) = 1, denote by T'(a,b) the double coset of the matrix
(&9). For any positive integer n let T'(n) be the sum of the double cosets Z,), where
det 0 = n. Show that

(i) any Z, € H(I', A) can be uniquely expressed as the product T'(m)T (a, b), where
each prime factor of m divides N (we write it as m|N°°);

(ii) if (m,n) =1 or m|N*° or n|N°°, then T(mn) = T(m)T(n);

(iii) H(T, A) is a polynomial ring over Z in the variables T'(p, p) for all primes p JN
and T'(p) for all prime p;

(iv) H(T',A) ® Q is generated as an algebra over Q by T'(n) for all n;

(v) the map H(['(1), M2(Z)") — H(T,A) defined by sending T'(p) to T(p) if p is
any prime, T'(p,p) to T'(p,p) if p is a prime with p fN, and sending T'(p,p) to
zero if p is prime with p|N, is a surjective homomorphism of rings;

(vi) H(T',A) is a commutative ring.

11.12 Define the action of [¢] € H(I', A) on M(T') by f|[o] = det(a)" '3, flxoi,
where [0] = U;T'o; and f|ko; is defined as in (6.5) (which applies to not necessary
unimodular matrices).
(i) Show that, extending by linearity, this defines a linear representation T — T
of the ring H(T, A) in My,(T) and in M, (T)°.
(ii) Let (I', A) be as in Exercise 11.11. Show that, for any n > 0 and f € M(I),

T(n)"(f) = > Flio <g b) .

ad=n,(a,N)=1,0<b<d

11.13 Let us identify the set of points of Xo(N)' = H/To(N) with the set of isomor-
phism classes of pairs (F, H), where F is an elliptic curve and H is a cyclic subgroup of
order N of its group of N-torsion points (see Theorem 8.6). Let p be a prime number
not dividing N and let T'(p) be the Hecke correspondence on Xo(N)" (see Exercise
11.7). Show that T'(p)((E, H)) = {(E/A:, Ai + H/A;),i=0,...,p}, where Ag,..., A,
is the set of cyclic subgroups of order p in E.
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Lecture 12

Dirichlet Series

12.1 A Dirichler series is an infinite series of the form

where s is a complex number. It absolutely converges for Re s > 1 + ¢, where
an, = O(n°).

An absolutely convergent Dirichlet series in a domain D is a holomorphic function in
D. The most notorious example of a Dirichlet series is the Riemann zeta function

(=3

It converges for Re s > 1. We will be interested in Dirichlet series for which the
coefficients a,, are the Fourier coefficients of a modular form.
Let f € M(I')x and let

f _ Zane27rin7/h (121)
n=0

be its Fourier series at co. For any complex number s we define the formal expression

Zp(s) =3 =3 aneE" (12.2)
n=1 n=1

and call it the Dirichlet series associated to f. Let us first invesigate the convergence

of this series.
Lemma 12.1. Let f € My(T"). Then f is parabolic if and only if
f(z+iy)| < Cy™" (12.3)

for some constant C independent of x.

123
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Proof. Let ¢(z + iy) = |f(z + iy)[y*. It is immediately seen that this function is
I-invariant. Let a be a representative of a cusp with respect to I'. Choose A € I'(1)
such that A -« = co. Then f|pA = ®(e?™"/") for some function ® holomorphic in a
domain Re 7 > ¢. We also have ¢(A-(z+iy)) = |®(e2"*~¥/")|y*. Assume f vanishes
at a. Then ® = 2" =9/" 3y where limy 0o Po # 0. Thus limy 0 ¢(A - (z +iy)) =
limy 00 e™¥¢* = 0. This implies that the function ¢(x +iy) converges to zero when
T = x + iy converges to a cusp. Hence it is a continuous function on a compact
topological space H*/I". It must be bounded. Conversely, if the inequality (12.3)
holds, then ¢(z + 4y) must be bounded and hence ® must be vanishing at 0. 0

Corollary 12.1. Let f € My(T)° and an be the coefficient at e2™in/h in its Fourier
expansion at co. Then

lan| = O(n").
In particular, Z¢(s) converges for Re s > k + 1.

Proof. Let q = e2™*@+W)/"  Pix ¢ and let  vary from 0 to h. Then g moves along
the circle C(y) of radius e~ 2™/" with center at 0. By Cauchy’s residue formula

1

an = - —
2mi C(y)

. I BN

f(r)g " "dg = E/ f(z +iy)g "du.

0
By Lemma 12.1, | f(z + iy)| < Cy~* for some constant C'. We have

1 [k
jan| < g/ |f @+ iy)llg| " da < Cy~remmv/m
0

Taking y = 1/n, we get |an| < Mn”. O

12.2 We shall now find a functional equation for the Dirichlet series Zy(s).

Lemma 12.2. Let f € M (T") and Fy = (\/ON 71/0‘/ﬁ)4 Assume that T/ = FIGI-F-FN

is a subgroup of finite index in SL(2,Z). Then
W (f) := fleFn = f(=1/NT)N"F77F € My (D).
Moreover, if f € Mg(T')°, then Wi (f) € My (I'")°.
Proof. For any A € I'" we have Fy A = BFy for some B € I'. Hence
Wr (kA = (flFN)[kA = flrFNA =
fleBEN = (fleB)|kFN = fleFn = Wi (f).
We leave the proof of the last assertion to the reader. O
Ezample 12.1. Let f € Mp(To(n)). Assume that N|n. Then
W (f) = f(=1/NT)N~*r72* € My(To(N)).
To see this we use that
0 —1/VN\[(a b\/0 —1/N\ ' [ d —enN € To(N)
VN 0 nc d VN 0 — \=bN a 0 ’
(12.4)
The same equality shows that

feMp(T(n)) = Wn(f) € Mp(T'(n/N)NTo(nN)).
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Theorem 12.1. (Erich Hecke) Let f € My(T')° and let g = Wi (f). Assume that
Fy~'-T - Fy is a subgroup of finite index in SL(2,Z). Let h be the index of the cusp
oo of T and h' be the same for T'. The Dirichlet series Z¢(s) can be extended to a
holomorphic function on the whole complex plane. Setting

R(s, f) = N*/*(2m)"*T(s) Zs (s),
we have the functional equation
W R(s, f) = (=)W R(2k — 57 9),
Here I'(s) is the Gamma-function.

Proof. We shall use the Mellin transform which carries a function ¢(y) defined on the
positive ray of real numbers, and bounded at 0 and co, to a holomorphic function

M¢(s) defined by M¢ = F, where
= / ¢(y)y* ' dy.
0

Yy+ioco
(y) = i/ F(s)y %ds, y>0.

2 ico

It is inverted by

Take ¢(y) = f(iy) and let f = >  an e2™"7/" be its Fourier expansion at co. We

have
o 0o
— Z an/e—any/hys—ldy _
n=1 0

G r —tys—1 hdt s
nzlano/e t )y = (h/27)°T(s) Z; ().

