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Abstract

Researchers routinely use datasets where outcomes of interest are unobserved for some
cases, potentially creating a sample selection problem. Statisticians and econometricians
have proposed many selection correction methods to address this challenge. We use a nat-
ural experiment to evaluate different sample selection correction methods’ performance.
From 2007, the state of Michigan required that all students take a college entrance exam,
increasing the exam-taking rate from 64 to 99% and largely eliminating selection into
exam-taking. We apply different selection correction methods, using different sets of co-
variates, to the selected exam score data from before 2007. We compare the estimated
coefficients from the selection-corrected models to those from OLS regressions using the
complete exam score data from after 2007 as a benchmark. We find that less restrictive
semiparametric correction methods typically perform better than parametric correction
methods but not better than simple OLS regressions that do not correct for selection.
Performance is generally worse for models that use only a few discrete covariates than for

models that use more covariates with less coarse distributions.
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1 Introduction

Researchers routinely use datasets where outcomes of interest are unobserved for some cases.
When latent outcomes are systematically different for observed and unobserved cases, this
creates a sample selection problem. Many canonical economic analyses face this challenge:
wages are unobserved for the non-employed, test scores are unobserved for non-takers, and
all outcomes are unobserved for attriters from panel studies or experiments. Statisticians and
econometricians have proposed many selection correction methods to address this challenge.
However, it is difficult to evaluate these methods’ performance without observing the complete
outcome distribution as a benchmark.

We use a natural experiment to evaluate the performance of different selection correction
methods. From 2007, the state of Michigan required that all students take a college entrance
exam, increasing the exam-taking rate from 64 to 99% and largely eliminating selection into
exam-taking. We apply different selection correction methods, using different sets of covariates,
to the selected exam score data from before 2007. We then compare the estimated coefficients
from the selection-corrected models to those from OLS regressions using the complete exam
score data from after 2007 as a benchmark. Our primary performance metric is the mean
squared bias across all coefficients, but we also examine two coefficients of particular policy
relevance: an indicator for Black student race and an indicator for free or reduced-price lunch
receipt, representing respectively the race and income gaps in ACT scores.

We compare the performance of eight selection correction methods: linear regression (i.e.,
no correction), a one-stage parametric censored regression model (Tobin, 1958), a two-stage
parametric selection model (Heckman, 1974), and several two-stage semiparametric selection
models (Ahn and Powell, 1993; Heckman and Robb, 1985a; Newey, 2009; Powell, 1987). These
make successively weaker assumptions about the economic or statistical model generating the
latent outcomes and probability that the outcomes are missing. We evaluate each method
using different sets of covariates, which we include in both the outcome and selection equations.
These mimic the different types of data available to education researchers, ranging from sparse
(student demographics) to rich (student demographics, lagged student test scores, and school
and district characteristics). In the two-stage models requiring an exclusion restriction, we use
two instruments that affect physical access to test-taking: the driving distance from a student’s

home to the nearest test center, and the number of ACT testing dates with a severe weather



event near the local testing center in the 24 hours leading up to the exam. We show that after
controlling for other covariates, these instruments strongly predict ACT-taking but have little
relationship with other measures of student achievement.

We find that less restrictive semiparametric methods typically perform better than parametric
correction methods but not better than simple OLS regressions that do not correct for selection.
No one correction stands out as the strongest performer in all cases, though the parametric
bivariate normal correction without an instrument usually performs the worst. Performance
is generally worse for models that use only a few discrete covariates than for models that use
more covariates with less coarse distributions.

We consider several explanations for why the semiparametric corrections do not perform
better than simply ignoring the selection problem and using OLS regressions. This is not
explained by an absence of selection or weak instruments. The distributional assumptions of
the parametric methods do not hold in our data, and the bivariate normal selection correction
terms are almost colinear with the second stage covariates. This may explain their high bias
relative to the semiparametric methods. The improved performance of most models when we
add more detailed covariates is consistent with Angrist et al. (2013) and Angrist et al. (2017),
who find that observational value-added models fairly reliably predict causal school effects, as
well as with Newey et al. (1990), who conclude that the set of covariates matters more than
the specification of the selection equation.

This is the first paper to evaluate the performance of selection correction methods for miss-
ing data against a quasi-experimental benchmark. Other papers whose main focus is studying
missing data problems by comparing estimates across selection correction methods lack an ex-
ternal benchmark for evaluation (Mroz, 1987; Newey et al., 1990; Melenberg and Van Soest,
1996). These papers focus on evaluating the assumptions of different methods or examining
how much estimates change across methods. In contrast, we examine how selection-corrected
estimates compare to estimates using a benchmark measure of the complete data. We use
Michigan’s change in test-taking policy through time as a natural experiment to provide the
external benchmark. The validity of our benchmark relies on a temporal stability assumption:
that the distribution of unobserved student characteristics in Michigan does not change be-
tween cohorts. We present some evidence to indirectly support this assumption: differences
in observed characteristics between cohorts are small, accounting for differences in observed

characteristics does not change any of our main findings, and there is no difference in ACT



scores between cohorts within the pre-reform period (when we observe selected scores for all
cohorts) or within the post-reform period (when we observe complete scores for all cohorts).
Our approach is similar to the literature comparing different treatment effects methods, in-
cluding some selection correction methods, against experimental benchmarks (LaLonde, 1986;
Heckman et al., 1998; Dehejia and Wahba, 1999). Our approach is also related to an empirical
literature that compares estimates using potentially selected survey data to estimates using
more complete administrative data (Finkelstein et al., 2012; Meyer and Mittag, 2019).

We examine selection correction methods’ performance in a single data set, and thus evaluate
their performance using only a single empirical example. These patterns may not generalize
to other empirical examples. Subject to this caveat, this exercise may be of interest to three
audiences. First, our findings may be relevant for applied researchers using selection correction
methods or adapting existing methods for new applications (e.g. Dahl 2002; Bonhomme et al.
2016; Krueger and Whitmore 2001; Card and Payne 2002; Angrist et al. 2006; Clark et al. 2009).
Our findings provide an example where uncorrected OLS regressions perform better than the
parametric corrections employed by some of these studies.

Second, our findings may be relevant to econometricians comparing selection correction per-
formance (e.g., Mroz 1987; Goldberger 1983; Paarsch 1984; Newey et al. 1990; Vella 1998),
developing selection correction methods, or extending methods to allow for features like non-
parametric outcome models or dynamic selection (Das et al., 2003; Semykina and Wooldridge,
2013). We contribute to the work comparing correction performance by providing an example
with an empirical benchmark that allows us to evaluate rather than compare performance.

Third, our findings may be of interest to researchers, practitioners, and policymakers who
use college entrance exam scores to infer population achievement. For example, school district
and state education administrators often compare scores over time or across different race and
income groups, while researchers often use them as an outcome to examine the impact of some
education treatment. Our results contribute to the literature on selection into college entrance
exam-taking (Dynarski, 1987; Hanushek and Taylor, 1990; Dynarski and Gleason, 1993), by
showing an example where college entrance exam scores come closer to correctly describing
cross-group differences in population achievement when richer covariates are observed.

We describe the sample selection problem and correction methods in Section 2. In Section 3,
we describe our data, our setting, and the extent of selection into test-taking in the pre-reform

period. We report the main findings in Section 4 and discuss possible reasons for these findings
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in Section 5. We conclude in Section 6 and reflect on some alternative approaches to selection

correction not emphasized in our paper.

2 Sample Selection, Corrections, Evaluation Criteria

2.1 The Sample Selection Problem

We introduce the sample selection problem using a common application in education research.
We want to analyze student achievement, using ACT scores to proxy for achievement. We
observe scores for a subset of students, and the latent achievement distribution may differ
for ACT-takers and non-takers. This is similar to the canonical selection problem in labor
economics: wages are observed only for employed workers, and the latent wage distribution
may differ by employment status (Gronau, 1974; Heckman, 1974). We focus on the case where
selection into test-taking is determined by unobserved characteristics that are not independent
of latent scores. Selection on only observed characteristics or on only unobserved characteristics
independent of latent scores can be addressed with simpler methods.

All the selection correction models we consider are special cases of this framework:

ACT! = X5+ ¢ (1a)

1 if TAKE! >0
TAKE; = (1c)
0 if TAKE! <0

ACT? it TAKE! >0
ACT, = (1d)
if TAKE; <0

where ACT; and AC'T; are respectively the latent and observed ACT score of student i. We
assume throughout the paper that the conditional mean function E[ACT;"|X;] is linear and that
the objects of interest are the conditional means of ACT} given X; (i.e. the parameters from
the population linear regression of ACT} on X;). We draw a distinction between the sample
selection problem due to missing values of ACT}, and the more general identification problem
due to correlation between X; and ¢;. We abstract away from the latter problem by assuming
that the object of interest is the conditional mean of ACT} given X;, rather than some causal
effect of X; on ACT;. The ordinary least squares estimator of 3 consistently estimates this

conditional mean in the absence of sample selection. We therefore refer to “covariates” of test



scores rather than “determinants” or “causes.”

Equation (1b) models the sample selection problem. Selection depends on a vector of observed
characteristics (X;, Z;) and an unobserved scalar term w;, which has an unknown distribution
and may be correlated with ¢;. There may exist instrumental variables Z; that, conditional on
X, influence the probability of taking the ACT and do not influence latent ACT scores (i.e. are
independent of €;). We do not assume that the functional form of g(.,.) is known. Equations
(1c) and (1d) show the relationships between latent and observed ACT-taking and scores. Note
that we observe the vector X; for students who do not take the ACT.

Selection bias arises because the expectation of the observed ACT score conditional on X;

depends on the conditional expectation of the error term:

If u; and ¢; are not independent, the compound error term is correlated with X;, creating an
omitted variable problem. If ¢; and u; are independent, then we describe the data as missing
conditionally at random (Rubin, 1976) or selected on observed characteristics (Heckman and
Robb, 1985b). This still poses a sample selection problem but can be addressed using simpler
methods.

2.2 Selection Correction Methods

We evaluate eight selection correction methods. All are discussed in more detail in Appendix
B and summarized in Appendix Table 3. First, we estimate ACT; = X, + ¢; using ordinary
least squares and the sample of ACT-takers. This approach provides a consistent estimator
of g if unobserved factors influencing test-taking are independent of latent test scores and the
excluded instruments Z; do not influence test-taking, because the omitted variable in equation
(2) is zero under this assumption. Second, we estimate ACT; = X;/3 + ¢; using a Type 1 Tobit
maximum likelihood estimator and the sample of ACT-takers (Tobin, 1958). If ¢; is normally
distributed and equal to u;, we can estimate equation (2) by maximum likelihood, allowing
consistent estimation of 5. This method assumes that ACT-taking and ACT scores are jointly
determined by the same unobserved student characteristic. If students with high latent ACT
scores do not take the ACT (or vice versa), this assumption fails.

