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ABSTRACT. Among the connected components of the interior of the Mandel-
brot set are those that are hyperbolic. These components consist of parameters
¢ € C for which the critical point zo = 0 of f. : z — 22 + ¢ is attracted to
an attracting periodic cycle. Every hyperbolic component contains a unique
center; that is, a parameter ¢ for which the critical point zg is periodic. For
a given n > 1, the Gleason polynomial for period n is the monic polynomial
Gn € Zc] whose roots are exactly the centers of the hyperbolic components
of period n. It is unknown if G,, factors over Z. In this article, we factor G,
modulo 2. We prove the following remarkable fact: the number of irreducible
factors of G, modulo 2 is equal to the number of real roots that G, has in C.

1. INTRODUCTION

Let k = Q be the field of rational numbers or k = Fy be the finite field with 2
elements. Let k be an algebraic closure of k.

Given ¢ € k, denote by f. € k[z] the quadratic polynomial

fe(2) =22 +c

A point z € k is a periodic point for f. if fo"(z) = z for some positive integer n.
The least such integer is called the period of z.

If z is periodic of period n > 1 for f., then (¢, z) is a zero of the polynomial
F,, € K[c, z] defined by

F.(c,z) = f3"(z) — =.

An elementary induction shows that F}, has integer coefficients, degree 2"~ with
respect to ¢ and degree 2" with respect to z. The coefficient of """ is 1 and
the coefficient of 22" is 1. If m divides n, then Fy,(c,2) = 0 = F,(¢,z) = 0. In
addition, the polynomial

Fp(0,2) = 22" — 2 € [2]

has simple roots, so that F, is square-free. Thus, if m divides n, then F,, divides
F, in K[c, z]. Tt follows that there exists a sequence (®,, € k[c, z]),,>1 such that

Fo(c,z) = H D, (c, z).
m|n
The polynomial ®,, is called the n-th dynatomic polynomial.
Let g : N\{0} — {-1,0,1} be the Mobius function, and let (d,),>1 be the
sequence of integers defined by
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Then, the polynomial ®,, has degree §,,/2 with respect to ¢ and degree §,, with
respect to z. In this article, we are interested in the factorization of ®,, in k[e, z].
The following result is due to Bousch [B].

Theorem 1.1. If k = Q, then for n > 1, the dynatomic polynomial ®,, is irre-
ducible in Qlc, z].

We shall see that when k = Fy, the situation is radically different. Let (yy,)n>1
be the sequence defined by

In - ! Z M(m)Q%'

T o o
m is odd
Theorem 1.2. Ifk =y, then forn > 1, the dynatomic polynomial ®,, has exactly
vn trreducible factors in Falc, z] which are monic with respect to c. These are of
the form Q(2% + ¢ — 2) with Q € Fa[c]. If n is odd, then each factor has degree 2n
with respect to z and degree n with respect to c. If n is even, then there are v, 2
factors of degree n with respect to z and degree n/2 with respect to ¢, and there are
Yn — Yny2 factors of degree 2n with respect to z and degree n with respect to c.

Our proof in §f|relies on studying the restriction of ®,, to the slice {z = 0}. Note
that 0 is a critical point of f., i.e., f.(0) = 0.

Remark 1.3. For k = Fs, all points are critical points since the derivative of f,
identically vanishes.

A parameter ¢ € k is called a center of period n if 0 is a periodic point of period
n for f.. The centers of period n are the roots of the polynomial G,, € k[c] defined
by

G (c) = @,(c,0).

The polynomial G,, is called the n-th Gleason polynomial. It has degree d,,/2.

The factorization of Gleason and related polynomials in Q[c] as well as in Fa[c]
has recently attracted attention (see for example [GI] and [G2]); in particular, there
are implications regarding the irreducibility over C of some dynamically defined
curves in the space of quadratic rational maps (see for example [BEK]). Here is a
long-standing conjecture whose origin is unknown to us. See Remark 3.5 in [M].

Conjecture 1.4. If k = Q, then for n > 1, the polynomial G,, is irreducible in
Q[d].

In the following statement, M is the Mandelbrot set. For the notion of primitive
or satellite hyperbolic components, see The following result is due to Lutzky
[L1], [L2). We shall present a proof in that differs from Lutzky’s proof (see
for a discussion of Lutzky’s proof).

Theorem 1.5. If k = Q, then G,, has exactly -y, roots in R. When n is odd,
these v, roots are centers of primitive components of M. When n is even, v, /o of
these roots are centers of satellite components of M and v, — yn/2 of these roots
are centers of primitive components of M.

We shall prove that when k = s, there is a parallel count for the number
of monic irreducible factors of the n-th Gleason polynomial G,. A polynomial
P € k[c] of degree d is centered if the coefficient of c?~1 is equal to 0. Otherwise it
is moncentered.
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Theorem 1.6. If k = Fy, then G,, has ezxactly v, monic irreducible factors in
Falc]. When n is odd, those factors are the ~y, irreducible centered polynomials of
degree n in Falc]. When n is even, those factors are the 7, /o irreducible noncentered
polynomials of degree n/2 in Fy|c] together with the v, — vy 2 irreducible centered
polynomials of degree n in Fa[c].

This will be proved in §5

Remark 1.7. Theorem [T.6] generalizes to cases where the degree d is a power of a
prime. We state this generalization without proof in Theorem [I.8] We introduce
the following notation in order to include the statement of the theorem in this more
general case.

Let d = p", where p is a prime number, and r is a positive integer. Let x,, and
pn be the following sequences

d—1)p n
T M yyrare:
plm|n

and

pn = % > um)dn — % > uim)d.

m|n plm|n

Theorem 1.8. Ifk = F, then G,, has exactly p, monic irreducible factors in Fy[c].
When p does not divide n, those factors are the p, irreducible centered polynomials
of degree n in Fy[c]. When p does divide n, those factors are the k, irreducible
noncentered polynomials of degree n/p in F4c| together with the p, — k., irreducible
centered polynomials of degree n in Fg[c].

Remark 1.9. One might hope that there is a corresponding generalization of
Theorem to multibrot sets associated to prime powers. Unfortunately, the
choice of what hyperbolic components to count is not clear. For example, there are
no hyperbolic components with real centers if p is odd.

We thank the referee for many helpful comments.
2. SOME SEQUENCES OF INTEGERS
Recall that p: N\{0} — {—1,0,1} is the Mdbius function and that for n > 1,
On = p(m)27,

m|n

on = Zém.

m|n

so that

It will be convenient to consider the sequence (e5,),>1 defined by

Ep 1= — Z pw(m)2m  sothat 4, +&, = Z p(m)2m .

min m|n
m is even m is odd

Lemma 2.1. The sequence (en)n>1 5 characterized by the recursion
(1) Vn>1, é€o,_1=0 and e9, =0, +¢cy.

Remark 2.2. This shows that the sequence (e,,)n>1 takes nonnegative values.
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Remark 2.3. This lemma asserts that any sequence satisfying recursion is
equal to the sequence (€,,)n>1.