Here we have used the integral formula for the Gamma-function:
I'(s) = /e_tts_ldt. (12.5)
0

We leave to the reader to justify the possibility of the term-by-term integration of the
infinite series (we have to use Lemma 12.2). Now let us do the same for the function
g=Wnx(f) € Mp(T")°, where I' = Fy 'T'Fn. We have

A %)
2/ fly)y* tdy = /f iy)y*~ 1dy+/f iy)y°~'dy,
0
0 A

where the first summand converges for Re s > k 4+ 1 and the second one converges
everywhere. The Fricke transformation transforms f(iy) to f(i/Ny) = N*(iy)**g(iy).
So changing the variable y to 1/Ny we obtain

)

A
/ Fliy)y*~dy = / FG/Ny) N~y dy = (—1)*N*~ / gy dy.  (12.6)
0 A
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This converges for all s € C. Similarly,

A

/f(iy)ys_ldy: (_1)ka_s/g(iy)y%_l‘sdy.
A

0

This converges for Re s > k + 1. This shows that each summand in (12.6) can be
holomorphically extended to the whole complex plane. After summing up we get

M¢(s) = (h/2m)'T(5)Zs(s) = (—=1)*N*"*Mg(iy)(2k — s) =

(=D)FEN* == (0’ /27)* 7D (2k — ) Zy(2k — s).
Thus if we set R(s, f) = N*/2(2r) ~*T'(s)Z;(s) we obtain

h*R(s, ) = (=1)"h"**°R(2k — s, 9)
for Re s > k+ 1. O

It follows from Example 1 that the Fricke transformation Fx defines a linear op-
erator W on the space My (I'o(NV)) . It satisfies

Wi =1.
In fact we have
WX (f) = W (N 772 f(=1/N7)) = N~*r N8 (=1/N7) 7 f(7) = f(7).
Thus we can decompose My (I'o(NV)) into the direct sum of two eigensubspaces
My (Lo(N)) = My (Lo(N))+ & Mr(To(N))-

with eigenvalue +1 or —1. Similarly, we see that Wy acts on the space My (I'(NV))
and we can decompose it in the direct sum of two eigensubspaces:

M(T(N)) = Mi(T(N))+ & M (T(N))-.
Corollary 12.2. Let f € My(To(N))., where e = +1. Then
R(s; ) = (—=1)"eR(2k — s; f).
Corollary 12.3. Let f € My(I'(N))c, where e = £1. Then

R(s; f) = (—1)*N**"2%¢R(2k — s; f).

12.3 If f € Mg(T) is not a parabolic modular form we cannot, in general, attach the
Dirichlet series to it. However, if we assume that f admits a Fourier expansion at co
with coefficients satifying |a,| < n° we can still do it and obtain a holomorphic function
Z¢(s) defined for Re s > ¢. The next theorem generalizes the previous theorem to this
case.
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Theorem 12.2. Let f € My(T') and g = Wi (f) € My (T") where T’ = Fy' -T'- Fy
is a subgroup of finite index in SL(2,Z). Let

o o
Z 2min/h Z 2min/h’
f — ane Tin/ . g= be Tin/
n=0 n=0

be the Fourier expansions at f and g at oo. Assume that |an|,|bn] < O(n®). Let
R(f;s) := N*/2(2n)~°T(s)Z¢(s). Then Z;(s) is holomorphic for Re s > ¢+ 1 and
R(f;8) + aos™" + (=1)%bo(2k — s)™! admits a holomorphic extension to the whole
complex plane. Moreover,

R R(f;s) = (—=1)"R'** *R(f|rFn; 2k — s).

Remark 12.1. It is known that the Gamma-function I'(s) is meromorphic and has a
simple pole at s = 0. Thus, in Theorem 12.2, Z;(s) admits a meromorphic extension
to the complex plane with single pole at 2k.

Ezample 12.2. Take f(7) = Ear(7). Then
2(2mi)%F & n
Eoi(1) = 2¢(2k) + k= 1) ;U%—l(”)q ;

where

o2k—1(n) = Z d* -1
d|

It is easy to see that
n* 7t < oar_1(n) < AP

for some positive constant A. Thus Z;(s) is defined and is convergent for Re s > 2k.
Since

Za2k71(n)n_s _ Z l2k—1(lm)—s —
et m,l=1
i m TSR = (6) ¢ (s — 2k + 1),
m,l=1
we have 2(27mi)2*
Zpyy (s) = (2(%_’)1)!((5)((5 —2k+1). (12.7)

Recall that Eox (1) € Mp(T'(1) = My (To(1)). Applying Theorem 12.2, we obtain

2k—2s F(Zk — 8)

C()G(s — 2k + 1) = (2m) &S

C(2k — $)C(1 — 5).
Of course it follows also from the known functional equation for the Riemann zeta

function g
PTG (s) =7 T D) - ).

Ezample 12.3. Take f(7) = ©(0,7)%. We know that these functions are modular
forms of weight k = 2¢ for I'(2). We have

0(0,7)%" = Z csi(n)e™™,
n=0
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where
cst(n) = #{(r1,...,r8) € 78 in=ri4 ... —&-rgt}.

It is clear that we can bound cg¢(n) by the number of integer points inside of the cube
[—v/1, —/n]®". This easily gives

cst(n) < cn® = on?*,
Therefore, the Z(s) is convergent for Re s > 2k + 1. We have

2 (rf +. +r8t) = 2 Q

"
m=1 (r1,---,m8¢) €Z8E\{0} AeA\{0}

oo

where Q = 27 +... + 2% and A = Z8 C R®". More generally, for any positive definite
quadratic form @ : R® — R and a lattice A in R™ we can define the Epstein zeta

function
-2 G

AeA\{o}

Although f(7) is not a modular form for I'(1) it satisfies f(—1/7) = f(r)r*". Applying
Corollary 2 to Theorem 1 with N = 2 we get

9°9%/2(20)~°T(5)Z; (s) = 275272 (2) "M D(4t — 5)Z; (41 — )
which gives
7_l,4t—2s F( )
7Z
22— T(4t — s) 5 (s)-

Zf(4t - S)

12.4 Now let us look at the Dirichlet series associated to cuspidal forms which are
simultaneous eigenfunctions of Hecke operators.

Theorem 12.3. Let f be a normalized cuspidal modular form of weight k with respect
to T'(1) and > cn.q™ be its Fourier expansion. Assume f is normalized in the sense
that c1 = 1. Assume that f is an eigenfunction for all the Hecke operators. Then the
associated Dirichlet series Z(s) admits the following infinite product expansion:

1
Zs(s) = H (1—cpp—* + p2F—1p=25)

p prime

Proof. We know from Corollary 11.3 that the function n — ¢, is a multiplicative
function. This implies that for any finite set S of prime numbers

>, _ 1
Z % = H(Z cpmp” ") = H (1= cpp— + p2h—ip—2s)’

neN(S) peS m=0 peES

where N(S) denotes the set of natural numbers whose prime decomposition involves
only numbers from S. Here we use Corollary 11.3 which gives us that

oo
(A =cop  + 0 ) pmp ™) = 1.