Third, we jointly estimate the score and test-taking models using a bivariate normal selection

correction method (Gronau, 1974; Heckman, 1974). If ¢ (X;, Z;) = X;0 + Z;y and (€;,u;)



are jointly normally distributed, the omitted variable in equation (2) can be estimated and
included as a control variable, allowing consistent estimation of #. This does not impose the
Tobit model’s restrictive assumption that student selection into ACT-taking is based on latent
scores. However, this approach relies on specific distributional assumptions and may perform
poorly if there is no excludeable instrument Z; that predicts ACT-taking but not latent ACT
scores (Puhani, 2002).! As our fourth model, we therefore estimate a bivariate normal selection
correction model using two instruments: the driving distance from each student’s home to the
nearest ACT test center from the outcome model, and the number of ACT testing dates with a
severe weather event near the closest ACT test center in the 24 hours leading up to the exam.
This follows Card (1995), among others, and we justify the exclusion restriction in Section 3.2.

We also estimate four semiparametric models, which relax the assumptions that (e;, u;) are
jointly normally distributed and that the functional form of ¢(.,.) is known. Each model
combines one of two ACT-taking models, estimated for all students, and one of two selection-
corrected ACT score models, estimated for only ACT-takers. The first ACT-taking model is
a semiparametric logit: a logit regression of TAKFE; on polynomial functions of X; and Z;,
with the polynomial order chosen using cross-validation. The second ACT-taking model is a
nonparametric matching estimator that calculates the weighted mean ACT-taking rate among
groups of students with similar covariate and instrument values, with more weight assigned to
students with the most similar values of the covariates and instruments. We use the predicted
probabilities of ACT-taking from these models to construct two selection corrections for the
ACT score model.

The first selection-corrected ACT score model approximates the bias term in equation (2) with
a polynomial in T’ AK E? (Heckman and Robb, 1985a; Newey, 2009). The second differences out
the bias term using pseudo-fixed effects for groups of students with similar values of TAKE;
(Ahn and Powell, 1993; Powell, 1987). These approaches do not rely on specific distributional
assumptions. But they do impose some restrictions on the joint distribution of (€;, u;) and the
function ¢(.,.) and may have poor statistical performance in even moderately large samples.

We discuss the assumptions and implementation of the semiparametric models in Appendix

B.2

! Joint normality of (e;,u;) is a sufficient but not necessary condition for this selection correction model to
provide a consistent estimator of 3. There are other assumptions on the joint distribution that are sufficient.

2The differencing methods proposed by Ahn and Powell (1993) and Powell (1987) yield y/n-consistent and
asymptotically normal estimators of the regression coefficients in the ACT score model if the ACT-taking



We refer to these eight methods as OLS, Tobit, bivariate normal, bivariate normal with IV,
semiparametric + polynomial, nonparametric + polynomial, semiparametric + differencing,
and nonparametric + differencing. We summarize the differences between these methods by
describing a hypothetical student’s ACT-taking choice. Assume that her decision to take the
ACT depends on her unobserved (to the econometrician) interest in attending college. The OLS
correction is appropriate if this interest is uncorrelated with unobserved factors influencing her
latent ACT score. The Tobit Type I correction is appropriate if this interest predicts her
ACT-taking decision only through her latent test score, so she will take the ACT if and only
if she has a high latent score conditional on her observed characteristics. The bivariate normal
corrections are appropriate if this interest is correlated with unobserved factors influencing
her latent ACT score but the joint distribution of these unobserved characteristics satisfies
specific parametric conditions. The polynomial and differencing corrections are appropriate if
this interest is correlated with unobserved factors influencing her latent ACT score and the

joint distribution of these unobserved characteristics satisfies weaker conditions.

2.3 [Evaluating Alternative Selection Correction Methods

We evaluate each of the eight selection correction methods by comparing estimates of regression
coefficients between selection-corrected pre-reform data and complete post-reform data. First,
we regress the complete post-reform ACT test score data on a vector of covariates. Second, we
regress the selected pre-reform ACT test score data on the same vector of covariates, using each
of the eight selection correction methods in turn. We interpret the difference between the first
and second vectors of coefficient estimates as the selection biases after applying the relevant
correction method. Our primary evaluation criterion is the mean squared bias across the full
vector of coefficients (excluding the intercept) in each selection-corrected regression. We also
examine two individual coefficients that are particularly policy-relevant: an indicator for Black
student race and an indicator for free or reduced-price lunch status, respectively measuring the
race and income gap in ACT scores.

ACT-taking is almost universal in the post-reform period, so the coefficients from the post-

reform regression models have little selection bias. If the latent ACT score distribution is stable

model is undersmoothed. In our context, this means identifying the “correct” series order using cross-validation
and then deliberately choosing a higher series order, and similarly using smaller groups of students in the
nonparametric matching estimator. To address this concern, we show in Appendix Figures XII and XIII that
undersmoothing does not systematically improve performance in the cases we examine.



from the pre- to the post-reform period, then the difference between the coefficients captures the
selection bias that remains after applying a selection correction method. We assess the cross-
cohort stability of the ACT score distribution in Section 3. In brief, we show that there are
only small differences between cohorts in observed characteristics, that our findings are robust
to adjusting for these differences using reweighting, and that there is no difference in ACT
scores across cohorts within either the pre- or post-reform period. Our main results compare
the selection-corrected coefficient estimates to the post-reform estimates after reweighting the
post-reform data to equate the distribution of observed covariates between cohorts. But we
show in Appendix Figures III - V that the results are nearly identical when compared to the
post-reform coefficient estimates without reweighting.

We evaluate each of the eight selection correction methods using three different vectors of
covariates, for a total of twenty-four estimates. In the main paper, we present the mean
squared bias, and coefficients on the Black student race and free or reduced-price lunch receipt
indicators, and their standard errors. In Appendix Tables 5 - 7, we report all of the estimated
coefficients and their standard errors. We estimate the standard errors using a nonparametric
bootstrap that replicates all estimation stages within each replication: estimating the reference
model using the complete post-reform data, estimating the ACT-taking model using selected
pre-reform data, and estimating the ACT score model using selected pre-reform data with
the relevant selection correction method applied. We use bootstrap rather than analytical
standard errors because our focus on mean squared bias requires standard errors for nonlinear

combinations of estimates across multiple regressions.

3 Context, Data, and the Extent of Selection

We use student level data for two cohorts (2004/5 and 2007/8) of all first-time 11*" graders
attending Michigan public high schools. Using the last pre-reform cohort (2005/6) and first
post-reform cohort (2006/7) would minimize demographic differences between the samples.
However, the policy was piloted in some schools in 2006, and not all districts implemented the
reform in 2007. Given these challenges with the 2005/6 and 2006/7 cohorts, our main analysis
uses the 2004/5 and 2007/8 cohorts. We refer to these as the 2005 and 2008 cohorts in the
rest of the paper. Our main results are similar when we compare either of the two pre-reform

cohorts to either of the two post-reform cohorts (Appendix Figures VI - VIII).



3.1 Data

We use student-level administrative data from the Michigan Department of Education (MDE)

1*h grade students in Michigan public schools. The data contain the

that cover all first-time 1
time-invariant demographics sex, race, and date of birth, as well as time-varying characteristics
such as free and reduced-price lunch status and student home address. The data also contain
8™ and 11*" grade state assessment results in multiple subjects. We match the MDE data
to student-level ACT and SAT information, to the driving distance between students’ home

1" grade and the nearest ACT test center, and to information about the timing and

during 1
location of severe weather in Michigan during our sample period.> See Appendix A for more
information about our data and sample definition.

Table 1 shows sample means for the combined sample (column 1) and separately for the two
cohorts of interest (columns 2 and 5). Four patterns are visible. First, the fraction of students
taking the ACT jumped discontinuously from 2006 to 2007 when the policy was introduced.
The ACT-taking rate rose from 64.1% in 2005 to 98.5% in 2008.% Second, mean ACT scores
did not vary across years within each period: they change by only 0.1 points between 2005 and
2006 and between 2007 and 2008. This suggests that cohort-level latent achievement was stable
through time, supporting our claim that differences in observed ACT scores reflect changes in
ACT-taking rather than changes in composition.

Third, ACT-taking rates increased more for student groups with lower pre-reform rates: Black
students, free lunch-eligible students, and students with low 8*® grade test scores. These same
groups saw weakly larger drops in their mean scores. This shows group-level positive selection
of students into ACT-taking based on their latent ACT scores in the pre-reform period, which
was eliminated by the reform. Fourth, student demographics changed smoothly through time
with no jump at the policy change. The percentage of Black and free lunch-eligible students
rose, as did the unemployment rate. Our comparisons account for this shift by reweighting the
post-reform cohort to have the same distribution of observed characteristics as the pre-reform

cohort (DiNardo et al., 1996).° This adjustment does not account for cross-cohort differences

3If a student took the ACT multiple times, we use their first score. If a pre-reform student took the SAT
but not the ACT, we convert their score into ACT scale using the standard concordance table.

4Michigan’s policy required 95% of students in each school to take the ACT for accountability purposes but
did not require that individual students took the exam to graduate high school. This explains why 1.5% of
students did not take the ACT exam even after the policy change.

50ur reweighting model includes indicators for individual race, gender, special education status, limited
English proficiency, and all interactions; school means for the same four variables, urban/suburban/rural location
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Table 1. Sample Means of Michigan 11th Grade Cohorts

2005and 2005 2006 2007 2008  08-05 Diff P-Value
2008 Cohort Cohort Cohort Cohort (5)-(2) (6)=0

(1) (2) 3) (4) (5) (6) (7)

Demographics

Female 0.516 0.514 0.515 0.517 0.517 0.003 0.226
White 0.790 0.805 0.792 0.782 0.775 -0.030 0.000
Black 0.145 0.132 0.148 0.154 0.158 0.026 0.000
Hispanic 0.029 0.027 0.027 0.029 0.031 0.004 0.000
Other race 0.035 0.036 0.033 0.034 0.035 0.000 0.600
Free or reduced lunch 0.242 0.204 0.231 0.256 0.279 0.075 0.000
Local unemployment 7.518 7.285 7.064 7.329 7.745 0.460 0.000
Driving miles to nearest
ACT test center 3.71 4.87 4.61 2.59 2.58 -2.29 0.000
Number of Exam Dates
with Severe Weather 0.82 0.88 0.25 0.99 0.76 -0.12 0.000
Took SAT 0.058 0.076 0.069 0.047 0.039 -0.037 0.000
SAT Score 25.2 24.8 24.6 25.6 259 1.0 0.000
Took SAT & ACT 0.054 0.070 0.064 0.046 0.039 -0.031 0.000
Took ACT or SAT
All 0.815 0.641 0.663 0.971 0.985 0.345 0.000
Male 0.793 0.598 0.621 0.969 0.984 0.387 0.000
Female 0.836 0.681 0.702 0.973 0.986 0.305 0.000
Black 0.780 0.575 0.608 0.905 0.947 0.372 0.000
White 0.822 0.652 0.674 0.985 0.993 0.341 0.000
Free or reduced lunch 0.749 0.434 0.483 0.936 0.970 0.536 0.000
Not free/reduced lunch 0.838 0.693 0.717 0.983 0.991 0.299 0.000
Low grade 8 scores 0.747 0.474 0.513 0.972 0.979 0.505 0.000
High grade 8 scores 0.875 0.778 0.789 0.971 0.991 0.213 0.000
First ACT or SAT Score
All 19.9 20.9 20.8 19.2 19.3 -1.6 0.000
Male 19.9 21.0 20.9 19.1 19.2 -1.8 0.000
Female 19.9 20.7 20.6 19.2 19.3 -1.4 0.000
Black 16.0 16.8 16.6 15.8 15.6 -1.2 0.000
White 20.6 21.4 215 19.8 20.0 -1.5 0.000
Free or reduced lunch 171 18.3 18.0 16.7 16.8 -1.5 0.000
Not free/reduced lunch 20.7 21.3 21.3 20.0 20.2 -1.1 0.000
Low grade 8 scores 16.8 17.8 17.6 16.4 16.3 -1.4 0.000
High grade 8 scores 221 22.4 22.5 21.6 21.8 -0.6 0.000
Number of Students 197,014 97,108 99,441 101,344 99,906

Notes: The sample is first-time 11th graders in Michigan public high schools during 2004-05 through 2007-08
who graduate high school, do not take the SPED 11th grade test, and have a non-missing home address. Free
or reduced-price lunch lunch status is measured as of 11th grade. Low (high) grade 8 scores are below (above)
the median score in each sample.
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in unobserved factors influencing latent ACT scores.