Proof. First, assume n > 1. Since 2n — 1 does not have any even divisor, the sum
defining e5,,_1 is empty, so that €5,_1 = 0. In addition,

m|n m|n
m 1s even

> um)2w

mln
m is odd

= - Z u(Zm)Q% since when m is odd, pu(m) = —u(2m)

2m|2n
m is odd

= - Z u(k)227n since when 4|k, u(k) =0

k|2n
k is even

= E2n-

Second, assume (¢/,),>1 is a sequence satisfying recursion (). Let (uy)n>1 be the
sequence defined by u,, := ¢}, — &,,. Then, for n > 1, we have that

Uop_1 =€y 1 — Ean_1 =0 and ug, =&, +&, —0p — En = Up.
It follows by induction that the sequence (uy)n>1 identically vanishes, so that the
sequence (e},)n>1 is equal to the sequence (€, )n>1. O
It shall be convenient to consider three related sequences (a)n>1, (Bn)n>1 and
(Yn)n>1 defined by

57], n n

mln m|n

and

5n + €n 1 n
= = — 2m
Y =5 D um)

Lemma 2.4. The sequences (Bn)n>1 and (yn)n>1 are characterized by the recursion

an + By
—

Proof. This is an immediate consequence of Lemma [2.1 ([

Vn>1, Bop1=0 and B ==

3. COUNTING PERIODIC SEQUENCES

3.1. Symbolic dynamics. Let us consider the set X of sequences of 0’s and 1’s:
¥ = {0, 10}

A sequence in ¥ shall be denoted by s = (s,)n>1. Consider the shift o : ¥ — X
defined by

o(81,82,83,...) := (82,83, 84,...).
Let © C X be the subset of periodic sequences. Given n > 1, set

O, :={sex; c°(s) = s}.
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Note that (?)n C © is the set of sequences which are periodic under iteration of o
with period dividing n. Denote by ©,, C ©,, the subset of sequences which have
exact period n, so that

o=|]6..

n>1
Lemma 3.1. Forn > 1, card(©,) = 0y,.

Proof. A sequence s € @n is uniquely characterized by (s1,sa, ..., $,) which may

~

be any element of {0,1}". As a consequence card(©,,) = 2". In addition,
@n = |_| 0,, sothat 2" = anrd(@m).
min min
It follows from the M&bius inversion formula that for n > 1,
card(©,) = Zu(m)?ﬁ = 0. O
min
Consider now the involution ¢ : ¥ — 3 defined by
t(s1,82,83,...) = (1 —s1,1 — 89,1 —s3,...).

Note that o and ¢ commute. A sequence s € Y is reflexive if its orbit under
iteration of o contains i(s). Let = C X be the subset of reflexive sequences. A
reflexive sequence is necessarily periodic since

o°M(s)=us) = o°CM(s)=s.
For n > 1, let =, be the set of reflexive sequences of period n:
=, ==2N0,.
Lemma 3.2. Forn > 1, card(E,,) = &,.

Proof. Assume s € Z,, and 0°*(s) = «(s). Let 0 < m < n be congruent to k modulo
n, so that ¢°™(s) = 0°%(s) = 1(s). Note that 0°(>™)(s) = s so that n divides 2m.
Since 0 < 2m < 2n, we have n = 2m. As a consequence, for n > 1,

card(Za,-1) = 0.

For n > 1, set

~

—_
=

[l

(1]

ni={s€Z; 0% (s)=s} and E,:={s€Z; c”(s) =u(s)}.

Since ¢ : ¥ — ¥ does not have any fixed point, én é; = (). Assume s € égn, ie.,
s is a reflexive sequence of period dividing 2n. Let m > 1 be the smallest integer
such that 0°™(s) = «(s). Then s has period 2m which divides 2n, so that m divides
n. If m divides n and n/m is odd, then s € Z; and if n/m is even, then s € Z,,.

2
Thus, for n > 1,
(2) Son =2/ UE, sothat card(Zs,) = card(Z,) + card(E,).

A sequence s € ég is uniquely characterized by (s1, $2, ..., $,) which may be any

element of {0,1}". Thus
(3) card(Z) = 2" = Z(Sm.

m|n
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As in the previous proof,

(4) g, = Z, sothat card(E,) = anrd(Em).

m|n m|n

In addition, since card(Z) = 0 if k is odd, we have that

(5) card(Ey,) = Z card(Egy,) = anrd(Egm).

2m/|2n m|n

Thus, for n > 1,

Z card(Zg,,) = card(Zz,) from [{

m|n
= card(Z) + card(Z,)  from [l

= Z Om + Z card(Z,,) from [l and [l
so that for n > 1,
card(Za,) = 0, + card(Z,).

The sequence (card(Z,)) satisfies recursion (), thus is equal to (¢,)p>1. O

n>1

3.2. Multiplication by 2 in R/Z. Consider the map 7 : ¥ — R/Z defined by

P
7(8) := Z 2—; (mod 1).
Jj=1

Note that 7 : ¥ — R/Z is surjective (every angle in R/Z has a binary expansion
and s is the corresponding sequence of digits) but not injective. For example,
(0,0,0,...) and (1,1,1,...) have the same image by 7. However, if two distinct
sequences are identified, one is eventually constant equal to 0 and the other is
eventually constant equal to 1. It follows that the only periodic sequences which
are identified are (0,0,0,...) and (1,1,1,...).

The map 7 : ¥ — R/Z semi-conjugates the shift o : 3 — 3 to the doubling map
D :R/Z — R/Z defined by

D(0) = 20,

that is, DoT = 7o0. An angle 6 € R/Z is periodic under iteration of D with period
dividing n if and only if 6 can be written as m /(2" — 1) with m € Z/(2" — 1)Z. In

addition, if s € @n, i.e., if s is periodic with period dividing n, then

(s) = ani - with mi= ) s,2" 7 € 2/(2" ~ 1)L
j=1

The map 7 : ¥ — R/Z semi-conjugates the involution ¢ : ¥ — ¥ to the involution
I:R/Z — R/Z defined by
1(0) .= -6,
that is, T o7 = 7 ot. For n = 1, the doubling map D : R/Z — R/Z has only 1 fixed
point, namely 0, and this point is fixed by the involution I. For n > 2, it follows
from §3.1] that the doubling map has d,, periodic points of exact period n, and that
among those, €, have an orbit which is invariant by the involution I. So, for n > 2,

there are ay, orbits of period n and g, among them are invariant by the involution
1.
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4. QUADRATIC DYNAMICS IN Q

In this section, we are mainly concerned with the dynamics of the quadratic
polynomials f. : Q — Q defined by

fo(2) =22+ ¢ with c€Q.

For ¢ € Q, the periodic points of f. of period dividing n are the roots of the
polynomial fo™(z) — z € Q[z] which has degree 2™. It shall therefore be convenient

to consider the sequence (Fn(c7 z) € Qle, z])n>1 of polynomials defined by

F,(c,z) = f"(z) — .
Those polynomials satisfy the recursion
Fi(c,2) =2 —z4+c and Foyi(c,2) = Fy(c,2)? +c.

It follows that they have integer coefficients, degree 2”1 with respect to ¢ and
degree 2™ with respect to z. The coefficient of """ is 1 and the coefficient of 22"
is 1.

4.1. The dynamics of fy : z — 2z2. The periodic points of fy of period dividing n
are the roots of the polynomial F,(0,z) = 22" — z € Q[z], whose roots are simple.
The fixed points are 0 and 1. The periodic points of period n > 2 are roots of unity.

Let U C Q be the multiplicative group of roots of unity. The transcendental map
Q/Z > 0 — exp(27if) € U is a group isomorphism which conjugates the doubling
map D : Q/Z — Q/Z to the restriction fo : U — U. It conjugates the involution
I:Q/Z — Q/Z to the involution ¢ : U — U defined by ¢(2) = 1/z.

It follows from that for n > 2, the squaring map fo : Q — Q has §,, periodic
points of exact period n, and that among those, €,, have an orbit which is invariant
by the involution ¢.

4.2. The dynamics of f 5 : z — 22 — 2. Consider the map ¢ : Q~{0} — Q
defined by

Y(z) =z + %

The map ¢ is a ramified covering of degree 2. Each point in Q has two distinct
preimages in @\ {0} except 2 which has a single preimage at z = 1 and —2 which
has a single preimage at z = —1. In addition,

, 1 1?2
Yo folz) =z +Z2=<z+z) —2=f 50(2).