When S grows, the left-hand side tends to Zy(s). This implies that the infinite prod-
ucts converges to Zy(s). O
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Example 12.4. Take f = A to obtain

= T(n) _ 1
ZA_,; n 1 (L=7(p)p== +p'tp=2)’

p prime

where 7(n) is the Ramanujan function. Applying Corollary 2 with N = 1, we get also
the functional equation for Za(s):

I'(s)

Za(12 —5) = (27r)12*28m

Za(s).
Remark 12.2. Let
fp=1-c, T+ 'T? = (1 - a,T)(1 - a,T).

We know that a; and «j, are algebraic integers. The Petersson conjecture suggested
that of, = @p, or, equivalently,

_1
| = lap| = "2,
or
k—1
|CP| S 2p 23
or )
len| <nF200(n) for all n > 1.

This was proven by P. Deligne as a special case of his proof of Weil’s conjectures
about the zeta function of algebraic varieties. In particular, when k = 6 we get the
Ramanugan’s Conjecture:

m(p)| < 2p"'/%.

12.5 In this section we generalize some of the previous results to the case when
I'(1) is replaced with I';(IV). We will be rather sketchy and refer for the details to
[Seminar]. We use the definition of the corresponding Hecke ring H(I',A) from
Exercise 11.11. Let us denote it by Tx. It is generated by the elements T'(p) for all
prime p and elements T'(p, p) for all primes p not dividing N. Let TW) denote the
subring of T generated by T'(p) and T'(p,p), where p does not divide N. One can
extend the proof of Theorem 11.2 to show that T acts in the space My (I'1(N))° by
Hermitian operators (with respect to the Petersson inner product). This is not true
for the ring Txn. So a cuspidal form could be a simulateneous eigenfunction for all the
Hecke operators coming from T™) but not an eigenfunction for some Hecke operator
from Ty .

It is easy to see that I'1 (IV) is a normal subgroup of I'o(N) with the quotient group
isomorphic to (Z/NZ)*. Thue latter group acts naturally on the algebra of modular
forms with respect to I'o(N), and for each k£ > 0 we have a direct sum decomposition
into the eigensubspaces corresponding to Dirichlet characters x : (Z/NZ)* — C*:

Mp(L1(N)) = & Mi(T1(N)y, (12.8)

Let
Mi(To(N); x) == {f € Mr(To(N)) : flrg = X'(9)f, Vg€ To(N)},
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where X' is the composition of x with the homomorphism T'o(N) — (Z/NZ)* which
sends a matrix to the residue modulo N of its first coefficient. We will also need the
notation
Mi(To(N); x)° = My (To(N); x) N Mi(To(N))°.
We have
M (T1(N)x = Mr(To(N); x)-

Clearly the subspace My(Io(N) C My (I'1(N) corresponds to the trivial character.

More explicitly, the action of (Z/NZ)* on My (I'1(NV)) is defined as follows. For
any n € (Z/NZ)*, let a,, be any element of SL(2,Z) such that o, = (7§ ngl) modulo
N. Then the action of n on My (T'1(NV) is given by the formula

<n > f = flean. (12.9)

Notice that the Hecke operator T'(n,n) acts on My (T'1(N)) as n* 72 < n >.
We have the following analogue of Theorem 11.2:

Theorem 12.4. Let T(n) € T™) with (n, N) = 1. For any f,g € My(To(N); x)°,

(T(n)f,9) = x(n)(f, T(n)g),

where the inner product is the Petersson inner product. In other words, the adjoint of
T(n) is Tno < n mod N >.

It is easy to see that the operators T'(m),(m,N) = 1 and < n > form a set
of commuting normal operators on My (T'1(N)). This allows to decompose each
M, (To(N); x) into an orthogonal sum of T)-eigensubspaces.

The condition (n, N) = 1 is important. The operators T'(n) for which n does not
satisfy this condition are not normal operators. So, it becomes problematic to find a
modular form which is a simultaneous eigenfunction for all the Hecke operators.

Another unfortunate thing is that the operator Wy does not commute with all
the Hecke operators, so that we cannot combine Theorem 12.3 and Corollary 12.3 to
obtain Dirichlet series Z(s) with the infinite product as in Theorem 12.3 which satisfy
the functional equation as in Corollary 12.3.

We have the following weaker assertion:

Proposition 12.1. Let Wy be the operator on Mk(Fl(N))O corresponding to the
Fricke transformation Fy defined by f — flx (5 o). Let T(n)r,x denote the restric-
tion of the Hecke operator T'(n), (n, N) =1 to the subspace Mp(To(N);x). Then

T(n)ky o Wn = x(n)Wn o T(n)k x,
where x denotes the complex conjugate character.
Proof. We refer for the proof to [Shimural]. O

However, one can still find common eigenvalues in My,(T'1(N))° for all the Hecke
operators if we restrict these operators to a certain subspace. Let us explain this.
Let d, M be positive integers such that dM|N. There exists an injective linear
map
tamn : My (T (M))? = My (T (M))°. (12.10)

It is defined by sending f(7) to dgflf(dr). One checks that it is a homomorphism
of T -modules. Let My (I'1(M))%, be the subspace of My (I1(M))° spanned by
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the images of the maps tq,a,n. Let My (T'1(M))%.,, be the orthogonal complement
of My, (T1(M))%,, with respect to the Petersson inner product. In fact, we have an
orthogonal decompositions

Mk(rl(M))gm = & Mi(Lo(M); X)glda
where My (To(M); %)%4 = M (To(M); %) N Mi(To(M))Y,4, as well as
M (To(M); x)° = Mi(Lo(M); X)ora ® M (To(M); X)new-
The next result, due to Atkin and Lehler, is called the Multiplicity One Theorem.
Theorem 12.5. Let f € My(T1(N))2.w. Suppose that f is an eingefunction for all
the Hecke operators from TWND) for some D > 0. If g is another such form with the
same eiegenvalues, then g is a scalar multiple of f.
Corollary 12.4. Let f € My(T1(N))2..,. The following assertions are equivalent:
(i) f is an eigenfunction for TP for some D > 0;

() f is an eigenfunction for TW .

(iii) f is an eigenfunction for Tn .
Proof. Tt follows from the theorem that each TV ™) -eigensubspace in My, (I'1(N))%..,
is one-dimensional, and hence is T y-invariant because all the Hecke operators com-

mute (Exercise 11.11 (vi)). This shows that (i) implies (iii). The rest of implications
are obvious. O

Remark 12.3. Let f = 3. anq™ be the Fourier expansion of a f € Mg(T1(N))2ew
satisfying one of the equivalent conditions of the previous corollary. One can show
that a1 # 0 so we can alaways normalize f to assume a; = 1. Such a modular form is
called a newform.