3.2 Modeling ACT-Taking

The two-stage selection correction methods are identified either by distributional and functional
form assumptions, which are seldom viewed as credible in empirical work, or by an excluded
instrument that predicts ACT-taking but not latent ACT scores. We propose two instrumental
variables. The first is the driving distance from each student’s home to the nearest ACT
test center. The second is exposure to severe weather events occurring in the county of the
nearest ACT test center in the 24 hours prior to a relevant ACT testing date. We assume
that students with easier access to a test center have a lower cost and hence higher probability
of taking the test but do not have systematically different latent test scores, conditional on
the other covariates. Distance instruments have been widely used in research on education
participation, including standardized test-taking (Bulman, 2015; Card, 1995; Kane and Rouse,
1995). Weather instruments are widely used in applied microeconomics work, showing poor
weather affects outcomes such as labor supply, voter turn-out, and political protest participation
(Krishnaswamy, 2019; Fujiwara et al., 2016; Madestam et al., 2013). We do not claim that the
instruments are perfect, but rather that they are consistent with common empirical practice.
This is the appropriate benchmark if we aim to inform empirical researchers’ choice of selection
correction methods, conditional on the type of instruments typically available. See Appendix
A for more information on the construction and distribution of both instruments.

Both instruments strongly predict ACT-taking, supporting the instrument strength condi-
tion. To show this, we use pre-reform data to estimate a probit regression of ACT-taking on
a quadratic in distance and dummies for exposure to one and two severe weather events. A
quadratic in distance allows the marginal cost of ACT-taking to vary with distance, accounting
for fixed costs of travel or increasing marginal cost of time. We use indicators for one and two
severe weather events to allow for possible nonlinear effects of having multiple affected testing
dates, and because no student is exposed to more than two severe weather events in the relevant
time window. We report both heteroskedasticity-robust standard errors, as distance varies at
the individual level, and county-clustered standard errors, as the weather measure varies at the

county level.

and all interactions; and district enrollment, pupil-teacher ratio, local unemployment rate and all interactions.
Results are robust to alternative reweighting models.
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We report the results in Table 2 columns 1-4. Both driving distance and severe weather events
are associated with lower ACT-taking. The negative relationships grow stronger as we control
for student demographics, school- and district-level characteristics, and student scores on other
tests. Using either standard error type, the instruments are jointly statistically significant (with
all covariates, x%, .« = 184.23 and X2 sioreq = 48.42). The instruments pass the commonly used
“F > 10" test for instrument strength, although this test is developed for linear two-stage least
squares models and is not formally applicable to this setting (Stock and Yogo, 2005). The
probability of ACT-taking drops by 10-13 percentage points (depending on the covariate set)
with a move from the 1 to the 99" percentile of the instruments. Over half of this shift is due
to exposure to two severe weather events. We return to the interpretation of the instrument in
Section 5, including a discussion of identification at infinity.

Neither instrument strongly predicts latent achievement, supporting the exclusion condition.
To show this, we conduct a placebo test using two other measures of latent achievement that
are observed whether or not students take the ACT: their math and English scores on the
in-school standardized exam that all students take in eleventh grade. We regress the average
of these two measures on the instruments and various sets of covariates. We report results in
Table 2 columns 5-8. Neither set of instruments is statistically significantly associated with
the outcomes conditional on covariates (X2, . = 4.65, XZustereq = 3-51). Latent achievement
shifts by only 0.05 standard deviations with a move from the 1% to the 99*" percentile of
the instruments. This placebo test provides reassurance that the instruments are unlikely to

substantially shift ACT scores conditional on ACT-taking.

3.3 Describing Selection by Comparing Pre- & Post-Reform Score Distributions

In this subsection, we compare the observed pre- and post-reform ACT score distributions to
describe pre-reform selection into ACT-taking. Positive/Negative selection occurs if pre-reform
scores are systematically higher /lower than post-reform scores. Researchers using selected test
scores sometimes assume that all non-takers would score below some percentile in the observed
distribution (Angrist et al., 2006) or below all takers (Krueger and Whitmore, 2001). We assess
the plausibility of these assumptions in our setting.

We estimate the latent ACT score distribution for non-takers by subtracting the number
of test-takers with each ACT score in the pre-period from the number with each score in the

post-period. We reweight the post-reform cohort to have the same number of students and
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distribution of observed characteristics. If the reweighting accounts for all factors influencing
latent test scores that differ between periods, then the difference in the number of students at
each ACT score equals the number of non-takers with that latent score.®

Figure I plots the frequency distribution of ACT scores pre-reform, the reweighted post-
reform distribution of scores, and the difference, which proxies for the latent scores of non-
takers pre-reform. The observed test score distribution is approximately normal, reflecting the
test’s design. The non-takers’ test score distribution is shifted to the left. The mean pre-reform
ACT score is 1.3 points or 0.27 standard deviations higher than the mean post-reform ACT
score. ACT-takers tend to score higher than non-takers. However some non-takers have high
latent scores: 68% and 24% of the latent scores exceed the 10th and 50th percentiles of the
observed score distribution. Appendix Table 2 reports moments and percentiles of the three
distributions.

There is clear positive selection into ACT-taking, but less than that assumed in prior studies.
Angrist et al. (2006) and Krueger and Whitmore (2001) use Tobit and bounding analyses that
assume all non-takers would score below specific quantiles of the observed distribution. In our
data, this type of assumption would hold only at very high quantiles, generating uninformative
bounds. We conclude that selection corrections relying on strong assumptions about negative

selection are not justifiable in this setting.”

4 Results

4.1 Comparing Mean Squared Bias of Different Selection Corrections

In this section, we evaluate the performance of multiple selection correction methods. We
estimate selection-corrected regressions of ACT scores on covariates using the pre-reform ACT
data and the methods described in Section 2 and Appendix B. We compare the coefficient
estimates from these regressions to the coefficient estimates from the same regressions using the
complete post-reform ACT data, weighted to adjust for the small differences in composition

across the pre- and post-reform periods. We interpret the difference between the coefficient

SHyman (2017) conducts a more extensive version of this analysis, measuring the number of students in the
pre-reform cohort who have college-ready latent scores but do not take a college entrance test. He also examines
the effect of the mandatory ACT policy on postsecondary outcomes.

" Appendix Figure I shows the complete, selected, and latent test score distributions for subsamples by income
and race, using the same approach as Figure I. The latent score distributions for all subsamples span a similar
range to the full sample, and remain quite skewed.
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Figure I. Frequency Distribution of Observed and Latent ACT Scores by Period
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Notes: Figure shows the number of students attaining each ACT score in the pre-reform period (dashed line with blue circles) and the
number of students attaining each ACT score in the post-reform period (solid line with red squares) after reweighting the post-reform
data to have the same distribution of observed covariates as the pre-reform data (DiNardo et al., 1996). The difference between the
two numbers (dotted line with green triangles) is an estimate of how many pre-reform non-takers would attain each ACT score. We
display frequencies rather than densities to demonstrate the change in the number of ACT takers from the pre- to post-policy period.

estimates as measures of selection bias after applying each selection correction.

Table 3, row 1 reports the mean squared bias (MSB) for each of the eight selection correction
methods, taking the mean over all coefficient estimates except the intercept. The MSB is shown
separately for each of the three covariate vectors. We summarize these results in Figure II. The
simple OLS regression, which ignores selection, has the second lowest MSB of any method:
0.380 (standard error 0.045). The MSB is larger for the other parametric selection corrections:
1.249 for Tobit (s.e. 0.096), 7.357 for the bivariate normal model without instruments (s.e.
3.475), and 2.264 for the bivariate normal model with the instruments (s.e. 0.356).

The semiparametric correction methods have substantially lower MSB than the parametric
correction methods. The semiparametric differencing method has a slightly lower MSB than
OLS: 0.317 with standard error 0.322, which is neither significantly not substantively different
than OLS. The semiparametric polynomial, nonparametric polynomial, and nonparametric
differencing methods have MSB of respectively 1.962 (s.e. 0.320), 0.823 (s.e. 0.095), and 1.219
(s.e. 0.154).
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Figure II. Mean Squared Bias by Selection Correction and Covariate Set
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Notes: Figure shows the mean squared bias for every selection correction and covariate set, taken over all coefficient estimates except the
intercept. We omit the bivariate normal correction without instruments with the student demographics covariate set. Including this estimate, which
has MSB of 7.53, compresses the other estimates and makes them difficult to read.

We now examine whether these patterns change when the econometrician has access to school-
and district-level covariates (such as demographic composition, average 8" and 11" grade test
scores, class sizes, and local unemployment). We report these results in the second row of Table
3. Adding these covariates reduces the MSB for almost all of the methods, with larger reductions
for the methods with the highest MSB over the sparse set of covariates. The improvement is
particularly large for the very biased parametric methods: MSB for Tobit drops from 1.249 to
0.522, for bivariate normal without instruments drops from 7.537 to 2.221, and for bivariate
normal with instruments falls from 2.264 to 0.445. Among the semiparametric methods, the
bias reduction is also larger for the previously more biased semiparametric polynomial and
nonparametric differencing methods, while the bias on previously least biased semiparametric
differencing method rises by a small and statistically insignificant amount.

OLS has the lowest MSB for this covariate set. Three of the semiparametric methods (semi-

parametric polynomial and differencing, nonparametric differencing) have only slightly higher
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MSB and the differences are not statistically significant. The bivariate normal method without
instruments continues to have the largest bias, almost four times higher than any other method.

Finally, we add student-level 8" and 11*® grade test scores to the set of covariates. We might
expect these two measures to behave differently than the other covariates. These two measures
explain 59% of the variation in ACT scores in a linear regression of selected scores, compared to
17% for all other covariates we observe. The pseudo-R? from regressing ACT-taking on these
two measures is 0.19, compared to 0.06 for all other measures. In other education research,
conditioning on lagged student test scores is particularly important for eliminating biases in
value-added models (Angrist et al., 2013, 2017). Adding in these two covariates reduces MSB
for all methods except the bivariate normal method with instruments, but the changes are
small. The nonparametric differencing method now has the lowest mean squared bias, but this
is almost identical to OLS and semiparametric differencing. The bivariate normal models with
and without instruments have substantially and significantly higher MSB than any of the other
methods.