So, 1 semi-conjugates fo : Q~{0} — Q~{0} to f2: Q — Q.

4.3. Real dynamics. A parameter c € Q is a center if 0 is periodic under iteration
of f.. It is a center of period n if 0 has period n for f.. The centers of period n are
precisely the roots of the Gleason polynomial G,, € Q|c] defined by

Gr(c) == ®p(c,0).
Example 4.1. We have that
Gi(c)=c¢, Ga(c)=1+c¢, Gs(c)=14+c+2c*+c>.
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We shall say that ¢ is a real center if ¢ € R. The kneading sequence of a real
center c is

+ if f27(0) >0
Kk(c) := (”")n>0 € {4+, =« with K, =<{* if £o(0)=0.
— i fm0) <0
The kneading angle of a real center c is the angle 0(c) := 7(t(c)) € R/Z where

t(c) :== (tn)n>1 € X is defined by

0 if kK, =%
Vn>0 thpe1 =< t, if kK =+ .
1—t, ifk,=-—

Example 4.2. The polynomial G3 has a unique real root c3. We have that
3
H(C3) - (*7 = k= ')v t(C3) - (07 1,1,0,1,1,.. ) and 0(03) - ?

Note that by definition, the first digit in the binary expansion of 8(c) is a 0, so
that this angle belongs to the arc [0,1/2) C R/Z. The following result is due to
Milnor and Thurston [MT].

Theorem 4.3. If ¢; < ¢y are real centers, then 0(c1) > 0(ca). If ¢ is a center of
period n, then 6(c) is periodic of period n for the doubling map D : R/Z — R/Z.
In addition, a periodic angle 6 € [0,1/2) C R/Z of period n is the kneading angle of
some real center of period n if and only if 6 € R/Z is the closest angle to 1/2 € R/Z
within its orbit under iteration of D.

This result enables us to count the number of real centers of period n as follows.
The doubling map has a unique orbit of period 1. This orbit is reduced to the angle
0 € R/Z which is the angle of the unique center of period 1: ¢ = 0. So assume
the period is n > 2. On the one hand, assume O is an orbit for the doubling map
D : R/Z — R/Z which is invariant by the involution I : R/Z — R/Z. Then O
contains exactly two angles closest to 1/2 € R/Z, one in the arc (0,1/2) € R/Z, the
other in the arc (—1/2,0) € R/Z being its image by the involution I. According to
Theorem there is exactly one real center with kneading angle in O. According
to there are f3,, such orbits corresponding to (3, real centers of period n. On
the other hand, assume O and O’ are two distinct orbits of period n which are
exchanged by the involution I : R/Z — R/Z. The closest angle to 1/2 € R/Z in
one of the two orbits is contained in the arc (0,1/2) € R/Z and the closest angle to
1/2 € R/Z in the other orbit is contained in the arc (—1/2,0) € R/Z. According to
Theorem there is exactly one real center with kneading angle in O UO’. There
are (ap — Bn)/2 such pairs of orbits corresponding to (v, — (,)/2 real centers of
period n. Thus, the total number of real centers of period n is

Ay — 571 Qp + 571 1 n
ﬁn + 9 = 9 =Tn = om mzln /L(m)Qm .
m is odd
4.4. Complex dynamics. We shall prove Theorem in this section. We have
the following description of the kneading angle. Consider the family of quadratic
polynomials (f. : C — C).ec defined by

fo(2) =22 +c.
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The Mandelbrot set M is the set of parameters ¢ such that the orbit (f2™(0)), .,
is bounded. Douady and Hubbard proved that the Mandelbrot set is connected.
More precisely, let D C C be the unit disk. There exists a conformal isomorphism
da : C M — C~D which satisfies ppq(c) = ¢+ O(1) as ¢ — oo. For 6 € R/Z, the
curve
R(O) := {c € C~\M ; argument(¢M (c)) = 270 (mod 277)}

is called the external ray of M of angle 6. If § € R/Z is periodic for the doubling
map D : R/Z — R/Z, then the ray R(A) lands at a parameter ¢ € M, i.e.,
R(0) " M = {c}. Figure [I| shows the Mandelbrot set together with the rays of
angle 1/3, 2/3, 3/7 and 4/7.

FIGURE 1. The Mandelbrot set. The external rays R(1/3) and
R(2/3) land at the root ¢ = —3/4 of the satellite component H_;.
The rays R(3/7) and R(4/7) land at the root ¢ = —7/4 of the
primitive component #.,, where c3 is the unique real center of
period 3.

Assume now that ¢ is a center of period n. Then, ¢q is contained in the interior
of M. Let H,, be the connected component of the interior of the Mandelbrot set M
containing c¢y. Such a connected component H., is called a hyperbolic component
of M. If ¢ € H,,, the quadratic polynomial f, : z — 22 + ¢ has an attracting cycle
of period n. The product A(c) of the derivatives of f. at the points of this cycle is
called the multiplier of this cycle. To say that the cycle is attracting means that
A(c) € D. The map A : H,, — D is a holomorphic isomorphism which extends as
a homeomorphism A : H,, — D. The parameter ¢; := A71(1) is called the root of
the hyperbolic component H.,. The quadratic polynomial f., has a parabolic cycle,
i.e., a cycle whose multiplier is a root of unity. If this multiplier is 1, then H., is
called a primitive component of M. Otherwise, H,, is called a satellite component

of M.
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If ¢g = 0, which corresponds to the unique center of period 1, the root is ¢; = 1/4
and there is a single ray landing at ¢;: the ray R(0). If ¢¢ is a center of period n > 2,
there are two rays landing at c¢;. When ¢g is real, then ¢; is also real and when the
period is not 1, the two rays landing at c; are ’R(B(co)) (which is contained in the
upper half-plane) and R(—6(co)) (which is contained in the lower half-plane). The
angles 0(cg) € R/Z and —60(cy) € R/Z belong to the same orbit under iteration of
the doubling map D : R/Z — R/Z if and only if H., is a satellite component of M.

It follows from the count presented in §4.3] that among the -, real centers of
period n, 3, are centers of satellite components of M and ~,, — ,, are centers of
primitive components of M. Note that 5, # 0 only when n is even. In particular,
if n is odd, the 7, real centers of period n are centers of primitive components of
M. When n is even, 3, = v,/2. Thus, when n is even, among the v, centers of
period n, there are v, /o centers of satellite components and v, — 7,2 centers of
primitive components. This completes the proof of Theorem

4.5. Lutzky’s proof. The original argument of Lutzky for counting the number
of real centers may be illustrated by Figure [2}

N
1
1

-0.5 0

[}

-24

FIGURE 2. The curves of points (¢,z) € [-2,1/2] x [-2,2] such
that z is periodic of period n for f.. Red: n = 1; blue: n = 2,
green: n = 3; pink: n = 4. The line of equation z = ¢ is tangent
to those curves at points whose first coordinate is a real center.

For ¢ > 1/4, the polynomial f. has no real periodic point and for ¢ = —2, the
semi-conjugacy in §4.2) shows that the polynomial f_ has , cycles of period n.
As ¢ increases from —2 to 1/4, the «,, cycles must bifurcate in order to leave the
real axis and become complex conjugate cycles. At a pitchfork bifurcation (which
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corresponds to roots of satellite components of period n), a single cycle bifurcates,
contributing to one real center. At other bifurcations (which correspond to roots
of primitive components), two cycles bifurcate, still contributing to only one real
center. In addition, each pitchfork bifurcation comes from a bifurcation of period
n/2. Thus, if ], stands for the number of real centers of period n and ], stands
for the number of pitchfork bifurcations of period n, then for n > 1,

Bon1=0, By, =7, and an=p,+2(y, —B,),
which may be re-written as

+8
! — O / — ! — an n .
Ban—1 y Bon = = - 2

According to Lemma we have that 3], = 8, and v}, = 7, for n > 1 as required.