So we can extend Theorem 11.2 to newforms. To see when newforms exist we
observe that the maps 24,3, 5 send My (To(M);x)° to My (To(N);x')°, where x' is
the composition of x : (Z/NZ) — C* with the natural surjection (Z/NZ) — (Z/MZ).
So, if x is a primitive character of (Z/NZ), we have

My (To(M); x)° = Myp(To(M); X)2en-

We can apply Corollary 12.3 to get a functional equation for newforms. Notice that
the space M (T'1(N))%., is invariant with respect to the operator Wx. This follows
from the Wiy-invariance of the space My, (T'1(N))%4. The latter is easy to check. We
have, for any f € My (T1(M))° such that N = dM,

Want (tanan (F(7)) = War(d3 1 f(dr)) =
(@M)*dE () f(—1/M7) = d B n(War(f)). (12.11)

This checks the claim.
It is also easy to see that

W (Mi(To(N); X)new) = Mi(To(N); X)new-

In particular, we can decompose My (To(N))5.,, into a direct sum of eigensubspaces
of WN:

M (To(N))new = Mic(To(N))new,+ ® Mi(T1(N))gcu, -
An element of each space will satisfy the functional equation from Corollary 12.3 and
also will admit the infinite product decomposition from Theorem 12.3.
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Exercises

12.1 Show that the Mellin transform of the function f(z) = ¥(0;iz) — 1 is equal to
2m7°¢(25)T(s).

12.2 Show that the Dirichlet series ) >~ ann™° can be expressed as the Laplace
transform [° f(t)e™*'dt for an appropriate function f(t).

12.3 Find the functional equation for Z; where f(7) = A(117)/A(7)'/*? (see Exercise
10.6).

12.4 Show that E2(7) — pE2(p7) belongs to M1(Io(p)), where p is prime.
12.5 Prove Theorem 12.2.

12.6 Apply the proof of Theorem 1 to the function f(7) = ¥oo(0;7) to obtain the
functional equation for the Riemann zeta function.

12.7 Prove that for any f = 3" ang™ € My (I'(1)) one has |a,| < O(n?~1).

12.8 Show that the discriminant modular form A € Mg(I") C Mg(I'o(2V)) is an eigen-
function for all Hecke operators from T’ but not for all Hecke operators from Ty
(unless N =1).

12.9 Describe the decomposition of M (T'1(33))° into the old and new subspaces by
verifying assertions (i)-(iii) below.

(i) dim M;(T'1(33))° = 21, dim M (T'1(11))° = 1, and M1 (T'1(3))° = 0;
(i) dim M (T1(33))%, = 2;
(iii) dim M1 (T'o(33); x)%w = 2 for each nontrivial character x.

)

(iv) Show that each M1 (I'o(33; X))%. is spanned by Tas-eigenfunctions.



Lecture 13

The Shimura-Tanyama-Weil
Conjecture

13.1 In the previous lecture we have attached a Dirichlet series to a cuspidal modular
form with respect to the group I'o(N). In this lecture we will attach a Dirichlet series
to an elliptic curve over Q. The conjecture from the title of the lecture tells that the
latter Dirichlet series always coincides with the former one for an appropriate modular
form.

Let E be an elliptic curve. We assume that it can be given by homogeneous
equations with coefficients in @ and the set of points of E(Q) with rational projective
coordinates is not empty. We say in this case that E is an elliptic curve over Q.
One can show that the set F(Q) is independent of the choice of a system of algebraic
equations over QQ defining E.

Lemma 13.1. Let E be an elliptic curve over Q. Then E is isomorphic to a plane
cubic curve with equation

Y2Z - X —0XZ% — 32 =0 (13.1)
with integer coefficients cz,cs.

Proof. We use the Riemann-Roch Theorem from Lecture 8. Let D = Y npP be a
divisor which is a linear combination of points from F(Q). Let L(D)g denote the
Q-subspace of L(D) which consists of rational functions on E with coefficients in Q.
Once can show that dimg L(D)g = dime¢ L(D). Fix a point Q € E(Q) and apply the
Riemann-Roch Theorem to obtain that dimg L(n@Q) = n. Let z be a non-constant
function in L(2Q) and let y € L(3Q) which is not a linear combination of 1 and z.
Since the functions 1,z, 2%, 23,9, y*, zy belong to the space L(6Q) and the latter is of
dimension 6 over Q, we obtain a linear relation

ao + a1z + aza” + azx® 4+ boy + bixy + bay® =0

with coefficients in Q. Replacing = with az + b and y with cy + dz + e for some
appropriate coefficients a, b, ¢, d, e € Q we may assume that the linear relation has the
form

bs +boz + 2> — 3% =0,

133
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where bo, b1 € Q (see Example 6.4). Multiplying x by a~% and y by a2 for an appro-
priate integer a, we can change by to baa? and b3 to bza®. Choosing an appropriate «
this makes we can assume that the coeffients c2 = b and cs = bsa® to be integers.
Using the argument from the second half of the proof of Corollary 8.5 we obtain that
the functions x,y define an isomorphism from E \ {Q} — C\ {co}, where C is the
plane cubic given by the equation (13.1), and oo is its point (X,Y, Z) = (0,1,0). This
can be extended to an isomorphism E = C. O

Observe that E can be given in many ways by an equation of the form (13.1). We
can make it almost unique if we require some additional property. Let

A =4ch +27¢3 (13.2)

be the discriminant of the polynomial 3 + ot + c3. We call it the discriminant of the
equation (13.1). For every prime p let vp(A) be the highest power of p which divides
A. We say that the equation (13.1) is a minimal Weierstrass equation of E if for any
other equation of the form (13.1) defining F with discriminat A’ we have, for any
prime p,

vp(A) < wp(A')

One can prove that a minimal Weierstrass equationt always exists and is unique (see
[Silverman)).

Definition. Let E be an elliptic curve over Q and let (13.1) be its minimal Weierstrass
equation with discriminant A. Let p be a prime number. We say

(a) E has good reduction (resp. bad reduction) modulo p if p JA (resp. p|A),
(b) E has multiplicative reduction modulo p if p|A but p [ cacs,

(¢) E has an additive reduction modulo p if p|cz and p|cs.

Let us explain the terminology. Since the coefficients ¢z and c3 are integers we can
reduce them modulo p to obtain an algebraic curve over the finite field F,,. This curve
is a singular curve (i.e. the formal partial derivatives of the polynomial defining the
equation has a common zero over the algebraic closure F,, of F,) if and only if p|A.
If plcz and p|cs the equation over F, becomes Y2Z — X3 = 0. Its singular point is
(0,1,0), and its nonsingular solutions (z,,1) over F, are of the form (¢2,t3),t € F,.
The addition law in F, defines the addition law on the set of nonsingular solutions
equipping this set with the structure of an abelian group isomorphic to the additive
group of F,. Finally, if E has multiplicative reduction modulo p, then after reducing
the coefficients c2 and c¢3 modulo p we obtain an algebraic curve over F, which is
isomorphic over F, to the curve

Y?Z - X*(X —aZ)=0 (13.3)

with « # 0. The point (0,0, 1) is its singular point. Any nonsingular solution over F,,
has the form (to(t] + atd), t1(t2 + atd), to), where (to,t1) € P'(F,) and t* 4 atd # 0.
The linear transformation up = to + /o, u1 = to — v/« allows one to identify the set
of nonsingular solutions with the subset P'(F,) \ {0,00} = F}. So this set carries a
natural structure of an abelian group isomorphic to the multiplicative group of the
field Fp.
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13.2 Now we are ready to define the L-function L(E,s) of an elliptic curve over Q.
It is given as an infinite product

LE,s)= ][ L»(E,s), (13.4)
p prime
where
(a) if E has a good reduction modulo p
1
1—a(p)p=s +p' =2

)

L,(E,s) =

where
a(p) =p+1—#E(Fp),

and E(F,) = {(z,y,2) € P2(F,) : v°2z = 2% + cox2® + c32°).
(b) if E has multiplicative reduction modulo p
v
L—a(p)p~’

where a(p) = 1 if o in (13.3) belongs to F,, and A(p) = —1 otherwise.
(c¢) if E has additive reduction modulo p

Ly(s)=1.