Comparing MSB across different covariate sets is complicated by the different scales of the
covariates. To address this concern, we rerun all of our analyses after standardizing all covariates
to have mean zero and standard deviation one, and report the results in Appendix Figure II.
Using standardized covariates, MSB is still substantially lower for the intermediate covariate set
(using school- and district-level characteristics) than the basic covariate set (using only student
demographics). MSB is marginally higher for the rich covariate set (using other student test
scores) than the intermediate set. But the rise is explained mainly by the two bivariate normal
models, with small changes in the mean squared biases for other methods that are small relative
to the standard errors. We conclude that going from the basic to the intermediate covariate set
robustly reduces MSB, but going from the intermediate to rich covariate set does not produce
a robust reduction in bias. With standardized covariates, mean squared bias continues to be
relatively high for the parametric estimators, and not systematically different between OLS and
the less-biased semiparametric estimators.

The 95% confidence intervals on mean squared bias estimates exclude zero for every correc-
tion, using every set of covariates, except the semiparametric differencing model using the basic
covariates. Although mean squared bias over multiple covariates does not have a natural quan-
titative interpretation, the statistical significance provides one metric to conclude that none of

the correction methods entirely eliminates selection bias.
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We summarize these results in Figure II. The figure shows the mean squared bias for each
correction method on the vertical axis. The left-hand set of estimates are for the basic set
of covariates, the middle set of estimates are for the intermediate covariates including school-
and district-level information, and the right-hand set of estimates are for the rich covariate
set including student-level test scores. Within each of the left, middle, and right blocks, the
estimates for the different correction methods are staggered horizontally for legibility. But the
horizontal axis has no cardinal or ordinal interpretation.

The figure clearly shows the three main patterns discussed above. First, OLS has lower
MSB than most correction methods, including the semiparametric methods, for each of the
covariate sets. Second, the semiparametric correction methods mostly have lower MSB than
the parametric correction methods. Third, the MSB is lower for the intermediate and rich

covariate sets than the basic covariate set for almost all correction methods.

4.2 Comparing Selection Corrections’ Performance for Specific Coefficients

Thus far we focused on the mean squared bias (MSB) across all coefficient estimates in each
selection correction model, excluding the intercept. MSB provides a useful summary measure
of selection correction methods’ performance. However, many researchers using selection cor-
rection methods are particularly interested in a subset of coefficient estimates. In this section,
we examine correction performance focusing on estimates of two particularly policy-relevant
coefficients: an indicator variable for free or reduced-price lunch receipt, which proxies for low-
income status, and an indicator for Black student race. These parameters are of interest to
researchers and policy-makers who care about income and race gaps in student achievement.
White students are the reference group for the latter comparison, and the model also includes
indicators for Hispanic students and students of other races (who collectively make up only
about 6% of the sample).

We show estimates of the income gap from each selection correction method, along with
the reference estimate from the complete post-reform data, in Figure III. This has the same
structure as Figure II: estimated values on the vertical axis with different sets of covariates in
the left, middle, and right blocks on the horizontal axis. We also report the point estimates,
standard errors, and bias on each selection-corrected point estimate in Table 4. The estimated
post-reform income gap is 2.87 ACT points with basic covariates, which shrinks to 1.86 when

we add school- and district-level covariates and to 0.38 when we add student-level test scores.
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Figure III. Coefficient on Free Lunch Receipt Indicator by Selection Correction and Covariate Set
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Notes: Figure shows the estimated coefficient on an indicator for free or reduced-price lunch receipt for every covariate set, for every selection
correction and for the reference model that uses complete post-reform data.

We see the same three patterns for estimates of the income gap as for estimates of MSB. First,
OLS has smaller bias than most all other correction methods for the basic and intermediate
covariate sets, and has the smallest bias for the rich covariate set. Second, most semiparametric
methods have lower biases than most parametric methods for most of the covariate sets. For
the intermediate and rich covariate sets, all semiparametric methods have lower biases than
all parametric methods, although the differences are not always statistically significant. Third,
most methods have lower biases with the intermediate than the basic covariate set, and most
methods have even lower biases with the rich than intermediate covariate set. The third pattern
is not mechanically explained by the smaller estimated income gap when more covariates are
included in the model - it is possible to have large biases on estimates of even small coefficients.

Figure IV and Table 5 show the same results for estimates of the coefficient on Black student
race. White students, the reference group, have mean scores 3.41 points higher than Black

students in the model with basic covariates, 3.00 in the model with intermediate covariates,
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Figure IV. Coefficient on Black Race Indicator by Selection Correction and Covariate Set
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Notes: Figure shows the coefficient on an indicator for Black student race for every covariate set, for every selection correction and for the
reference model that uses complete post-reform data.

and 0.70 in the model with rich covariates.

The pattern of results differs for biases on the race gap estimates as compared to the mean
squared bias and biases on the income gap. The first pattern changes slightly: OLS now
has higher biases than most semiparametric methods for all three covariate sets, although these
differences are generally small and seldom statistically significant. The second pattern is largely
unchanged: most semiparametric methods still have lower bias than most parametric methods,
although the differences are not as large as for MSB or the income gap biases. The third pattern
changes slightly: biases are still lower for the intermediate than basic covariate set, but they

are now larger for the rich than intermediate covariate set for all methods except Tobit.

5 Explaining Results

The results in Section 4 show that the four semiparametric correction methods mostly have

similar mean squared biases to OLS regressions that ignore selection, and that parametric
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correction methods mostly have higher mean squared biased. In this section we explore possible
reasons for this combination of results.

First, our data do not satisfy the distributional assumptions of the parametric selection
correction methods, which may help explain their high biases. Joint normality of the unob-
served factors determining ACT scores and ACT-taking is a sufficient, though not necessary,
condition for the bivariate normal models to address selection bias. The latent test score dis-
tribution in Figure I is not normal, and we verify this with parametric (skewness-kurtosis) and
nonparametric (Kolmogorov-Smirnov) normality tests.® The latent distribution is also non-
normal conditional on demographic characteristics (see Appendix Figure I) and the threshold
censoring assumed by the Tobit model clearly does not hold. We also test the assumption
that the unobserved factors that affect latent test scores are normally distributed: we regress
the complete post-reform test scores on each of the three sets of covariates, generate the fitted
residuals, and test whether they are normally distributed. We reject normality of all three
sets of residuals using both Kolmogorov-Smirnov and skewness-kurtosis tests (p < 0.001 in all
cases).”

Second, there are some differences in the predicted probabilities of test-taking across different
first stage models, which may explain part of the differences in performance between parametric
and semiparametric methods. Table 6 reports percentiles of the distribution of predicted prob-
abilities from each test-taking model and correlations between these predicted probabilities.
Predictions from the probit first stages with and without instruments have correlations > 0.97
for all sets of covariates. They are slightly less correlated with predictions from the series log-
its (0.91-0.98). The predicted probabilities from the nonparametric matching are less strongly
correlated with the predictions from the series logit models (0.89-0.93) and particularly the
probit models (0.83-0.90). There are also some differences in the percentiles of the predicted
distributions, particularly in the left tail.

Third, the relationship between the selection correction terms and covariates in the test score
models differs substantially between the bivariate normal and polynomial correction methods,

which helps to explain the higher bias of the parametric methods. The R? from regressing the

8The rejection of normality is not explained by our large sample size. We also consistently reject normality
for random 1% subsamples of the data.

9This contrasts with the conclusions from Vella (1998), who finds that parametric and semiparametric
selection models produce similar results in real data even when the assumptions of the parametric models
fail. However, it is consistent with Goldberger (1983), Heckman et al. (2003), and Paarsch (1984), who show
that some parametric models perform poorly in simulations when their assumptions are violated.
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inverse Mills ratio on the covariates used in the second stage model is 0.98-0.99 without in-
struments and 0.94-0.98 with instruments (ranges over the three different covariate sets). This
illustrates that the nonlinearity of the inverse Mills ratio in the covariates generates almost no
independent variation in the selection correction term conditional on the second stage covari-
ates. The instruments generate some additional variation, but the bivariate normal correction
terms are colinear enough with the second stage covariates to potentially cause problems. In
contrast, the relationship between the polynomial selection correction terms and the second
stage covariates are much weaker. The R? from regressing the second and third order terms in
the polynomial corrections on second stage covariates range from 0.43 to 0.74 (over the three
covariate sets and two different first stage estimators).

To explore the relative importance of the first and second stages, we estimate three models
that mix together elements of different models. We use the series logit first stage to construct an
inverse Mills ratio for the second stage, use the probit first stage with instruments to construct
a polynomial selection correction for the second stage, and use the probit first stage with
instruments to implement a differencing estimator in the second stage. The first two mixed
approaches have on average almost half the mean squared bias of the bivariate model correction
with instruments. This shows that the poor performance of the bivariate normal model can
be alleviated by introducing more variation in the selection correction terms conditional on
the second stage covariates, either through higher-order covariate terms in the first stage or
through a less linear selection correction term than the inverse Mills ratio. Similar gains might
be possible using parametric methods with different distributional assumptions that lead to less
linear selection correction terms. In contrast, the third mixed approach (probit + differencing)
performs no better than the bivariate normal model. This might occur because the probit first
stage yields fewer unique values for the predicted probability of test-taking than the series logit
or matching first stages, which leads to ties when implementing the differencing estimator.

The preceding points suggest that the semiparametric methods outperform the parametric
methods because the latter rely on incorrect distributional assumptions and (potentially because
of this) the selection correction terms have little variation conditional on the second stage
covariates. But why do the semiparametric methods not systematically outperform OLS, which
ignores the selection problem? To answer this, we examine two further features of our data.

First, there is a sample selection problem, so the relatively low bias of the OLS estimates

is surprising. Figure I shows substantial differences between distributions of observed scores
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for test-takers in the pre- and post-reform periods. Test-takers in the pre-reform period are
clearly positively selected on latent scores. This pattern of positive selection also holds within
race and income subgroups (Appendix Figure I). Furthermore, the selection correction terms in
both the bivariate normal and polynomial selection correction models are large and statistically
significant, predictors of ACT scores (Appendix Tables 5 - 7).19

Second, the instruments have a strong but limited association with test-taking, which may
limit the capacity of the semiparametric methods to correct for selection. The driving dis-
tance and weather instruments are negatively associated with test-taking: the point estimates
are jointly statistically significant at conventional levels and moving from the 1% to the 99"
percentile of the instrument distribution shifts the probability of taking the ACT by 10-13
percentage points (depending on the covariate set). The instruments are also not associated
with scores on other tests taken by all students, supporting the exclusion restriction. However,
the instruments do not shift the probability of test-taking from 0 to 100, so they do not satisfy
“identification at infinity,” as we discuss in Appendix B (Andrews and Schafgans, 1998; Cham-
berlain, 1986; Heckman, 1990). This means we can identify the slope coefficients in equation
(1a) but cannot separately identify the intercept coefficient fy from the level of the selection
correction term. We view this as a natural feature of semiparametric selection analysis in many
settings, rather than a feature specific to our setting. The relationship between our instrument
and participation measure is at least as strong as in classic education applications (Bulman,
2015; Card, 1995; Kane and Rouse, 1995). And non-identification of the intercept is not neces-
sarily a problem for our analysis, which examines mean squared bias of the slope coefficients.
However, we acknowledge that the relative performance of different selection models may differ

when researchers have instruments that shift the probability of selection closer to 0 and 100.!!