The justification that each bifurcation contributes to exactly one real center
relies on the result of Milnor and Thurston stated previously.

5. QUADRATIC DYNAMICS IN Fo

In this section, we consider the case k = F5. Theorem will be established
at the end of the section. Let us recall that for n > 1, the finite field Fo» with
2" elements is the splitting field of 22" — z over Fy. The Frobenius endomorphism
fo : Fo — Fy is an automorphism of Fy over Fy: it fixes Fy pointwise and satisfies

folz+w) = fo(2) + fo(w) and fo(zw) = fo(2)fo(w).

More precisely, any point z € Fy is periodic for fo. Such a point is periodic of
period exactly n if and only if it is an element of Fon which is not contained in Fom
for some proper positive divisor m of n. The conjugates of a point z of period n
are the points of its orbit under iteration of fo: z, fo(2), ..., fg(nfl) (z). This orbit
is the Galois orbit of z. The minimal polynomial of such a point has degree n and
vanishes precisely on its Galois orbit.

The periodic points of period n are the roots of the dynatomic polynomial

On(2) := @,(0,2) € Falz].
The irreducible monic polynomials of degree n in Fy[z] are the factors of ¢,,. The
polynomial ¢,, has degree 4,, and simple roots (since it divides 22" — 2 whose

derivative is —1). So, there are precisely «,, = d,,/n monic irreducible polynomials
of degree n in Fo[z]. Equivalently, there are a,, Galois orbits of period n in Fs.

5.1. Critical orbit for f..
Lemma 5.1. Assume c € Fy. Then, for alln > 1,
tP0)=co+ec1+...+cp1 with c¢j:= fgj(c).

Proof. The proof goes by induction. For n = 1, we have that

fe(0) =c=co.
And if
fcon(()) = Co —+ C1 + ...+ Cp—1,
then,
FEUED0) = e+ fo(f(0))

= ¢+ foleo) + foler) + -+ folen—1) =coter +eca+ - +cp. O
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5.2. Points in Fy are centers. We shall say that a Galois orbit is centered if the
associated minimal polynomial is centered, and noncentered otherwise.

Let us recall that ¢ € Fy is a center of period n if 0 is periodic of period n under
iteration of f..

Lemma 5.2. Any point ¢ € Fy is a center. Let n be the period of ¢ under iteration
of fo and let m be the period of 0 under iteration of f.. If the Galois orbit of c is
centered, then m = n. If the Galois orbit of ¢ is noncentered, then m = 2n.

Proof. For j > 0, set
cji=f3(c) and zj = fI(0)=co+eci 4 ... i
On the one hand, if ¢ is periodic of period n for fy, we have that c,4; = ¢; for all
7 >0, and so
Zop = 2(80 +c1+...+ C,L_1) =0.

Thus, 0 is periodic for f, and the period m divides 2n. On the other hand, if z,, =0
for some m > 1, then

om 2
o) =Cm =2Zm tCm = Zmy1 = 25, FC=c

Thus, the period n of ¢ for fy divides m. Since m divides 2n and n divides m, this
forces either m = n or m = 2n.

Let P be the minimal polynomial of c. Its roots are the points cg, ¢1, ..., Ch_1-
As a consequence, 0 is periodic of period n for f, if and only if z, = 0, i.e., if and
only if co +¢1 +...¢cn—1 =0, i.e., if and only if P is centered. O

5.3. From dynamical plane to parameter space. Let ¢ : Fo~ {0} — Fo~{0}
be the involution defined by

1
¥) = —.
(d) =5
Assume ¥ € Fo~{0}. Then,
I+ =0 & P+1=0 < JI=1.

We may therefore consider the map 1 : Fo\Fy — Fo~{0} defined by

1 9
YO = T e

The involution ¢ and the map ¥ commute with fy. So, they send Galois orbits to
Galois orbits.

Lemma 5.3. The map 1 : FoxFy — Fo~{0} is surjective and each fiber contains
two distinct points; those are exchanged by the involution ¢.

Proof. Assume ¢ € Fo~{0}. Then, ¢(9) = c if and only if 9> —9/c+ 1 = 0. The
discriminant of this quadratic polynomial is 1/¢? # 0. So, there are two distinct
roots. The product of the roots is 1. So, they are exchanged by ¢. O

Lemma 5.4. Assume 9 € Fo~Fy and ¢ = (). Let n be the period of ¥ for fo
and let m be the period of ¢ for fo. If O is conjugate to 1/9, then n = 2m and
the minimal polynomial of ¢ is noncentered. Otherwise n = m and the minimal
polynomial of ¢ is centered.
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Proof. By assumption, the Galois orbit of ¢ contains n points and the Galois orbit
of ¢ contains m points. Since ¥ commutes with fy, it sends the Galois orbit of ¥ to
the Galois orbit of c. According to Lemma the fibers of ¢ : FoxFo — Fo~{0}
contain exactly two points which are exchanged by the involution ¢. So, if the Galois
orbit of ¢ is preserved by the involution ¢, then its image by v contains m = n/2
points. Otherwise it contains m = n points. ([l

Lemma 5.5. Assume ¥ € FoxFy and c = (9). Then, forn > 1,

B e e R S

on
fc (0) 192n+1

Proof. For n > 0, set
272 2’”.
S 0 L A —
92 1 (92" +1)2
According to Lemma [5.1] we have that for n > 0,

f&M0) =cot+e1+ - +enot
Now, the proof goes by induction. For n = 1, we have that
1 )

JO) =e= GG = @
And if
on 19+,l92+193+“.+192"71
f(0) = T ;
92" +1
then
fE©) = fm(0) +en
A R o i N 92"
B 92" +1 (14 92")(92" + 1)

(¥ + 92 4.4 192"71)(1 + 192") 42"
(1+02") (02" +1)
-+ 192”7]) + 92" + (192ﬂ’+1 N 192”“71)

- T . O

Lemma 5.6. Assume ¥ € Fo~Fy is periodic of period n > 2 for fo and ¢ = (1).
Then, 0 is periodic of period n for f..

Proof. According to Lemma [5.5] for j > 1,

foj(o)_q9+q92+193+---+192]’—1_ 02 —9  f0)—
c ¥ 41 (W -1)Y +1) (- 1)+
Thus, f27(0) = 0 if and only if j is a multiple of n. O

5.4. Counting orbits. For n > 1, let o/, be the number of Galois orbits in Fo~.{0}
which have period n, and let /3], be the number of those orbits which are invariant
by the involution ¢. Then, oj = 3] = 1 since the only fixed point of fy in Fo~{0}
is 1. And o, = «,, for n > 2.
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Lemma 5.7. We have that
;o t B
Bi=1 and Vn>1 Pon = 2
/Bén-',-l =0.

Proof. The only fixed point of ¢ is 1, which is a fixed point of fy. So, 7 =1 and if
a Galois orbit is preserved by ¢, then its cardinality must be even. It follows that
B5,41 = 0. Next, a Galois orbit of period n for fj is the image by v of

e cither a Galois orbit of period 2n which is invariant by ¢,
e or two distinct Galois orbits of period n which are exchanged by .

It follows that

Y] ’ /
a;, = Bo, + On P 5 b so that S35, = On T Pn ;r ﬂ". O
Lemma 5.8. We have that 8, = B, forn > 2.
Proof. Consider the sequence (3/!),>1 defined by
{:=0 and Yn>2 B :=/4,.
Note that o} + 8] =2 = a1 + 87, so that for n > 1,
@ + By = an + By
Thus, according to Lemma [5.7]
! ! 1"
Vn>1 By =0 and 8, =g, = ot Gn i
According to Lemma we have that 5]/ = 3, for n > 1. O

Lemma 5.9. For n > 1, the n-th Gleason polynomial has v, monic irreducible
factors in Falc].