L,(E,s) =

The next lemma shows that L(E, s) is a Dirichlet series.

Lemma 13.2. The infinite product [],(1 — cpp” )7 with |cp| < p® for some real o
defines an absolutely convergent Dirichlet series for Re s > ¢+ 1.

Proof. Let ¢, be a multiplicative complex-valued function on N with the value at a
prime p equal to ¢,. We have a formal identity

> Cn 1
;;:gl—cppfs'

Since |¢p| < p¥, we have |c,| < n® for all n. We know from Lecture 12 that this
implies that the Dirichlet series is absolutely convergent for Re s > ¢+ 1. O

Corollary 13.1. The infinite product L(E,s) converges for Re s > 2 and is given
there by an absolutely convergent Dirichlet series.

Proof. Let ap be the coefficient from the definition of L(E, s). If p is a prime defining
a bad reduction of E, then |a,| < 1. If p defines a good reduction, then E(F,) consists
of the infinity point and a points (z,y,1), where z,y € F, and y? = 23 + cox + c3.
This gives #E(Fp) < 2p+ 1 and hence |ap| = |[#E(Fp) —p — 1| < p. We can write the
factor L,(E, s) for “good” primes in the form

1

(1 —=rpp=)(A = 1pp=°)’

L,(E,s) =

where

1—apX +pX* = (1-7X)(1 —7,X).
The roots rp, r, are equal to 3 (ap++/a? — 4p) and clearly satisfy |r,| < |ap| < p. Thus
we can write down the infinite product L(F, s) as the product Li(s)L2(s), where each
factor satisfies the assumption of the previous lemma with ¢ = 1. The assertion follows
from the lemma. O
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In fact, we can do better and prove the convergence of the L-series for Re s > %
For this we invoke the following

Theorem 13.1. (H.Hasse) In the above notation

lp+1—#E(F,)| <2vp.

Proof. We refer to [Knapp] for an elementary proof of this theorem due to Yu. Manin.

O

13.3 Now we are familiar with two Dirichlet functions both absolutely convergent
for Re s > 2. One is the Dirichlet series Z;(s) associated to a cusp form f of weight 1
with respect to I'g(N) and L(E,s). The next conjecture relates these two functions:

Conjecture. (Hasse-Weil) Let E be an elliptic curve over Q. Define the conductor
of E to be
N =]]p",
P

where p runs in the set of primes for which E has a bad reduction, and ap = 1 if
the reduction is of multiplicative type, and A, = 2 otherwise. There exists a unique
f € Mi(To(N))° such that

Z¢(s) = L(E,s), Re s > 2.

Moreover, f is an eigenvector of all the Hecke operators and also an eigenvector for
the operator Wy .

Notice that according to Remark 12.3, the form f must be a newform. Applying
Corollary 12.2, we obtain the following:

Corollary 13.2. Assume the above conjecture is true. Then L(E,s) admits a holo-
morphic extension to the entire complex plane and satisfies the following functional
equation:

N&(2m) " *T(s)L(E,s) = £N =" (20) *T2I(2 — s)L(E, 2 — s).

In fact, the previous conjecture was motivated by this assertion. It turns out that
the latter corollary is almost equivalent to the Hasse-Weil conjecture. One observes
first that Z;(s) satisfies the following additional property. Let

x:Z—C

be a Dirichlet character modulo m. Recall that it means that x(n) = 0 if (n,m) # 1
and the induced function on (Z/mZ)* is a homomorphism to C*. We say that x is
a primitive character if x is not a Dirichlet character modulo any proper divisor of
m. Let us modify the zeta function Zs(s) = Y 22 associated to a modular form by
setting

Zi(s;x) =Y x(zzan.

There is an analog of Corollary 12.2:
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Theorem 13.2. Let f € My(To(N))° satifying Wn f = ef. For any primitive Dirich-
let character x modulo m, where (m, N) =1, set

Ry(s;:x) = (m*N)*/?(2m) ""T(s) Z; (5 %)-

Then
Ry (s:x) = e(=1)"'m ™ G(x)* x(N) R (2k — 5;X).

Here X denotes the conjugate Dirichlet character defined by x(n) = x(n) and G(m, x)
is the Gauss sum defined by

m—1

GO =D ™ x(s).

s=0

Proof. Let
Mu(To(N) ) = {f € Mu(To(N)) s £l (57) = x(0)f}

Clearly, My (T'o(N),x) C My(I'1(N)), where

Pl(N):{(: ?)eFO(N):azézl modulo N}

We can apply Theorem 12.1 to any cusp form f € My (I'o(N),x). Now we use the
following “shift trick”:

F=) cnd" € Me(To(N); ) = fx = Y x(n)eaq" € Mi(To(M); x*v),
n=1

n=1

where 1 is a primitive Dirichlet character modulo a divisor s of N, x is a primitive
character modulo some number m, and M is the least common multiple of N, m?, and
ms. The proof of this fact is a straightforward check using some known properties of
the Gauss sums. Taking ¢y = 1, we obtain that

Ry (s;x) = Ry(s),

where g € M(T'(Nm?); x?). Now we apply Theorem 12.1 to R,(s), previously checking
that

Wymz fx = ex(N)G(x)*m ™ fx. (13.5)
O

Theorem 13.3. (Weil’s Converse Theorem) Let L(s) = > > can™® be a Dirichlet
series with |cn| = O(n®) for some a > 0. Let N,k be positive integers and e = +1.
Suppose

(i) the function R(s) = N*/2(2n)~°T(s)L(s) extends to a holomorphic function on
the entire complex plane, is bounded in every wvertical strip, and satisfies the
functional equation

R(s) = e(=1)*R(2k — s);
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(i) for every integer m coprime with N, and every primitive Dirichlet character x
modulo m, set

Ly(s) =Y eax(n)n™
n=1
and assume that the function
Ry(s) = (m*N)**(2m) 7T (s) Ly (s)

extends holomorphically to the entire complex plane, is bounded in every vertical
strip, and satisfies

Ry(s) = (1) m ™" G(x)*X(N) Ry (2k — s);

(#i1) the series L(s) converges absolutely at s = 2k — & for some 6 > 0.
Then there ezists f € My(To(N))? such that

L(s) = Z;(s).

We are skipping the proof referring to [Ogg] or [Miyake].