10The inverse Mills ratio term in the bivariate normal model has a zero coefficient if the unobserved determi-
nants of test-taking and test scores are uncorrelated. We reject the hypothesis of a zero coefficient for models
with all combinations of the covariates and instruments (p = 0.069 for the model with instruments and school-
and district-level covariates, p < 0.001 for all other models). The coefficients are large: moving from the 15¢ to
the 99*" percentile of the predicted probability of test-taking shifts the test score by 5.3 points, averaging over
the models. We also test if the coefficients on the polynomial correction terms in the polynomial model are
jointly zero. We reject this hypothesis for all three combinations of covariates and both approaches to estimating
the first stages (p < 0.001).

1We show in Appendix Figures IX and X that our main findings hold when we use only the weather instru-
ments or only the distance instruments.
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6 Conclusion

Sample selection arises when outcomes of interest are not observed for part of the population
and the latent outcomes differ between the cases with observed and unobserved values. Econo-
metricians and statisticians have proposed a range of parametric and semiparametric methods
to address sample selection bias, and applied researchers routinely implement these methods.
But there is limited evidence on their relative performance outside of simulation studies. We

use a Michigan policy that changed ACT-taking for 11"

graders from voluntary to mandatory
to observe selected ACT scores for one cohort and complete scores for another cohort. We
evaluate how well different selection corrections, applied to the selected data, can recover the
coefficients of regression models estimated using the complete data.

We find that OLS, which ignores the selection problem, and several semiparametric methods
perform similarly well. No one semiparametric method dominates the others or dominates
OLS. Parametric corrections that rely on specific distributional and functional form assumptions
perform worse than OLS and the semiparametric methods, with the bivariate normal correction
without instruments performing particularly poorly. Mean squared bias is generally higher for
models that use only a few discrete covariates than for models that use more covariates with
less coarse distributions.

We examine selection correction methods’ performance in a single data set, and thus evaluate
their performance using only a single empirical example. These patterns may not generalize to
other empirical examples. However, our findings may be of interest to those trying to use exam
scores from selected samples of exam takers to infer population achievement. School district
and state education administrators, as well as education researchers, often use college entrance
exam scores to construct proxies for mean achievement for different groups of students. In our
application, this exercise is subject to greater selection bias when few control variables are used
and when using parametric selection correction methods.

Our main finding that semiparametric corrections tend to perform no better than simple OLS
may be of interest to applied researchers using selection correction methods or adapting existing
methods for new applications (e.g. Dahl 2002; Bonhomme et al. 2016). In our application,
there is a sample selection problem and our instruments are comparable in strength to other
widely-used instruments. This is a setting where we would expect semiparametric models to

outperform OLS. However, the gains from using these more flexible methods are minimal.
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Researchers using similar datasets who believe there is a sample selection problem should not
necessarily conclude that semiparametric correction methods will fully solve the problem.

We focus on selection bias in the parameters of the conditional mean function E[ACT}|X;].
But researchers may be interested in other features of the latent test score distribution. In
an earlier version of this paper, we examine how well selection methods can recover the mean,
subgroup means, and distribution of latent ACT scores (Garlick and Hyman, 2018). We find
that performance does not differ substantially across selection correction methods (including
methods that ignore selection) but improves substantially when we use more covariates with
less coarse distributions.

Another strand of the selection correction literature studies conditional quantiles of the latent
outcome distribution. In Appendix D, we compare the biases of uncorrected and selection-
corrected quantile regression estimates, following the correction approach in Arellano and Bon-
homme (2017). We find suggestive evidence that the selection-corrected quantile method has
lower bias than the uncorrected method. But we do not examine all possible implementations of
Arellano and Bonhomme’s method. Another strand of the selection correction literature aims
to derive bounds on possible values of the conditional mean or conditional quantile functions.
These methods assume that non-takers have either very high or very low latent ACT scores
and use these two extreme assumptions to construct bounds on the distribution of ACT scores
(Manski, 1990; Lee, 2009). In our data, these bounds cover the reference estimates from the
post-reform data, but they are also wide enough that some researchers will not view them as
informative.'> We view thorough analysis of these different approaches to selection correction

using empirical examples as a topic for possible future work.
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Online Appendices: “Quasi-Experimental Evaluation of Alternative

Sample Selection Corrections: Online Appendices”
Robert Garlick and Joshua Hyman

A Data Construction and Additional Statistics

This appendix provides more information on how we construct the dataset and shows additional
summary statistics.

Matching data sources: We matched data from the Michigan Department of Education
(MDE) with four other data sources. First, using student name, date of birth, sex, race, and
11" grade home zip code stored on a restricted access computer at the MDE, we match the
student-level Michigan data to microdata from ACT Inc. and The College Board on every
ACT-taker and SAT-taker in Michigan over the sample period. For the pre-reform cohorts, we
use students’ first ACT score, which is typically from 11*" grade, but in some cases is from 12
grade. For students taking the SAT but not the ACT pre-reform, we convert their first SAT
score into the ACT scale following published concordance tables.

Second, we acquired from ACT Inc. a list of all ACT test centers in Michigan over the
sample period, including their addresses and open and close dates. Again using the restricted
access data computer at MDE, we geocode student home addresses during 11*" grade and the

1th

addresses of these test centers to construct a student-level driving distance from 11"* grade

home to the nearest ACT test center. When a student has multiple addresses during 11"

1*" grade home address

grade, we use the one with the shortest distance to a center. When 1
is missing, we use home address during the surrounding grades. The ~2% of students with
a missing address during every high school grade are dropped from the pre- and post-reform
samples. Appendix Table 1 shows detailed summary statistics for driving distance.

Third, we obtained historical weather data for Michigan during our sample period from the
National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmen-
tal Information (NCEI) Storm Events Database. These data, submitted monthly to the NCEI
by the National Weather Service, record the time, location, and type (e.g., hail, winter storm,
blizzard, thunderstorm wind) of all severe weather events in the U.S. We drop event types that

we expect could have no impact on test-taking (e.g., heat, high surf, drought), and then merge

the storm data with our historic data on the location of ACT test centers by county. We use
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data on the timing of national ACT testing dates during our sample period (which took place
only five times a year, once in October, December, February, April, and June) to include only
severe weather events that occurred within the 24 hours prior to a test date. Over 90% of college

1*h grade and February

entrance exams in our pre-reform period are taken between April of 1
of 12" grade, so we code a student as exposed to a severe weather event if they experience an
event affecting an exam date in their county during that period.

Finally, we matched unemployment rates at the city (when available) or county level from
the Bureau of Labor Statistics onto the school-level data.

Test scores: For the pre-reform cohorts, we measure students’ ACT scores using their first
attempt. This is typically from 11*" grade, but in some cases is from 12" grade. For students
taking the SAT but not the ACT pre-reform, we convert their first SAT score into the ACT scale
following published concordance tables. Appendix Table 2 shows detailed summary statistics
for ACT scores. Appendix Figure I shows the distribution of observed pre- and post-reform
test scores and the difference between these, interpreted as a measure of the latent scores of
non-takers. Unlike Figure I in the main paper, this figure shows the distributions for subgroups
based on race and free and reduced-price lunch (in)eligibility.

We construct student-level 8™ and 11"

grade test scores from in-school, state-wide assess-
ments. For the 8" grade test score, we use the average of a student’s standardized math and
English scores. For 11*" grade, we use standardized social studies scores because post-reform
math and English scores are in part determined by a student’s ACT score. If a student has
missing test scores, we replace the scores with zeros and include indicator variables for missing
test scores as covariates.

Sample restrictions: Our main analysis sample, which is conditional on students taking
the state-wide 11" grade test, excludes the small number of such students who do not complete

1*h grade test. These

high school or who take the special education version of the state-wide 1
students are not suited for our analysis because they are not required to take the ACT in either
period. Our results are robust to including them. The 2006 cohort includes students in some
schools where the mandatory ACT policy was piloted. When we analyze the 2006 cohort in

Appendix C, we exclude these schools.
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Appendix Table 2. ACT Score Distributions Pre- and Post-Reform

2005 Cohort
Takers Non-Takers 2008 Cohort

(1) (2) )

Moments
Mean 20.85 17.65 19.73
Variance 4.54 5.11 4.98
Skewness 0.31 1.01 042
Kurtosis 2.72 3.56 2.65
Percentiles
1st 12 10 11
5th 14 12 12
10th 15 12 14
25th 17 14 16
Median 21 16 19
75th 24 20 23
90th 27 25 27
95th 29 28 29
99th 32 33 32
Fraction Scoring>=20 0.588 0.285 0.482
K-S Test vs Column 1
D-Stat 0.335 0.117
P-Value 0.000 0.000
Number of Students 62,186 33,475 95,661

Notes: The sample is as in Table 1, except only the 2005 and
2008 cohorts. The reported number of students in the 2008 cohort
is adjusted to match the size of the 2005 cohort and also includes
only the 98.5% of the sample who take the ACT. Column (2)
reports the distribution of latent ACT scores of students not taking
the exam calculated using the methodology described in the text.
The K-S test statistic and p-value are from a Kolmorogov-Smirnov
test of the equality of the distributions.
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B Selection Correction Models

This appendix elaborates on Section 2.2 of the main paper. We discuss each of the selection
correction models in more detail, explaining the different assumptions under which they yield
consistent estimators of 3, and discuss implementation of the four semiparametric models. We
summarize differences between these models’ assumptions in Appendix Table 3. We do not
evaluate imputation methods, bounding methods, or methods focused on identification using
large support conditions on the outcome or covariates rather than parametric assumptions or
instruments (D’Haultfoueille and Maurel, 2013; Lewbel, 2007). The large support conditions
in the latter literature are unlikely to hold in our setting.

We estimate parameter variances for all models using a nonparametric bootstrap. The boot-
strap replicates all estimation stages within each replication, including the first stage test-taking
and second stage test score models. We use bootstrap rather than analytical standard errors
because our focus on mean squared bias requires standard errors for nonlinear combinations of
estimates across multiple regressions. We follow most applied researchers in using a bootstrap

approach but acknowledge that our variance estimates should be interpreted with caution.