Proof. For n > 1, let 4/, be the number of Galois orbits of centers of period n in Fs.
For n = 1, we have 4{ = 1 = ;. For n > 2, according to Lemma the Galois
orbits of centers of period n are the images by ¥ of the Galois orbits of period n for
fo. According to Lemma the centered ones are the images of the Galois orbits
which are not invariant by the involution ¢. There are («, — 3,)/2 such orbits.
The noncentered ones are the images of the Galois orbits which are invariant by
the involution ¢. There are 3,, such orbits. Therefore,

ay — ap +
o= b gt .

This completes the proof of Theorem [1.6]

6. DYNATOMIC POLYNOMIALS IN Fslc, 2]

We finally prove Theorem The proof relies on the following observation.
Recall that for n > 1,

F,(c,z) = fi"(z) — =.
Lemma 6.1. Forn > 1, we have the following equality in Fs|c, z]:

Fo(c,2) = Hy(2* + ¢ —2) with H,(c) := Fy(c,0).
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Proof. Observe that for n > 1,
Hya(¢) = f200(0) = (£27(0))" + e = H(e) +c.
We shall prove the result by induction on n > 1. For n = 1, we have that
Fi(c,2) = fo(2) —2=2"4+c—z

So, the result holds.
Let us now assume that for some n > 1,

Folc,2) = Hy(2* + ¢ — 2).

Then,
Frii(c,2) = (Fn(c, z) + 2)2 +c—z
= (Hn(z2—|—c—z)—|—z)2+c—z
= HXP4c—2)+224+c—z2=H,1(z*+c—2).
This completes the proof by induction. (Il

For n > 1, we now have

Fo(c,z) = H D,,(c,z) and Hy(c) = H G (c).

As a consequence, for n > 1,
®,(c,2) = Gp(2* + ¢ — 2).

On the one hand, it follows that if P(c) divides Gy, (c), then P(z? + ¢ — z) divides
®,,(¢c, z). Thus, @, has at least v, irreducible factors which are monic with respect
to ¢. On the other hand, if Q(c, z) is a factor of ®,,(¢, z) which is monic with respect
to ¢, then Q(c,0) is a monic factor of G,,(¢). This shows that ®,(c, z) has at most
~n factors which are monic with respect to ¢. Thus, @, (c, z) has exactly =, factors
which are monic with respect to c. Theorem now follows easily from Theorem
1.6l

APPENDIX A. ITINERARIES OF ROOTS OF LOW-DEGREE GLEASON POLYNOMIALS

In this appendix, we present for each period n € [1, 8] two tables. The first table
corresponds to k = Q. It contains:
e the (approximate) value of the real center of period n,
e the initial segment of its kneading sequence (to be repeated periodically
with period n),
e the kneading angle 6(c) with its binary expansion and
e the cycles in Z/(2™ — 1)Z of (2™ — 1)0(c) and —(2" — 1)0(c).
The second table corresponds to k = F5. It contains:
e the minimal polynomials P € Fy[c] of the centers of period n,
e the coefficients of ¢ of P(c) and B
e the minimal polynomials of the numbers ¢ € Fy such that P o ¢ () = 0.

For periods 9 and 10, we only present the first table.
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A.1. Period 1.
Gi(c)=c and 7 =1.
[0[([o/1=07{0}]
0,1)
A.2. Period 2.
Gao(c)=14c¢ and 7y =1.
[ -1 (x—)[1/3=01]{1,2}]
[T+c[@,1) [1+0+9%]
A.3. Period 3.

Gi(c)=14c+2c+c* and 73 =1.

| —1.754878 | (x,—,+) [ 3/7=.011 [ {1,2,4} {6,5,3} |
(14+c+A[(1L,L0, D) [ A+0+93)WP +97 +1) |

A .4. Period 4.

Gilc) =142 +34+3c* +3%+* and 4 =2.

—1.940800 [ (%, —, +, +) 7/15 = .0111 {1,2,4,8} {14,13,11,7}
—1.310703 | (%, —,+,—) | 6/15 =2/5 = .0110 {3,6,12,9}
T+c+c](1,1,0,0,1) [ A4+ 9+0H0*+9° +1)
l+c+2 | (1,1,1) 1T+ + 92+ 93+ 97

A.5. Period 5.

Gs(c) = 1+4c+2c%+ 56+ 14c* 4 26¢° + 44¢5 + 69¢” + 94¢®
+114¢° + 116¢' + 94c! + 60c'? + 28¢!3 4 8¢ 4 15

and
Vs = 3.
—1.985424 [ (%, —, +,+,+) [ 15/31 = .01111 | {1,2,4,8,16} {30,29,27,23,15}
—1.860783 | (%, —, +,+,—) | 14/31 = .01110 | {3,6,12,24,17} {28,25,19,7,14}
—1.625414 | (%, —,+,—,—) | 13/31 = .01101 | {5,10,20,9,18} {26,21,11,22,13}
1+2+¢° (1,0,1,0,0,1) | A+ 94+ 92+ 91+ ) (P + 9+ 3+ 9 +1)
1+ +¢ (1,0,0,1,0,1) (1+ 9% +9°)(9° + 97 + 1)
l+c++3+ | (1,1,1,1,0,1) [ A+ 9+ 92+ 095+ 0°)(0° + 97 + 97 + 97 + 1)
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A.6. Period 6.
Gslc) = 1—c+c+33+7ch+17¢° + 35¢° 4 76¢7 + 155¢ + 298¢°
+536¢'0 4+ 927¢M 4 1525¢'% + 2331¢!? 4 3310c' + 43460
+5258¢'6 + 5843¢17 + 5892¢!® + 5313¢ + 4219¢%° + 2892¢2!
+1672¢%2 4 792¢% + 293¢** + 78¢%° +13¢% + 7
and
Y6 = 5.
—1.996376 | (x, —, +,+, +,+) 31/63 = 011111 {1,2,4,8,16,32} {62,61,59,55,47,31}
—1.966773 | (x,—, +,+,+,—) | 30/63 =10/21 = .011110 | {3,6,12,24,48,33} {60,57,51,39,15,30}
—1.907280 | (%, —, +,+, —, —) 29/63 = .011101 {5,10,20,40,17,34} {58,53,43,23,46,29}
—1.772893 | (%, —, 4+, +,—,+) | 28/63 =4/9 = 011100 {7,14,28,56,49, 35}
—1.476015 | (%, —, +,—, —, —) 26/63 = .011010 {11,22,44,25,50,37} {52,41,19,38,13,26}
1+ +¢c8 1,0,1,1) 14+93 4+ 9
T+c+cb ,1,0,0,0,0,1) [ 1+ 9+ 97+ 9T+ 9%)(0° + 9° + 97 + 92 + 1)
1+ +c° ,0,1,0,0,1) | M4+ +P2 +P + 95+ 95 +01+9 +1)
I+cet+Z+i+ 8 1,0,1,0,1) | 1+ 0+ P+ 9T+ 9%)(0° +09° + 93 + 92 + 1)
l+ce+l+cA+85](1,1,0,1,1,0,1) (14+ 9P + 9905 +9 +1)

A.7. Period 7.
deg(G7) =63 and -~ =09.