13.4 Let us check the Hasse-Weil conjecture in the case when E = Xo(N). Using
the formula for the genus of a modular curve from Lecture 8, it is not difficult to see
that IV must belong to the set

{11,14,15,17,19, 20, 21, 24, 32, 36, 49}. (13.6)

We shall use the theory of Hecke operators for I' = I'g(N). In Lecture 11 we considered
only the case I' = I'(1), so we have to rely on Exercises 11.7-11.9 instead. Let o, =
(g (1)), where p is a prime number. According to Exercise 11.7, the matrix a,, defines
a correspondence on H /T'g(NN) which we denote by T'(p). We can use the same matrix
to define a Hecke operator on the space of modular forms My (Io(N)) (see Exercise
11.9). The following is a simple description of the Hecke correspondences T'(p) in the
case (p, N) = 1. We know that each point of H/I'o(N) can be interpreted as the
isomorphism class of a pair (E, H), where E is an elliptic curve and H is its subgroup
of order N. Equivalently, the pair (E,H) can be viewed as the pair of numbers
(j(E),j(E")), where E' = E/H. Let Sy, S1,...,Sp be the set of subgroups of order p
in ,E = (Z/pZ)*. We have

T(p)(§(E),j(E") ={(i(E/S:),i(E'/S:)),i =0,...,p}, (13.7)

Assume p is prime of a good reduction for Xo(NN). Let Xo(p) denote the corresponding
reduction. This is an elliptic curve (= a curve of genus 1) defined over the field F,.
The reduction of the affine part H/T'o(N) of Xo(N) modulo p is an affine curve Vo(N),
over F,,. Its points over a field K of characteristic p correspond to isomorphism classes
of pairs (E, H) as above defined over K. There is one important difference between
elliptic curves over a field of characteristic 0 and over a field of characteristic p > 0.
In the former case the group of p-torsion points consists of p? elements. In the latter
case, it consists of p elements or it is trivial (see Exercise 13.2). So, the degree of the
correspondence T'(p) obtained from T'(p) by reduction modulo p must be equal to one.

In characteristic p > 0 there are regular maps of algebraic varieties which are
bijective on the set of point but nevertheless are not isomorphisms. An example of
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such a map is the Frobenius map. It is induced by the map of projective space defined
by the formula:
Fp:(zo,...,zn) — (zb,...,20).

Let X be a projective algebraic subvariety in P defined by equations with coefficients
in a field K of characteristic p > 0. Let X® be the variety whose equations are
obtained from those of X when its coefficients are raised in p-th power. Then Fj
restricts to a regular map Fp : X — X (®) of algebraic varieties. In the special case
when K = F, we have X = X® so F is a map of X to itself. Although it is the
identity on the set X (F,) of points with coordinates in Fp, it is not the identity on the
set X (F,) of points with coordinates in the algebraic closure of F,. When X = E is an
elliptic curve over F,, the map F is a homomorphism of groups E(F,) — E(F,). One
can show that the endomorphism [p] :  — 2 of the group E(F,) factores through
F,. Let [p] = F, o F,. We have the following:

Theorem 13.4. (Eichler-Shimura) Let p be a prime of good reduction for Xo(N).
Then we have the following equality in the ring Corr(Vo(N)p(Fp)):

T(p)=F, +F,.

Proof. (following [Milne]). We will only sketch it. Let us show that the two cor-
respondences agree on a certain open subset of points of V5(IN). Consider a point
P € Vo(N)(F,) and lift it to a point P’ € Xo(N)(Q), where Q is the algebraic closure
of Q. The point P’ can be represented as the isomorphism class of a pair (E, H),
where E is an elliptic curve H is a cyclic subgroup of order N of E(Q). Equivalently,
we can view this point as an isogeny E — E’ with kernel H. The reduction modulo p
defines a homomorphism ,E(Q) — ,E(F,) whose kernel is a cyclic group Ao of order
p. Here we assume that E is an ordinary elliptic curve, i.e. »E(Fp) is of order p. Let
Ao, ..., Ap be the subgroups of order p of . Then each A;,i # 0 is mapped to the
subgroup of order p in E. Let E; denote the reduction modulo p of the elliptic curve
E;=E/A;. Let EZ’ be the similar notation for the curve E;. The multiplication map
z — pz of E factors as
E > E; — E.

When ¢ = 0, the first map is purely inseparable of degree p, and the second map is
separable of degree p. When i # 0 the first map is separable and the second one is
inseparable, both are of degree p. We have, in both cases,

EW ~Ey,  EW =FEi>o0.

One can show that
(BE®, 5P = BB, ).

Thus F,(P) = (FEo, E) and F,(E;, E}) = P,i > 0. This implies that T(p) = F, +
Fy. O

Let E be an elliptic curve defined over a field K of characteristic p > 0. One can
show that for any prime I # p the group ;» E(K) of points of order dividing I™ defined
over the algebraic closure K of K is is isomorphic to (Z/I1"Z)?. Of course we know
this fact when K = C. Since for any m > n we have a canonical homomorphism
im B(K) — n E(K) defined by multiplication by ™ ™. Passing to the projective limit
we obtain a rank 2 free modulle T;(E) over the ring of l-adic numbers Z;. It is called
the Tate module of E.
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Let a be an endomorphism « of E (= a map of algebraic varieties which induces
a homomorphism of groups E(K) — E(K)). It defines a homomorphism of groups
mE(K) — n E(K). Passing to the projective limit we obtain an endomomorphism of
the Tate module

pi(a) : Ti(E) — Ti(E).

It is called the [-adic representation of a.
We shall apply this to the case when K = F, and o = Fj, is the Frobenius
endomorphism.

Theorem 13.5. Let a, = p+1— #E(Fy) and 1,7, are the roots of the polynomial
p—apT + T%. Then Tp, Ty are algebraic integers, and considered as elements of the
algebraic closure of the field Q; of l-adic numbers they coincide with the eigenvalues of
the l-adic representation of F, on Ti(E).

Proof. We refer to the proof to [Silverman)]. O

Remark 13.1. One should compare this result with the well-known Lefschetz formula
in topology. If one interprets T;(E) as the first cohomology H' group of E, then the
Lefschetz formula says that for any map f the set of fixed points of f (i.e. points x
such that f(z) = z) is equal to the sum >_(—1)™(f*|H"). In our situation f is equal
to the Frobenius map, and its fixed points are obviously the points z = (ao,...,an)
satisfying a? = a;, or equivalently x € E(F,). We have Trace(f*|H") is equal to
the sum of eigenvalues of F, in T,(E). Also H® = H? = Z; and Trace(f*|H®) = 1,
Trace(f*|H?) = p, the degree of the Frobenius map.

Now everything is ready to verify the Hasse-Weil conjecture for elliptic modular
curve Xo(NN). Consider the characteristic polynomial of p;(Fp). It is equal to

P(T) =T? — a,T + det(pi (F})).

We know that det(p;(F,)) = rpr), is an algebraic integer, and by Hasse’s theorem
rp + 75| < p'/?. This easily implies that r,7), = p. Thus

P(t) =T? — a,T + p.