B.1 Single-Equation Corrections for Sample Selection Bias (“OLS” and “Tobit”)

We begin with a simple single equation approach using ordinary least squares, which ignores

sample selection. Specifically, we estimate the model
ACT; = X, + ¢ (3)

for the test-takers. This is a special case of system (1) where u; and ¢; are independent and the
instruments Z; do not influence latent test scores so the omitted variable in equation (2) is zero.
In this case, the probability of taking the ACT score may depend on observed and unobserved
characteristics, but these are independent of ¢; and so there is no sample selection problem.
Differences between the observed and latent distributions occur only because the probability of
test-taking and test scores jointly vary across observed characteristics. For example, students
from low-income households have both lower rates of test-taking (in the pre-reform period) and
lower test scores (in the post-reform period). The assumptions for this special case will be
violated if test-taking decisions and latent test scores are jointly influenced by any unobserved

characteristics, such as motivation.
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We next estimate a single equation adjustment for sample selection bias adapted from Tobin
(1958). This “Type 1 Tobit” adjustment assumes that ¢; is homoskedastic and normally dis-
tributed and that students take the ACT if and only if their latent scores exceed some threshold

value ACT. Under these assumptions, we can assign the threshold score ACT to all students

who do not take the ACT, where ACT is the lowest score obtained by any test-taker. In prac-

tice, researchers generally set AC'T higher than the minimum observed value and then assign

the score AC'T to both students with missing scores and students with non-missing scores below

AC'T. This necessarily discards information for some test-takers, and discards more informa-
tion as AC'T is set higher. Under these assumptions, the parameter vector equals the minimizer

of the likelihood function

o (1 (TAKE, — Xi8\\ 45 xp—act\) "
) T (B (PIEE) (g (3TN

=1

where the first and second terms of the likelihood reflect the observed ACT scores and the
probability of taking the ACT respectively. ¢(.) and ®(.) are the standard normal density and
distribution functions respectively. Differences between the observed and latent distributions
occur because no students with latent scores below ACT take the test. This set of assumptions
allows test-taking to depend on the unobserved characteristic €; but in a very restrictive way.
These assumptions will be violated if students with low latent scores take the test and/or
students with high latent scores do not take the test, perhaps due to heterogeneity in preferences

for going to college. The assumptions will also be violated if ¢; is not homoskedastic and

normally distributed, or if the threshold ACT is incorrectly specified. We set ACT equal to
the 36" percentile of the post-reform distribution of test scores, as the test-taking rate in the

pre-reform period is 64%.
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B.2 Parametric Multiple-Equation Corrections for Sample Selection Bias (“Bi-

variate Normal” and “Bivariate Normal with Instruments”)

We estimate two variants of the bivariate normal selection model proposed by Gronau (1974)

and Heckman (1974, 1976, 1979). Both consider the system

ACT; = X;B + oupeu (Ziy) + € if TAKE! >0 (5a)

1 if TAKE; >0
TAKE; = (5¢)
0 if TAKE! <0

where ¢; and u; are jointly normally distributed and homoskedastic, and ¢(.) and ®(.) are the
standard normal density and distribution functions respectively. Under the assumption of joint
normality, the non-zero conditional mean error function E [ACT;|X;] = X;0+E [u; > —X;0 — Z;7]
is a linear function of the inverse Mills ratio. Hence, estimating a probit regression of TAK FE;
on (X;, Z;) and equation (5a) by ordinary least squares provides a consistent estimator of 5.
We estimate equation (5b) using only X; as covariates (“bivariate normal”) and also including
a set of instruments Z; that are excluded from equation (5a) and assumed not to affect test
scores directly (“bivariate normal with instruments”). The former approach generally performs
poorly in Monte Carlo simulations because the inverse Mills ratio is approximately linear for
most of its support (Puhani, 2002).

This approach allows ACT-taking and ACT scores to depend jointly on both observed and
unobserved characteristics. Unlike the Tobit model, the bivariate normal model allows the
threshold score to vary with X;, u;, and potentially Z;. This imposes few behavioral or economic
assumptions but requires a strong statistical assumption on the joint distribution of ¢; and
u;. The approaches discussed in Appendix B.3 are all attempts to relax these distributional

assumptions.'3

13Several authors propose extensions of the bivariate normal selection model that yield consistent estimators
under alternative parametric assumptions: uniform (Olsen, 1980) or Student-t (Lee, 1982, 1983) error distri-
butions, or normal but heteroskedastic error distributions (Donald, 1995). Results for alternative parametric
models, not reported in this version of the paper, are very similar to those from the bivariate normal model.
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Appendix Table 4: First Stage Results

Standard Error

Coef. Robust Clustered

(1) (2) )

Student-Level
Distance (Miles) -0.006 0.001 0.001
Distance Squared (/ 10) 0.002 0.000 0.001
One Severe Weather Event -0.019 0.004 0.016
Two Severe Weather Events  -0.079 0.007 0.018

Free Lunch -0.111 0.003 0.011
Male -0.068 0.003 0.003
Black 0.105 0.007 0.005
Hispanic -0.005 0.008 0.014
Other Race 0.082 0.008 0.017
8th Grade Test Score 0.114 0.002 0.004
11th Grade Test Score 0.147 0.002 0.004
School-Level
Average Class Size 0.000 0.000 0.000
Percent Free Lunch -0.009 0.015 0.032
Percent Black -0.004 0.026 0.045
Grade 11 Enrollment 0.000 0.000 0.000
Average 8th Grade Score 0.122 0.011 0.024

Average 11th Grade Score 0.022 0.007 0.011
District-Level

Suburb 0.007 0.004 0.010
Town 0.016 0.006 0.020
Rural 0.027 0.006 0.017
Grade 11 Enrollment 0.000 0.000 0.000
Average Class Size -0.005 0.001 0.002
Percent Free Lunch -0.086 0.017 0.053
Percent Black 0.174 0.027 0.038
Student-Counselor Ratio 0.000 0.000 0.000
Local Unemployment Rate -0.003 0.001 0.002

Notes: Table shows average marginal effects (column 1) from the
first stage probit regression of a dummy for whether a student
takes the ACT or SAT on the test access instruments, and student,
school, and district demographics and test scores. We report
heteroskedasticity-robust standard errors in column 2 and standard
errors clustered at the county level in column 3.
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B.3 Semiparametric Multiple-Equation Corrections for Sample Selection Bias
(“Semiparametric + Polynomial,” “Semiparametric + Differencing,” “Non-

parametric + Polynomial,” and “Nonparametric + Differencing”)

We now consider models of the form

ACT] = XiB+ h (9 (Xi, Zi)) + € (6a)

1 if TAKE; >0
TAKE; = (6¢)
0 if TAKE! <0

where g(.,.) and h(.) are potentially unknown functions, and we do not assume a specific distri-
bution for ¢; or u;. There are a wide range of semiparametric sample selection correction models
(Pagan and Ullah, 1999). All use some “flexible” procedure to estimate the first stage model
Pr(TAKE; = 1|X;, Z;) and to approximate the selection correction function h(g(X;, Z;)). We
consider two approaches to estimating the first stage and two approaches to dealing with the
selection correction function.

Our first ACT-taking model is a series logit model, which we call the “semiparametric” first
stage. We assume that we can approximate g (X;, Z;) using polynomial expansions in X; and

Z;, inside a logistic link function:

P K poQ 2 a
Pr(TAKE; =1)=1L (Z < HkX@-,k> + Z <Z %’Zm) ) (7)

p=1 \k=
We observe multiple covariates X; 1,...,X; x and two instruments, so we include polynomial
terms in each element interactions between the elements. Higher values of P and Q achieve a
closer fit to the data and hence reduce the bias of the coefficient estimator, but at the cost of
higher variance.
We choose the orders P and @) of the two series to minimize the mean squared prediction
error of the logistic regression using 10-fold repeated cross-validation.'* We first randomly sort

the data and estimate a logit model with a linear specification inside the logit (P = @ = 1) on

deciles 2-10 of the sample and predict the outcomes for decile 1. We then estimate the model

There does not appear to be a consensus on how to choose the order of series estimators in nonlinear
regression models, even though series logit models are used in important econometric theory papers such as
Hirano et al. (2003). We use repeated 10-fold cross-validation because leave-one-out cross-validation with a
nonlinear model is computationally burdensome in large datasets like ours.
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for deciles 1 and 3-10 and predict the outcomes for decile 2 and repeat this process to obtain
predictions for all deciles. We calculate the mean squared difference between the observed
binary values of TAK E; and the predicted values. We then resort the data and repeat this
process 10 times, averaging the mean squared prediction error over repetitions. This repetition
reduces the sensitivity of the prediction error to the initial ordering of the data and performs
well in simulations (Borra and Di Ciaccio, 2010). We repeat this process for different values of
P and @ and select the pairs of values that minimize the mean squared prediction error. We
consider values of P € {1,2,3} and @ € {1,...,10}, as higher values of P generate too many
interaction terms to estimate the logit without dimension reduction techniques.

This cross-validation algorithm selects a second-order polynomial in the covariates for all three
sets of covariates. This polynomial contains linear terms in all covariates, quadratic terms in all
continuous variables, and all pairwise interaction terms.'® Some pairwise interaction terms are
omitted because they are mutually exclusive (e.g. Black and Hispanic). The cross-validation
algorithm selects sixth-, eighth-, and third- order polynomials in the instrument when using
respectively the basic, school/district, and student test score sets of covariates.

This semiparametric model therefore differs from the probit model used in the bivariate
normal selection correction in two ways: the semiparametric model includes quadratic and
interaction terms in the covariates and covariates, and uses a logit instead of a probit link
function. Nonetheless, we see in Table 6 that the predicted probabilities of ACT-taking are
similar, with correlations of 0.91 - 0.98.

Our second ACT-taking model uses a weighted K-nearest neighbor matching approach,
which we call the “nonparametric” first stage. We directly estimate the conditional expec-
tation E[X;, Z;] = ¢(X;, Z;) rather than approximating it with a regression model. We
start by calculating the Mahalanobis distance between every pair of observations ¢ and j:

D;; = \/(I/V, — W) (Vig)™H (W; = W), where W; = (X, Z;). Mahalanobis distance gener-

alizes Euclidean distance by weighting the differences between the elements of the vectors
W; and W; by the inverse of the sample covariance matrix Vyy. This takes into account
the different variances of different covariates/instruments and the covariances between covari-

ates/instruments. We then identify the K nearest neighbors of each observation with respect

5The series model includes the interaction and polynomial terms in the ACT-taking model but not in the
ACT score model. This effectively treats them as instruments for ACT-taking, though we do not claim they
are excludable from the ACT score model. Our results are robust to including these terms in the ACT score
model as well.
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to the Mahalanobis distance and calculate the weighted average outcome amongst these K
observations: TAK FE; = Zszl w; x TAK Ey. The weighting function w; = ﬁ/ Zszl ﬁ
assigns more weight to observations with a lower Mahalanobis distance to 7.1 This estimator
directly estimates the conditional mean E [W; = w] at each value w without making assump-
tions about the function g(.). We report results in this paper using K = 100, but we find
similar results with K = 10 and K = 1000. Increasing the value of K past 10 has little effect
on results because the estimator assigns very low weight w;; to high values of k. This also
smoothes the estimator relative to unweighted K-nearest neighbor matching with low K, mak-
ing the bootstrap more appropriate (Abadie and Imbens, 2008). Code for implementing this
estimator is available on the authors’ websites.

Our first selection-corrected ACT score model approximates h(.) using a series model in
TAAKEi, the predicted probability of test-taking (Heckman and Robb, 1985a; Newey, 2009).17
We call this the “polynomial” second stage. We select the order of the series using leave-one-
out cross-validation. We then estimate equation (6a) including a polynomial with the selected
order as a control. This approach yields a consistent estimator of § when the selection cor-
rection term is a sufficiently smooth function of the predicted probabilities of test-taking. The
cross-validation algorithm selects fourth, ninth, and fourth order polynomials for the selection
term when we use a semiparametric first stage with respectively basic, school/district, and
student test score sets of covariates. The cross-validation algorithm selects third, fourth, and
fourth order polynomials for the selection term when we use a nonparametric first stage with
respectively basic, school/district, and student test score sets of covariates.