—1.999096 | (x,—,+,+,+,+, + = 0111111 | {1,2,4,8,16,32,64} {126,125,123,119,111,95,63}
—1.991814 | (%, —, +, +, +, 4+, — = 0111110 | {3,6,12,24,48,96,65} {124,121,115,103,79,31,62}
—1.977180 | (%, —, +, +, +, — — = 0111101 | {5,10,20,40,80,33,66} {122,117,107,87,47,94,61}
—1.953706 | (%, —, +, +, +, —, + —= 0111100 | {7,14,28,56,112,97,67} {120,113,99,71,15,30,60}
—1.927148 | (%, —, +, 4+, — — + = 0111011 | {9,18,36,72,17,34,68} {118,109,91,55,110,93,59}
—1.884804 | (5, —, +,+, — — — = 0111010 | {11,22,44,88,49,98,69} {116,105,83,39,78,29, 58}
—1.832315 | (%, —, +, +, —, +, — = 0111001 | {13,26,52,104,81,35,70} {114,101,75,23,46,92,57}
—1.674066 | (%, —, +, —, —, +, = 0110110 | {19,38,76,25,50,100,73} {108,89,51,102,77,27, 54}
—1.574889 | (5, —, +, —, —, — — = 0110101 | {21,42,84,41,82,37,74} {106,85,43,86,45,90,53}

14+c+c’ (1,1,0,0,0,0,0,1) W7+ P+ 09+ 1)07T +9°+ 0T+ 97 +1)

I+ +c” (1,0,0,1,0,0,0,1) | (07 + 9+ + P + 92 + 9+ 1) + I+ P + 91+ + 9 + 1)
l+c+ce+cS+c (1,1,1,1,0,0,0,1) | (0T + P + 9 + P + P2 + 9+ 1)(07 + 95 + 9 +9* + 095 + 92 + 1)

1+ +¢7 (1,0,0,0,1,0,0,1) T+ P+ + B+ D7 + 9+ 93+ 92+ 1)
I+ +S+A+c (1,0,1 0,0,1) AT+ + )W+ 9+ 1)
Il+ct++c+c” (1,1,1 1,0,1) W7+ 9+ 1) +9 +1)
l+ce+S+c+c7 (1,1,0 1,0,1) W7+ P+ 9+ +95+ P +91+1)
I+ +ct+e+cf (1,0,0 1,0,1) T+ + P+ + DT+ 9+ 91+ 9 +1)

l+ec+rd+S+d+S+7 | (0,1,1 1,0,1) W7+ + P+ P+ 1)+ +P+9+1)
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A.8. Period 8.
deg(Gsg) =120 and ~g = 16.
—1.999774 | (%, —, +,+, +,+, +,+) 22r = 01111111 {1,2,4,8,16,32,64,128} {254,253, 251,247,239,223,191, 127}
—1.997963 | (%, —, +,+, +,+,+,—) ¢ = 01111110 {3,6,12,24,48,96,192,129} {252,249, 243,231,207, 159, 63, 126}
—1.994333 | (%, —, 4+, +, +,+, —, —) 5=2 = .01111101 {5, 10, 20, 40, 80, 160, 65, 130} {250, 245, 235, 215, 175, 95, 190, 125}
—1.988793 | (%, —, +, +, +, +, ,+) 5== = .01111100 {7,14,28,56,112,224,193,131}  {248,241,227,199, 143, 31,62, 124}
—1.981656 | (%, —, +, +, +, — ,+) 5= = .01111011 {9,18,36,72,144, 33,66, 132}  {246,237,219, 183,111,222, 189, 123}
—1.972200 | (%, —, +,+, +,—, —, —) 5=z = .01111010 {11,22,44,88,176,97,194, 133}  {244,233,211, 167,79, 158,61, 122}
—1.960759 | (%, —,+,+, +, ,+, ) 5=+ = .01111001 {13,26,52,104,208,161,67,134} {242,229,203,151,47,94,188, 121}
—1.941782 | (*,—,+,+,+,— +,+) | 528 = 3= = .01111000 {15, 30,60, 120, 240, 225,195, 135}
—1.917098 | (%, —, +,+, — —, +,—) o= = 01110110 {19,38,76,152,49,98,196, 137} {236,217, 179, 103,206, 157,59, 118}
—1.896918 | (%, —, +,+, — -) 5t = 01110101 {21,42,84,168,81,162,69, 138} {234,213,171,87,174,93,186, 117}
—1.870004 | (%, —,+,+,—, —, —,+) 5=2 = .01110100 {23,46,92,184,113,226,197,139} {232,209, 163,71, 142,29, 58,116}
—1.851730 | (%, —, 4+, +, — + ) sz2 = 01110011 {25,50, 100, 200, 145,35, 70,140} {230, 205, 155, 55, 110, 220, 185, 115}
—1.810001 | (%, —, +,+, =+, —, —) 7= = 01110010 {27,54,108,216,177,99,198,141} {228,201, 147,39, 78,156, 57, 114}
—1.711079 | (;,—,+,—, — 4+, —, —) 502 = 01101101 {37,74,148,41,82,164, 73,146} {218,181,107,214,173,91,182,109}
—1.521817 | (%, —, +, —, — —, —, —) 52 = .01101010 {43,86,172,89,178,101,202, 149} {212,169, 83, 166, 77, 154,53, 106}
—1.381547 | (%, —, +, —,+.—) | 222 = 1= = .01101001 {45, 90, 180, 105, 210, 165, 75, 150}
1+c3+c (1,0,0,1,1) B+ P+ + 935 +1
l+ct+cZ+c3+4 (1,1,1,1,1) PBHIT I H9T+?2+0+1
I+c+S+ct+c8 (1,1,0,1,1,0,0,0,1) (BHIT+P+P+ DB+ P+ +9+1)
I+ +S+cA+8 (1,0,1,1,1,0,0,0, 1) B+ +P +I9+ 1)+ + P +9+1)
l+c+S+A+c8 (1,1,0,1,0,1,0,0,1) [ (9% + 9% +9° + 0% + 92 + 9+ 1)(9% + 97 + 095 + 9% + 9% + 9% + 1)
1+ +3+2+8 (1,0,1,1,0,1,0,0,1) [ (¥ + 97+ 95 +9° + 92 + 9+ 1) + 97 + 95 + 9> + 92 + 9 + 1)
1+ +d+2+8 (1,0,0,1,1,1,0,0,1) (B +I 05+ 92+ DB+ 95 + 093+ 92+ 1)
l+c+f+S+ct+o+8|(1,1,1,1,1,1,0,0,1) (B +IT+ 93+ 97+ D)+ 95+ 95 +9+1)
1+ +3+5+8 (1,1,1,1,0,0,1,0,1) (B9 + 05 + 0 + (B + 91+ 93+ 092 +1)
Iltce++S+A+E+8 | (1,1,1,1,1,0,1,0,1) | (03 + 07 + 95 + P + 9P+ P + )08 +0° + 9 + 3 + 92 + 9+ 1)
I+c+c®+8+8 (1,1,0,0,0,1,1,0,1) (BHIH P+ + DB+ +9° + 091 +1)
1+ ++E+8 (1,0,1,0,0,1,1,0,1) (B +P° +93+ 097+ 1)+ 95 + 95 + 9%+ 1)
1+ ++85+8 (1,0,0,1,0,1,1,0,1) (B9 +05 + 9+ D+ 97+ 097+ +1)
1+ +5+8+68 (1,0,0,0,1,1,1,0,1) | (B +I97+I91+ P + 92 + 9+ D) + 97+ 95 +9° + 9T + 9+ 1)
Il+ce++A+++8](1,1,1,0,1,1,1,0,1) [ (¥ + 95+ P + 0+ 97 + 9+ D)% + 97 +09° + 91 + 9% + 92 + 1)
Iltc++d++8+8 | (1,1,0,1,1,1,1,0,1) | (0¥ + 095 + 9 + 3 + 92 + 9+ 1)(0° + 97 + 9% +9° + 91 + 92 + 1)
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deg(Gy) =252 and 9 = 28.