Since F, o F;, = p, we see that p;(Fp) + pi(Fy) acts on T;(E) as the multiplication
by ap. This implies that F, + F} is equal to a, as an element of Corr(Vo(N),). By
Eichler-Shimura’s Theorem, the Hecke correspondence T'(p) = a,. From this we obtain
that T'(p) = ap as a correspondence on X3 /T'o(N). It follows from Corollary 8.4 that
dim M, (T'o(N))° is one-dimensional. Let f be a non-zero parabolic form from this
space normalized in such a way that its Fourier expansion is of the form ¢+3">7 , ¢nq".
Clearly, f is an eigenfunction for all the Hecke operators T(n). By Lemma 11.3,
T(p)f = cnf. Comparing with the above, we obtain ¢, = ap. Thus the infinite
product expansion for Z;(s) coincides with the infinite product for L(Xo(N),s), up
to a finitely may factors corresponding to prime p of bad reduction for Xo(NN). Using
Weil’s Convese Theorem it is not hard to deduce from this that the Dirichlet series of
f coincides with the L-series of Xo(N).
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13.4 Let E be an elliptic curve over Q and G = Gal(Q/Q) be the Galois group of
the algebraic closure of Q. It acts naturally on the group of E(Q) of Q-points of E.
This action defines a linear representation of G in the Tate module of E:

pr1: G — GL(TH(E) ® Q) = GL(2,Qy).

Now for any prime number p the group G contains a distinguished element Frob,, called
the Frobenius element. It is defined as follows. Let o, € Gal(Q,/Q,) be the pre-image
of the Frobenius automorphism of the residue field F,,. Choose an embedding Q — @,
and define Frob, as the image of o, under the inclusion Gal(Q/Q) — Gal(Q,/Q,).
Assume E has a good reduction modulo p and p # I. Then, one proves that

pe,i(Froby) = pg(Fp),
where F is the reduction of E modulo p. Thus we have
det(1 — pg,1(Frob,)T) = det(1 — pg  (Fp)T).
In particular, if L(s, E) = Z;(s) for some modular form f € M1 (To(N))°, then
det(1 — pg i (Frob,)T) = p — a,T + T7,

where a, are the Fourier coefficients of f. Here we assume that f is an eigenvector
for all the Hecke operators and a; = 1. We shall refer to such modular forms as
normalized eigenforms.

Now let f € Mg(To(N), x)° be any cuspidal modular form with a Dirichlet char-
acter which has the previous properties. Let K be an extension of Q generated by the
Fourier coefficients of f. We know that K is a finite extension. For any finite place A
of K let K be the completion of K at A. Deligne constructed a representation

Pf,l - G — GL(2,K>\)
such that for each prime p we have
pra((Froby) =p —apT + T2

This representation is irreducible and is uniquely defined. Conjugating by a matrix
from GL(2,K)) we may assume that the matrices defining this representation have
coefficients in the ring of integers Oy of K. Reducing them modulo the maximal
ideal, we obtain a representation

pri: G — GL(2,F),
where F is a finite field.

Definition. Let F be a finite field. A representation p : Gal(Q/Q) — GL(2,F) is
called a modular representation if it arises from a normalized eigenform f € My (To(N), x)
for some N, k, and x.

0

Note the modular representation has the property that p(c) = —1, where c is
the complex conjugation automorphism of Q. Representations Gal(Q/Q) — GL(2,F)
with this property are called odd.

Conjecture. (J.-P. Serre) Any odd irreducible representation Gal(Q/Q) — GL(2,F)
is modular unless F is of characteristic p < 3 and p is induced by a character of

Gal(Q/Q(v/=1)) if p =2 and by a character of Gal(Q/Q(v/=3)) if p = 3.
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In fact, Serre gives a conjectural recipe for finding an appropriate (N, k, x). For
example, it predicts (N, k, x) for representations arising by reduction modulo p from
the p-adic representations pg, , associated to an elliptic curve E over Q with whose
reductions are all either good or of multiplicative type (we say then that F has stable
reductions). Then N is equal to the product of all primes [ # p such that the discrim-
inant Ag of E has order at [ not divisible by p; k = p+ 1 if v,(Ag) is not divisible by
p and equals 1 otherwise; x = 1.

Theorem 13.6. Serre’s conjecture implies Fermat’s Last Theorem.

Proof. Let (a,b,c) be a non-trivial solution of z™ +y™ = z". It is known that without
loss of generality we may assume that n = p > 5 is prime and p does not divide a and
b. Also we may assume that a = —1 (mod 4) and that b is even. Consider the elliptic
curve E given by the Weierstrass equation

y® = x(x — aP)(z + b°).
It can be verified that F has semi-stable reductions and
Ap = —2%(abe)”.

In particular p|v, (Ag). Consider the representation pg,p, and it reduction modulo p. It
can be checked that this representation is irreducible and odd. If Serre’s Conjecture is
true, then pg p is a modular representation and Serre’s recipe gives N =2,k =1, x = 1.
However, M1 (T0(2))° = {0}. O

13.5 For the following we shall use the notion of the Jacobian variety of a compact
Riemann surface X. It is defined as a complex torus J(X) = CY9/A, where g is equal
to the genus of X and A is the lattice in C° spanned by the vectors

HZZ(/ wi7...,/ wi)7 izl.,.,g
71 2

g

for some basis w1, ...,wy of the space of holomorphic differentials on X and a basis
Y1,...,72¢ of homology 1-cycles on X. Fixing a point po € X we obtain a natural
holomorphic map 4p, : X — J(X) defined by the formula:

p P
p—>(/ wl,...,/ wg) modulo A.
P

0 po

It is an isomorphism when g = 1. This map extends to a map from the group of
divisors Div(X) by the formula

%Po (Z npp) = Z Npipe (P),

where the addition in J(X) is the addition in the factor group of the additive group
of C9. By Abel’s theorem this map defines an isomorphism from the group of diviors
on X modulo linear equivalence onto the group J(X).

Let Z be a finite holomorphic correspondence on X, i.e. Z is a subvariety of
X X X defining a finite correspondence on the set of points of X. As we saw in
Lecture 11, Z defines a homomorphism from Div(X) to itself. It is easy to check that
it sends principal diviors to principal divisors, and hence defines an endomorphism of
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the Jacobian variety J(X). We shall apply this to the case when X is a modular curve
and a correspondence is a Hecke correspondence on it.

Although we defined the Jacobian variety as a complex torus, one can develope a
purely algebraic theory for J(X) valid for nonsingular projective curves X defined over
an arbitrary field K. In this theory J(X) is a projective algebraic variety whose set
of points J(X)(K') over any extension K’ of K has a natural structure of an abelian
group. Also, for any point po in X (K) there is a regular map ip, : X — J(X) defined
over the field K. It induces an isomorphism from the group of K-divisors on X modulo
linear equivalence onto the group of K-points of J(X). There is an analogue of the
Tate module T;(J(X)) for J(X) and of the [-adic representation of Gal(K/K) in it.