Second, we remove h(.) from equation (6a) using a differencing approach, which we call the
“differencing” second stage (Ahn and Powell, 1993; Powell, 1987). We calculate dACT; =
ACT, — = >z w(i, ))ACT; and dX; = X; — ST > iz w(i, j) X, where w(i, j) is a kernel or
weighting function that is decreasing in the difference between ¢ and j’s predicted probability of

ACT-taking. For appropriate choices of the weighting function, dh; = h;— = > i w(i, j)h; =~

6We use ﬁ in the weighting function rather than ﬁ to avoid zero-valued denominators for pairs of
observations with d; = 0. ’

"Newey (2009) proposes using polynomials in either the predicted probability TAKE; or the latent index
TAKE?. Our nonparametric matching estimator generates only predicted probabilities of test-taking so we use
this in the ACT-taking model. Our series logit estimator generates both predicted index values and predicted
probabilities. We report results in this paper using predicted index values, after censoring the top and bottom
percentiles. Results are very similar using predicted probabilities. Note that concerns about “forbidden regres-
sion” are not necessarily applicable here, as the series is simply an approximating function and not an exact
replacement for the selection bias term E [ACT;|X;] = X;8 + E [u; > g (Xi, Z;)]-
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0. Hence we can rewrite equation (6a) as

and estimate this using least squares. Intuitively, this approach avoids the need to approxi-
mate the selection correction term and instead differences it out of the test score model. This
approach again yields a consistent estimator of 8 when the selection correction term is a suffi-
ciently smooth function of the predicted probability of test-taking, so that h; ~ h; when ¢ and j
have sufficiently similar predicted probabilities of ACT-taking. In practice, we sort the data by
the predicted probability of test-taking and use a weight function that equals 1/ (1 + |p; — p;|)
for 0 < |i—j| < 5 and zero otherwise. We then estimate the differenced equation using weighted
least squares with weight 1/ Z?_ j——a |Pi — P;)|- These weights mean that observations that have
close matches on the predicted probability of ACT-taking influence the regression coefficients
more than observations without close matches, as Ahn and Powell (1993) recommend. We
obtain similar results (not reported in this draft) using a smaller number of matches in the dif-
ferencing operation, taking an unweighted average in the differencing operation, and estimating
the differenced equation without weights.!®

Both the polynomial and differencing approaches to the ACT score model yield consistent
estimators of [ without making distributional assumptions on the unobserved determinants
of test-taking or test scores, or functional form assumptions for the probability of test-taking
or the selection correction term. However, this flexibility does have several costs. First, the
identification proofs underlying both approaches assume that there is at least one excluded in-
strument: some observed variable Z; affects the probability of test-taking but does not directly
affect test scores. Intuitively, the coefficient vector 5 and the selection term in (6a) are sepa-
rately identified only if there is additional information in the selection correction term (from
an exclusion restriction) or by a nonlinear functional form of the selection correction term.
The exclusion restriction is sufficient for identification of the slope coefficients in 8 but not the
intercept, [y. By is identified when Z; shifts the probability of test-taking from 0 to 1 as Z;

moves from its maximum to minimum value (or vice versa). This “identification at infinity”

18The asymptotic results in Ahn and Powell (1993) and Powell (1987) assume that this kernel function
is continuously differentiable, which is not true of the weighted K-nearest neighbor kernels we consider. In
simulations on a dataset with moments matched to our data the results are very robust to choices of different
kernels. The asymptotic results also assume that the first stage model is undersmoothed, a topic that we address
in Appendix C.
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argument requires an unusually strong excluded instrument (Andrews and Schafgans, 1998;
Chamberlain, 1986; Heckman, 1990). We exclude both driving distance from the student’s
home to the nearest ACT center and extreme weather events just before ACT testing dates
from the outcome equation. Both driving distance and severe weather events are statistically
significantly associated with lower ACT-taking. The negative relationships grow stronger as we
control for student demographics, school- and district-level characteristics, and student scores
on other tests. The probability of ACT-taking drops by 10-13 percentage points (depending
on the covariate set) with a move from the 15 to the 99" percentile of the instruments. Over
half of this shift is due to exposure to two severe weather events. This does not satisfy the
identification at infinity argument, like most excluded instruments in the empirical literature,
(Bulman, 2015; Card, 1995; Kane and Rouse, 1995). However, our main object of interest, the
mean squared bias of the estimated slope coefficients, does not require identification at infinity.

Second, the semiparametric models yield consistent estimators only with appropriate choices
of the tuning parameters: respectively the order of the polynomial and the weighting used
in differencing. The parameter estimates may in principle be very sensitive to the choice of
these parameters. In our application, results are robust to alternative polynomial orders and
weighting functions. Third, some semiparametric and nonparametric sample selection correc-
tion models converge at slower rates than parametric models, particularly when the number
of covariates is large. This means that the rate at which the estimators approach the true
parameters as the sample size grows is slower, potentially generating estimates far from the
truth with even moderate sample sizes. Ahn and Powell (1993) and Newey (2009) establish
sufficient conditions for the estimators of the slope parameters in 3 to converge at parametric
rates.

Both the semiparametric and parametric models assume that the unobserved determinants
of test scores ¢; and test-taking u; are homoskedastic conditional on the covariates. There exist

parametric and semiparametric sample selection models that relax this assumption, which we

do not evaluate (Donald, 1995; Chen and Khan, 2003).
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C Robustness Checks and Extensions

In this section, we replicate our main findings under different conditions to assess their robust-
ness and shed more light on the different performance of different estimators. In most cases,
we show how the mean squared biases change under different conditions, presenting results in
the same format as the main results in Figure II.

Coefficient estimates from main specifications: We first show the full set of estimated
coefficients used to construct the mean squared bias estimates reported in the paper, included
the race and free lunch coefficients already reported in the paper. This gives readers a more
complete picture of our results. In column 1 of Appendix Tables 5 - 7, we show the parameter
estimates from regressing post-reform ACT scores on each of the three vectors of covariates.
In column 2, we show estimates from the same regression using the same data, reweighted
to give it the same distribution of observed covariates as the pre-reform data. These are our
preferred reference values that we use to estimate biases. In columns 3 to 10 we report the
parameter estimates from regressing pre-reform ACT scores on each of the three vectors of
covariates using our eight different selection correction models. At the bottom of each table,
for each selection correction model, we report both the mean squared bias over all coefficients
excluding the intercept and the share of coefficient estimates with different signs to the reference
estimates. Like the mean squared biases, the latter statistic is not systematically lower for the
semiparametric methods than OLS, and is highest for the bivariate normal model without
instruments.

Mean squared bias with standardized covariates: In Section 4, we compare mean
squared biases across covariate sets. This comparison is difficult to interpret, as the covariates
in different sets have different scales. We show in Appendix Figure II the main mean squared
bias results after standardizing all covariates to have a mean of zero and standard deviation
of one. The basic covariate set, using only a few discrete covariates, continues to have much
higher mean squared bias than the other two covariate sets, which include more covariates with
less coarse distributions.

Mean squared bias with unweighted reference estimates: In our primary analyses, we
use the coefficient estimates from the weighted post-reform models as the benchmark coefficient
estimates. Some readers may prefer to see the results using the unweighted post-reform model

as the benchmark. We show in Appendix Figures III, IV, and V, respectively the main mean
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Appendix Table 5. The Relationship Between ACT Scores and Student Demographics

Post-Reform (Uncensored)

Pre-Reform, by Correction Method

oLS Bivariate Normal Polynomial Differencing
Unweighted Weighted oLS Tobit No IV With IV SP NP SP NP
() (2) (3) 4) (5) (6) ) (8) (9) (10)
Student Demographics
Free Lunch -2.551 -2.866 -1.841 -4.515 2.180 -0.116 -0.492 -1.216 -2.127 -1.185
(0.033) (0.040) (0.046) (0.067) (1.117) (0.209) (0.192) (0.091) (0.398) (0.123)
Male -0.252 -0.298 0.130 -0.675 1.710 0.804 0.745 0.375 -0.025 0.288
(0.028) (0.034) (0.033) (0.046) (0.432) (0.088) (0.072) (0.042) (0.169) (0.056)
Black -3.444 -3.414 -4.102 -5.036 -4.087 -4.085 -3.918 -4.010 -3.515 -4.314
(0.034) (0.046) (0.044) (0.080) (0.098) (0.058) (0.060) (0.045) (0.195) (0.075)
Hispanic -2.113 -1.967 -1.818 -2.684 -0.443 -1.214 -1.294 -1.547 -1.450 -1.592
(0.077) (0.105) (0.116) (0.162) (0.398) (0.153) (0.137) (0.122) (0.244) (0.156)
Other Race 0.997 1.032 0.616 1.520 -1.295 -0.204 -0.511 0.390 0.204 -0.374
(0.097) (0.109) (0.100) (0.116) (0.597) (0.166) (0.248) (0.103) (0.341) (0.176)
Summary Measures
P: Selection Correction Terms
Jointly Zero <0.001 <0.001 <0.001 <0.001
% with Incorrect Signs 0.20 0.00 0.60 0.40 0.20 0.20 0.00 0.40
Mean Squared Bias 0.380 1.249 7.537 2.264 1.962 0.823 0.317 1.219
Sample Size 98,417 98,417 62,186 62,186 62,186 62,186 62,186 62,186 62,186 62,186

Notes: The sample is as in Table 1, except only the 2005 and 2008 cohorts. Each column is from a separate regression. Standard errors estimated
using 500 bootstrap replications reported in parentheses.
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Appendix Table 6. The Relationship Between ACT Scores and Student Demographics, and School and District Characteristics