—1.999944 | (x,—, +,+,+,+,+,+,+) | 22 = .011111111 {1,2,4,8,16,32,64,128,256} {510,509, 507,503, 495,479,447,383,255}

—1.999491 [ (x,—,+,+,+,+.+,+,—) | =7 = 011111110 {3,6,12,24,48,96, 192,384,257} {508,505, 499, 487, 463,415,319, 127, 254}
—1.998587 | (x,—,+,+,+,+,+,—,—) | == = 011111101 {5, 10, 20, 40, 80, 160, 320, 129, 258} {506, 501,491,471,431, 351, 191, 382, 253}
—1.997223 | (x,—,+,+,+,+,+,—, +) | =7 = .011111100 {7,14,28,56,112,224,448,385,259} {504,497, 483, 455,399, 287, 63, 126, 252}
—1.995419 [ (x,—,+,+,+,+,—, — +) | =7 = 011111011 {9, 18,36, 72, 144, 288, 65, 130,260} {502, 493,475,439, 367, 223, 446, 381, 251}
—1.993130 | (x,—,+,+,+,+,— —,—) | =2 = .011111010 | {11,22,44,88,176,352,193,386,261} {500, 489,467, 423, 335, 159, 318, 125, 250}
—1.990376 | (x,—,+,+,+,+,— +, 219 — 011111001 | {13,26,52,104, 208,416, 321,131,262} {498,485, 459,407, 303,95, 190, 380, 249}

—1.987004

B"—="011111000 | {15, 30, 60, 120, 240, 480, 449, 387, 263} {496, 481, 451, 391, 271, 31, 62, 124, 243}

11
—1.983810 T — 011110111 {17,34,68,136,272,33,66,132,264} {494,477, 443,375, 239,478, 445,379,247}

i
S —"DI1110110 | {19, 38,76, 152, 304,97, 194, 388,265}  {492,473,435, 359, 207, 414, 317, 123, 246}

—1.979458 | (%, —, +, +,+, —, —, +,
—1.974781 | (x,—,+,+,+,— —,—,—) | = = 011110101 | {21,42,84,168,336,161,322,133,266} {490,469, 427, 343, 175,350, 189, 378,245}
—1.969419 | (x,—,+,+,+,— —,—,+) | 51 = 011110100 | {23,46,92, 184,368, 225, 450,389,267} {488,465,419, 327, 143,286, 61, 122, 244}
—1.964024 | (x,—,+,+,+,—,+,—,+) | 253 = 011110011 | {25,50, 100,200,400, 289,67, 134,268} {486,461,411, 311, 111,222, 444, 377,243}
24
511
—1.949575 | (x,—,+,+,+,—,+,+,—) | =7 = .011110001 29,58,116, 232,464,417, 323,135,270} {482, 453,395,279, 47, 94, 188,376, 241
511
—1.932244 | (x,—,+,+,—,—,+,+,—) | 255 = 011101110 | {35,70, 140, 280, 49, 98, 196,392,273} {476,441, 371, 231,462,413, 315, 119, 238}
—1.922286 | (x,—,+,+,—,—,+,—,—) | =57 = .011101101 | {37,74,148,296,81,162, 324,137,274} {474,437,363, 215,430, 349, 187, 374, 237}
—1.911446 | (x,—,+,+,—,—,+,—,+) | =22 = 011101100 | {39,78,156,312,113,226,452,393,275} {472,433, 355,199,398, 285,59, 118,236}
—1.903117 | (x,—,+,+,—,—,—,—,+) | 55 = 011101011 | {41,82,164,328,145,290,69, 138,276} {470,429, 347, 183, 366,221, 442, 373,235}
—1.890775 | (x,—,+,+,—— —,——) | =1; = 011101010 | {43,86,172,344,177,354,197,394,277} {468,425,339, 167,334,157, 314,117,234}
—1.878383 | (x,—,+,+,——,—,+,—) | =23 = 011101001 | {45,90, 180,360, 209, 418,325,139, 278} {466,421, 331, 151,302, 93, 186, 372,233}
—1.841289 | (x,—,+,+,—,+,—,+,—) | =57 = .011100110 | {51,102,204,408, 305,99, 198,396,281} {460, 409,307, 103,206, 412,313,115, 230}
—1.822756 | (x,—,+,+,—,+,—, —, —) | =, = .011100101 | {53,106, 212,424, 337,163,326,141,282} {458, 405,299, 87,174, 348,185,370, 229}
—1.785866 | (x,—,+,+,—+,—,—,+) | ==; = .011100100 | {55, 110,220,440, 369,227, 454,397,283} {456,401, 291, 71,142, 284,57, 114,228}

1
—1.690142 ZIS°="011011010 | {75, 150, 300, 89, 178, 356, 201, 402, 203} {436,361, 211, 422, 333, 155, 310, 109, 213}

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
E )
—1.957325 | (%, —, +,+,+,— +,— ) | 2.2 = .011110010 | {27,54,108, 216,432,353, 195,390, 269} {484,457, 403, 295, 79, 158, 316, 121, 242}
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

511
—1.656133 | (%, —, +,—, — +, — +,—) | =& = .011011001 | {77, 154,308, 105, 210,420, 329, 147,294} {434, 357,203, 406,301, 91, 182, 364, 217}
—1.595681 | (%,—, +,—, —, — —,+.—) | 22 = .011010110 | {83,166, 332,153,306, 101, 202, 404,297} {428,345, 179, 358, 205,410, 309, 107, 214}
—1.555283 | (%, —, +——— ——,—) | =2 = 011010101 | {85,170, 340, 169, 338, 165, 330, 149,298} {426,341, 171, 342,173, 346, 181, 362, 213}
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deg(G1o) =495 and 9 = 51.