13.6 We know that the Hasse-Weil conjecture is true for an elliptic curve of the form
Xo(N). Let E be an elliptic curve over Q, assume that, for some N, there exists a
nonconstant regular map defined over Q from Xo(N) to E. We say that E is a modular
elliptic curve or a Weil elliptic curve.

Theorem 13.7. Let E be a Weil curve. Then it satisfies the Hasse-Weil conjecture.
Conversely, if E is an elliptic curve over Q satisfying the Hasse- Weil conjecture, then
FE is a Weil elliptic curve.

Proof. We shall only sketch a proof. Suppose E satisfies the Hasse-Weil conjecture.
Then L(E,s) = Z; for some newform f € Mi(To(M)))%e,. For any prime p not
dividing Ng, the characteristic polynomial of Frob, coincide with respect to the l-adic
representations pg,; and py;. Using the continuity of the [-adic reprsentation and
the fact that the Frobenius elements form a dense subset in the Galois group G of
Q (the Chebotarev theorem) we obtain that pg; = py;. Now let us consider f as a
holomorphic differential form on Xo(M). Since f is an eigenfunction for the the Hecke
ring Ty, we have a character 6 : Ty — Q defined by the eigenvalues. Let T' be the
kernel of . The Hecke ring acts on Xo(M) via correspondences, and hence acts on
its Jacobian variety Jo(M) via endomorphisms. Let A = Jo(M)/TJo(M). This an
abelian variety and its tangent space is naturally isomorphic to Cf. In particular,
A is a elliptic curve. Applying the Eichler-Shimura theorem, we can show that the
characteristic polynomial of Frob, in the l-adic representation of A is expressed in
terms of the Hecke operators:

det(pa i(Froby,) — tlo) = t> — 0(T(p)t + p(T(p,p)).

This allows us to verify that L(E,s) = L(A,s). By a theorem of G. Faltings, the
elliptic curves E and A are isogeneous over QQ, and in particular their conductors are
equal. This will imply that Ng = M, and there exists a regular map over Q from
Jo(N) to E. Composing it with an embedding of Xo(N) in Jo(IN) we obtain that E
is modular.

Now assume that E is a Weil elliptic curve and let Xo(N) — E be a regular map
over Q. The space of holomorphic differential forms on F is one-dimensional over
C. By constructing a certain “Neron model” of E over Z one produces a certain 1-
form, whose pre-image on X, (V) is a holomorphic differential form such that, after
identifying it with a cusp form f of weight 1, its Fourier coefficients at infinity are
rational numbers. Again by the Eichler-Shimura theorem one can check that f is an
T _eigenform with eigenvalues X\, of T(p) satisfying A\, = p + 1 — #E(F,) for all
prime p not dividing N. Projecing it to the subspace of M;j(To(N))2.,, we find a
newform f. Applying some results of Deligne-Langlands-Carayol one can show that
L(E,s) = Zs(s). O
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We now see that the Hasse-Weil conjecture is equivalent to the following:

Conjecture. (Shimura-Taniyama-Weil) an elliptic curve over Q is a Weil elliptic
curve.

We have seen already that Serre’s Conjecture implies Fermat’s Last Theorem. It
was shown by K. Ribet and B. Mazur, that the fact that the elliptic curve used for
the proof of Ferma is modular implies the Ferma Theorem. Let us sketch the proof of
the following:

Theorem 13.8. The Shimura-Taniyama-Weil conjecture implies Fermat’s Last The-
orem.

Proof. We apply the STW-conjecture to the elliptic curve E from the proof of Theorem
13.6. It is easy to compute its conductor Ng: it is equal to the product of primes
divisors of “1—%” Consider, as in the proof of Theorem 13.6, the representation pg p :
G — GL3(F,). If E is a Weil elliptic curve, the representation p, is an irreducible
modular representation of level N and weight 1 with trivial character y. Let [ be
a prime divisor of Ng. We know that p|v;(Ag) if | # 2. This implies that the
representation pg,, is finite at I. When [ # p this means that the restriction of pg
to Gal(Q;/Q;) is unramified (i.e. factors through a representation of the Galois group
of a finite unramified extension of Q). When p = [, the definition is a little more
technical, and we omit it. Now we apply a theorem of Mazur-Ribet which implies that
pE.p is modular of level N/I. Here we use the assumptions that I|N but p*,1*> fNg and
I # 1 mod p. After applying this theorem several times, we find that pg,, is modular
of level 2. Now we end as in the proof of Theorem 13.6 by finding contradiction with
absence of parabolic modular form of level 1 for the group I'g(2). O

Theorem 13.9. (A. Wiles) An elliptic curve over Q with semi-stable reductions for
each prime number is a Weil curve.

Corollary 13.3. Fermat’s Last Theorem is true.

Proof. Observe that the elliptic curve E used in the proof of theorem 13.8 has semi-
stable reductions at each prime p. O

Exercises

13.1 Let F be an elliptic curve over a field K. Define the group law on the set of
E(K) of points of E with coordinates in K as follows. View a point P as a divisor
of degree 1. Assume that E(K) # . Fix a point 0 € F(K). For any two points P, Q
the space L(P + @ —0) is of dimension 1 over K (the Riemann-Roch Theorem). Thus
there exists a unique postive divisor of degree 1 linearly equivalent to P+ @ — 0. This
divisor is denoted by P & @Q and is called the sum of the points P and Q.

(i) Show that the the binary law of composition on E(K) defined by P& Q is a
commutative group.

(ii) Show that, when K = C, the group law agrees with the group law on the complex
torus E(C).

13.2 Let E be an elliptic curve over an algebraically closed field K with the group
law defined in the previous exercise. Let fo,..., fn—1 be a basis of the space L(nO).
Show that
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the map ¢ : E\ {O} — P™ ' P — (fo(P),..., fr—1(P), has the image an
algebraic curve C of degree n.

Let C be the closure of C' in the projective space. Show that for any n-torsion
point P there exists a hyperplane in P"~! which intersects C' at one point equal
to ¢(P).

Let n = 3. Fix a line L in P? which is not a tangent to C' and consider the map
from C to L which assigns to a point = € C the intersection point of the tangent
of C at = with L. Use the Hurwitz formula to show that C' has exactly nine
3-torsion points if K is of characteristic 0.

Assuming that n = 3 and E has at least 3 torsion points of order 3, show that
the equation of C' can be chosen in the Hesse form z® + 3® + 2% + Azyz = 0.

Show that in the case K is of characteristic 3, there are at most 3 points of order
3on E.

13.3 Let x be a Dirichlet character modulo m. Define the Dirichlet series Ly, (s;x) =
o1 x(n)n™?. Show that

(i)

(if)

L. (s;x) is absolutely convergent for res > 0 and admits an infinite product
expansion

Lin(six) = [[(1 = x@)p~) 7"

plm

Show that L, (s; x) admits a holomorphic extension to the entire complex plane
which satisfies the functional equation

Lin(1 = 5:X) = L (5,x)(m/27) T (s) (™% + x(~1)e” ™2 G(x) ",

where G(x) is the Gauss sum of x.