—1.999986

—1.999873

—1.999647

—1.999308

—1.998856

—1.998289

—1.997608

—1.996805

—1.995924

—1.994889

—1.993748

—1.992479

—1.991121

—1.989601

—1.987941

—1.985482

[ [ [ [

—1.982719

—1.980577

—1.978293

—1.976042

—1.973497

—1.970858

—1.967743

—1.965822

—1.962379

—1.959098

—1.955423

—1.951900

—1.946873

B e I I I o e e I o ) I [ e R S

—1.935391

—1.929320

—1.925034

—1.919635

—1.914480

—1.899832

—1.894002

—1.887172

I I e I I D R O

—1.882408

—1.874315

—1.861558

—1.846627

—1.835159

—1.829510

—1.816295

—1.802436

—1.721915

—1.701701

—1.629433

—1.536243

—1.501717

—1.447009

1) = OIII111111 {1,2,4,8,16,32, 64, 128, 256, 512} {1022, 1021, 1019, 1015, 1007, 991, 959, 895, 767, 511}
.+, ) U — DI11111110 {3, 6, 12, 24, 48, 96, 192, 384, 768, 513} {1020, 1017, 1011, 999, 975, 927, 831, 639, 255, 510}
4, =) = 0111111101 {5, 10, 20, 40, 80, 160, 320, 640, 257, 514} {1018, 1013, 1003, 983, 943, 863, 703, 383, 766, 509}
T+, — 1) S — DIL1111100 {7, 14, 28, 56, 112, 224, 448,896, 769, 515} {1016, 1009, 995, 967, 911, 799, 575, 127, 254, 508}
=, = 1) = 0111111011 {9, 18, 36, 72, 144, 288, 576, 129, 258, 516} {1014, 1005, 987, 951, 879, 735, 447, 894, 765, 507}
J——— ¢ — DI11111010 {11, 22, 44, 88, 176, 352, 704, 385, 770, 517} {1012, 1001, 979, 935, 847, 671, 319, 638, 253, 506}
=+, ) S — 0111111001 {13, 26, 52, 104, 208, 416, 832, 641, 259, 518} {1010, 997, 971, 919, 815, 607, 191, 382, 764, 505}
=+, +) 0L — 0111111000 {15, 30, 60, 120, 240, 480, 960, 897, 771,519} {1008, 993, 963, 903, 783, 543, 63, 126, 252, 504}
.=+, 1) D08 — 0111110111 {17, 34, 68, 136, 272, 544, 65, 130, 260, 520} {1006, 989, 955, 887, 751, 479, 958, 893, 763, 503}
—+, ) 208 — DI11110110 {19, 38, 76, 152, 304, 608, 193, 386, 772, 521} {1004, 985, 947, 871, 719, 415, 830, 637, 251, 502}
= =) 20— 0111110101 {21, 42, 84, 168, 336, 672, 321, 642, 261, 522} {1002, 981, 939, 855, 687, 351, 702, 381, 762, 501}
) 200 = 0111110100 {23, 46, 92, 184, 368, 736, 449, 898, 773, 523} {1000, 977, 931, 839, 655, 287, 574, 125, 250, 500}
,+, =, 1) = 0111110011 {25, 50, 100, 200, 400, 800, 577, 131, 262, 524} {998, 973, 923, 823, 623, 223, 446, 892, 761, 400}
e ¥ — 0111110010 {27, 54, 108, 216, 432, 864, 705, 387, 774, 525} 1996, 969, 915, 807, 591, 159, 318, 636, 249, 498}
4+, —) A — 0111110001 {29, 58, 116, 232, 464, 928, 833, 643, 263, 526} {994, 965, 907, 791, 559, 95, 190, 380, 760, 497}

) | a8 = I8 —"B111110000 {992, 961, 899, 775, 527, 31, 62, 124, 248, 496}
+,+,—) o1 — DI11101110 {35, 70, 140, 280, 560, 97, 194, 388, 776, 520} {988, 953, 883, 743, 463, 926, 829, 635, 247, 404}
—+,—,-) 408 = 0111101101 {37, 74, 148,296, 592, 161, 322, 644, 265, 530} {986, 949, 875, 727, 431, 862, 701, 379, 758, 493}
) 22— 0111101100 {39, 78, 156, 312, 624, 225, 450, 900, 777, 531} 1984, 945, 867, 711, 399, 798, 573, 123, 246, 492}
[ 22— 0111101011 {41, 82, 164, 328, 656, 289, 578, 133, 266, 532} {982, 941, 859, 695, 367, 734, 445, 890, 757, 491}
[ ——) 20— 0111101010 {43, 86, 172, 344, 688, 353, 706, 389, 778, 533} 1980, 937, 851, 679, 335, 670, 317, 634, 245, 490}
— =+, ) 50— 0111101001 {45, 90, 180, 360, 720, 417, 834, 645, 267, 534} {978, 933, 843, 663, 303, 606, 189, 378, 756, 489}
— =+, ) %8 — 0111101000 {47, 94, 188, 376, 752, 481, 962, 901, 779, 535} {976, 929, 835, 647, 271, 542, 61, 122, 244, 483}
4, 1) A — 0111100111 {49, 98,196, 392, 784, 545, 67, 134, 268, 536} {974, 925, 827, 631, 239, 478, 956, 889, 755, 437}
+, =+ ) AP0 = 0111100110 {51, 102, 204, 408, 816, 609, 195, 390, 780, 537} {972, 921,819, 615, 207, 414, 828, 633, 243, 436}
4= ——) A8 — 0111100101 {53,106, 212, 424, 848, 673, 323, 646, 269, 538} {970, 917,811, 599, 175, 350, 700, 377, 754, 485}
) ST = 0111100100 {55, 110, 220, 440, 880, 737, 451, 902, 781, 539} {968, 913, 803, 583, 143, 286, 572, 121, 242, 484}
— 4+, 1) 23— 0111100011 {57,114, 228, 456, 912, 801, 579, 135, 270, 540} {966, 909, 795, 567, 111, 222, 444, 888, 753, 483}
I — 82— 0111100010 {59, 118, 236, 472, 944, 865, 707, 391, 782, 541} {964, 905, 787, 551, 79, 158, 316, 632, 241, 482}
— ) A — 0111011101 {69, 138, 276, 552, 81, 162, 324, 648, 273, 546} 1954, 885, 747, 471,942, 861, 699, 375, 750, 477}
— = 1) 1 0111011100 {71, 142, 284, 568, 113, 226, 452, 904, 785, 547} {952, 881, 739, 455, 910, 797, 571, 119, 238, 476}
— == +) 0111011011 {73,146, 292, 584, 145, 290, 580, 137, 274, 548} {950, 877, 731, 439, 878, 733, 443, 886, 749, 475}
p— 0111011010 {75, 150, 300, 600, 177, 354, 708, 393, 786, 549} {948, 873, 723, 423, 846, 669, 315, 630, 237, 474}
— =+, ) 0111011001 {77,154, 308, 616, 209, 418, 836, 649, 275, 550} {946, 869, 715, 407, 814, 605, 187, 374, 748, 473}
= =+, —) = 0111010110 {83,166, 332, 664, 305, 610, 107, 394, 788, 553} {940, 857, 691, 359, 718, 413, 826, 629, 235, 470}
- - === = 0111010101 {85, 170, 340, 680, 337, 674, 325, 650, 277, 554} {938, 853, 683, 343, 686, 349, 698, 373, 746, 460}
————— ) = 0111010100 {87,174, 348, 696, 369, 738, 453, 906, 789, 555} {936, 849, 675, 327, 654, 285, 570, 117, 234, 468}
= 0111010011 {89, 178, 356, 712, 401, 802, 581, 139, 278, 556} {934, 845, 667, 311, 622, 221, 442, 884, 745, 467}
0111010010 {91, 182, 364, 728, 433, 866, 709, 395, 790, 557} {932, 841, 659, 295, 590, 157, 314, 628, 233, 466}

= 0111010001 {930, 837, 651, 279, 558, 93, 186, 372, 744, 465}
0111001101 {101, 202, 404, 808, 593, 163, 326, 652, 281, 562} 1922, 821, 619, 215, 430, 860, 697, 371, 742, 461}
— 0111001100 {103, 206, 412, 824, 625, 227, 454, 908, 793, 563} {920, 817, 611, 199, 398, 796, 569, 115, 230, 460}
= 0111001011 {105, 210, 420, 840, 657, 291, 582, 141, 282, 564} {918, 813, 603, 183, 366, 732, 441, 882, 741, 450}
= 0111001010 {107, 214, 428, 856, 689, 355, 710, 397, 794, 565} {916, 809, 595, 167, 334, 668, 313, 626, 229, 458}
0111001001 {109, 218, 436, 872, 721, 419, 838, 653, 283, 566} {914, 805, 587, 151, 302, 604, 185, 370, 740, 457}
= 0110110110 {147,294, 588, 153, 306, 612, 201, 402, 804, 585} {876, 729, 435, 870, 717, 411, 822, 621, 219, 438}
0110110101 {149,298, 596, 169, 338, 676, 329, 658, 203, 586} {874, 725, 427, 854, 685, 347, 694, 365, 730, 437}

= 0110110010 {868, 713, 403, 806, 589, 155, 310, 620, 217, 434}
0110101010 {171, 342, 684, 345, 690, 357, 714, 405, 810, 597} {852, 681, 339, 678, 333, 666, 309, 618, 213, 426}
> = 0110101001 {173, 346, 692, 361, 722, 421, 842, 661, 299, 598} {850, 677, 331, 662, 301, 602, 181, 362, 724, 425}
R —— A3 0110100110 {179, 358, 716, 409, 818, 613, 203, 406, 812, 601} {844, 665, 307, 614, 205, 410, 820, 617, 211, 422}

(B]
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