Post-Reform (Uncensored) Pre-Reform, by Correction Method
OLS Bivariate Normal Polynomial Differencing
Unweighted  Weighted oLS Tobit No IV  With IV SP NP SP NP
) 2) (3) “4) (5) (6) (7 (8) 9) (10)
Student Demographics
Free Lunch -1.703 -1.858 -1.078 -3.106 1.016 -0.819 -1.065 -1.148 -1.140 -1.120
(0.033) (0.039) (0.048) (0.071) (0.282) (0.154) (0.076) (0.056) (0.100) (0.070)
Male -0.253 -0.288 0.058 -0.697 1.180 0.197 0.125 0.087 0.142 0.074
(0.028) (0.034) (0.034) (0.047) (0.153) (0.087) (0.043) (0.037) (0.061) (0.045)
Black -2.870 -2.998 -3.370 -3.988 -3.592 -3.398 -3.324 -3.309 -3.197 -3.298
(0.055) (0.072) (0.083) (0.129) (0.130) (0.087) (0.085) (0.084) (0.102) (0.096)
Hispanic -1.783 -1.781 -1.566 -2.185 -0.876 -1.480 -1.5636 -1.521 -1.490 -1.678
(0.074) (0.094) (0.110) (0.145) (0.180) (0.125) (0.111) (0.111) (0.139) (0.130)
Other Race 0.506 0.505 0.157 0.675 -0.844 0.034 -0.049 0.044 -0.295 -0.020
(0.092) (0.106) (0.101) (0.112) (0.221) (0.126) (0.114) (0.101) (0.142) (0.107)
School Characteristics
Pupil Teacher Ratio 0.012 0.001 -0.002 -0.010 0.002 -0.002 -0.002 -0.002 -0.001 -0.003
(0.004) (0.005) (0.001) (0.004) (0.002) (0.001) (0.001) (0.001) (0.002) (0.002)
Fraction Free Lunch 0.888 0.636 -0.582 -0.797 -0.727 -0.607 -0.524 -0.572 -0.598 -0.520
(0.199) (0.247) (0.178) (0.269) (0.275) (0.179) (0.189) (0.178) (0.242) (0.206)
Fraction Black 1.808 1.712 1.017 1.454 -0.140 0.872 0.883 0.923 0.657 0.816
(0.215) (0.296) (0.301) (0.576) (0.465) (0.311) (0.306) (0.300) (0.453) (0.378)
Number of 11th Graders 0.000 0.000 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.002
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Average 8th Grade Score 1.949 1.938 2.338 3.983 -0.187 2.020 1.909 2.033 1.947 1.979
(0.088) (0.102) (0.092) (0.155) (0.360) (0.201) (0.118) (0.099) (0.159) (0.123)
Average 11th Grade Score 2.592 2.741 1.224 2.445 -0.624 0.996 1.079 1.144 0.974 1.110
(0.091) (0.105) (0.073) (0.107) (0.272) (0.148) (0.083) (0.075) (0.123) (0.093)
District Characteristics
Pupil Teacher Ratio -0.027 -0.066 -0.020 -0.071 0.052 -0.010 0.002 -0.003 0.008 -0.008
(0.007) (0.010) (0.009) (0.013) (0.017) (0.010) (0.010) (0.009) (0.014) (0.012)
Fraction Free Lunch -0.568 -0.554 0.300 0.053 0.906 0.383 0.271 0.346 0.694 0.388
(0.188) (0.229) (0.206) (0.287) (0.327) (0.211) (0.232) (0.207) (0.301) (0.250)
Fraction Black 0.900 1.510 0.864 2.199 -1.238 0.603 0.597 0.630 0.291 0.653
(0.225) (0.312) (0.321) (0.588) (0.564) (0.360) (0.329) (0.321) (0.496) (0.409)
Number of 11th Graders 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Suburb -0.279 -0.169 -0.418 -0.306 -0.488 -0.429 -0.428 -0.419 -0.387 -0.314
(0.043) (0.058) (0.053) (0.071) (0.079) (0.054) (0.055) (0.053) (0.088) (0.069)
Town -0.268 -0.177 0.023 0.251 -0.188 -0.007 0.088 0.070 0.077 0.134
(0.064) (0.076) (0.074) (0.098) (0.114) (0.077) (0.076) (0.074) (0.107) (0.093)
Rural -0.251 -0.210 -0.201 0.103 -0.498 -0.239 -0.176 -0.160 -0.181 -0.049
(0.055) (0.069) (0.065) (0.087) (0.104) (0.071) (0.068) (0.065) (0.097) (0.081)
Pupil / Guidance Counselor 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ratio (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Local Unemployment Rate -0.020 -0.009 -0.032 -0.062 0.006 -0.028 -0.036 -0.032 -0.030 -0.028
(0.007) (0.009) (0.010) (0.014) (0.016) (0.010) (0.010) (0.010) (0.014) (0.012)
Summary Measures
P: Selection Correction Terms
Jointly Zero <0.001 0.069 <0.001 <0.001
% with Incorrect Signs 0.25 0.25 0.55 0.20 0.35 0.25 0.35 0.30
Mean Squared Bias 0.336 0.522 2.221 0.445 0.386 0.369 0.519 0.381
Sample Size 98,417 98,417 62,186 62,186 62,186 62,186 62,186 62,186 62,186 62,186

Notes: The sample is as in Table 1, except only the 2005 and 2008 cohorts. Each column is from a separate regression. Standard errors estimated

using 500 bootstrap replications reported in parentheses.
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Appendix Table 7. The Relationship Between ACT Scores and Student Demographics and Test Scores and School and District Characteristics

Post-Reform (Uncensored) Pre-Reform, by Correction Method
OLS Bivariate Normal Polynomial Differencing
Unweighted Weighted OLS Tobit No IV  With IV SP NP SP NP
() 2) (3) 4) (5) (6) () (8) 9) (10)
Student Demographics and Scores
Free Lunch -0.369 -0.383 -0.254 -1.239 1.444 0.860 0.283 -0.128 0.291 -0.131
(0.019) (0.022) (0.033) (0.054) (0.083) (0.081) (0.050) (0.036) (0.057) (0.043)
Male -0.490 -0.505 -0.027 -0.473 1.091 0.709 0.402 0.094 0.426 0.084
(0.017) (0.020) (0.024) (0.032) (0.062) (0.059) (0.038) (0.025) (0.039) (0.026)
Black -0.648 -0.696 -1.295 -1.267 -3.106 -2.485 -1.801 -1.276 -1.807 -1.261
(0.032) (0.042) (0.060) (0.094) (0.136) (0.115) (0.081) (0.061) (0.092) (0.063)
Hispanic -0.607 -0.589 -0.727 -0.864 -0.753 -0.737 -0.741 -0.539 -0.773 -0.531
(0.042) (0.050) (0.086) (0.115) (0.154) (0.118) (0.104) (0.086) (0.112) (0.096)
Other Race 0.383 0.394 0.209 0.440 -1.384 -0.828 -0.285 0.079 -0.266 0.084
(0.052) (0.059) (0.064) (0.076) (0.167) (0.130) (0.100) (0.066) (0.108) (0.068)
Grade 8 Score 1.592 1.639 1.833 2.601 -0.135 0.537 1.069 1.683 1.062 1.680
(0.021) (0.029) (0.021) (0.028) (0.067) (0.083) (0.044) (0.022) (0.048) (0.025)
Grade 11 Score 3.036 3.048 2.616 3.608 0.109 0.965 1.692 2.419 1.688 2.436
(0.015) (0.019) (0.018) (0.026) (0.09) (0.107) (0.054) (0.022) (0.054) (0.022)
School Characteristics
Pupil Teacher Ratio 0.005 -0.006 -0.003 -0.010 0.002 0.001 -0.001 -0.002 -0.001 -0.001
(0.003) (0.004) (0.001) (0.003) (0.002) (0.002) (0.001) (0.001) (0.002) (0.002)
Fraction Free Lunch -0.150 -0.536 -0.449 -1.073 -0.540 -0.561 -0.471 -0.385 -0.433 -0.342
(0.147) (0.187) (0.122) (0.195) (0.279) (0.203) (0.170) (0.123) (0.190) (0.144)
Fraction Black -0.008 -0.253 -0.273 -0.809 -0.442 -0.406 -0.147 -0.474 -0.041 -0.371
(0.142) (0.187) (0.250) (0.397) (0.467) (0.357) (0.305) (0.244) (0.332) (0.278)
Number of 11th Graders 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.001
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Average 8th Grade Score 0.943 0.907 1.085 1.773 -1.248 -0.494 0.042 0.613 -0.005 0.564
(0.052) (0.065) (0.074) (0.108) (0.218) (0.175) (0.108) (0.075) (0.111) (0.076)
Average 11th Grade Score -0.336 -0.231 -0.206 -0.164 -0.525 -0.401 -0.204 -0.265 -0.177 -0.229
(0.055) (0.066) (0.057) (0.077) (0.137) (0.098) (0.076) (0.057) (0.083) (0.061)
District Characteristics
Pupil Teacher Ratio -0.026 -0.044 -0.039 -0.063 0.061 0.031 0.022 -0.015 0.021 -0.011
(0.005) (0.007) (0.007) (0.010) (0.015) (0.011) (0.011) (0.007) (0.011) (0.008)
Fraction Free Lunch -0.549 -0.272 -0.758 -0.681 0.611 0.197 0.094 -0.358 0.020 -0.392
(0.127) (0.160) (0.146) (0.210) (0.328) (0.246) (0.213) (0.147) (0.235) (0.160)
Fraction Black 0.724 1.150 1.260 2.183 -1.737 -0.713 -0.121 0.817 -0.286 0.724
(0.146) (0.191) (0.263) (0.403) (0.515) (0.403) (0.331) (0.256) (0.369) (0.304)
Number of 11th Graders 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Suburb -0.180 -0.165 -0.356 -0.285 -0.394 -0.398 -0.367 -0.349 -0.366 -0.355
(0.027) (0.032) (0.036) (0.049) (0.083) (0.060) (0.052) (0.036) (0.060) (0.042)
Town -0.155 -0.174 -0.072 0.067 -0.339 -0.278 -0.178 -0.084 -0.181 -0.067
(0.037) (0.043) (0.052) (0.069) (0.116) (0.085) (0.071) (0.052) (0.081) (0.060)
Rural -0.093 -0.121 -0.224 0.038 -0.606 -0.483 -0.379 -0.206 -0.387 -0.211
(0.032) (0.039) (0.046) (0.063) (0.103) (0.077) (0.064) (0.046) (0.072) (0.052)
Pupil / Guidance Counselor 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ratio (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Local Unemployment Rate -0.014 -0.008 -0.039 -0.061 0.023 -0.002 -0.017 -0.029 -0.015 -0.030
(0.004) (0.005) (0.007) (0.009) (0.015) (0.011) (0.010) (0.007) (0.010) (0.008)
Summary Measures
P: Selection Correction Terms
Jointly Zero <0.001 <0.001 <0.001 <0.001
% with Incorrect Signs 0.00 0.09 0.45 0.36 0.27 0.05 0.32 0.05
Mean Squared Bias 0.099 0.307 1.754 0.850 0.365 0.103 0.380 0.074
Sample Size 98,417 98,417 62,1863 62,186 62,186 62,186 62,186 62,186 62,186 62,186

Notes: The sample is as in Table 1, except only the 2005 and 2008 cohorts. Each column is from a separate regression. Standard errors estimated
using 500 bootstrap replications reported in parentheses.



Appendix Figure II: Mean Squared Bias Using Standardized Covariates by Selection Correction and Covariate Set
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Notes: Figure shows the mean squared bias for every selection correction and covariate set, where all covariates are standardized to mean of zero, standard deviation
of one. We omit the bivariate normal correction without instruments for the model with the basic student demographics. Including this estimate, which has MSB of
1.19, compresses the other estimates and makes them difficult to read.
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Appendix Figure III: Mean Squared Bias Using Unweighted Post-Reform Estimates by Selection Correction and Covariate
Set
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Notes: Figure shows the mean squared bias for every selection correction and covariate set, where the bias is calculated using coefficient estimates from the unweighted
post-reform model. We omit the bivariate normal correction without instruments for the model with the basic student demographics. Including this estimate, which
has MSB of 6.94, compresses the other estimates and makes them difficult to read.

squared bias results, coefficients on the indicator for free or reduced-price lunch receipt, and
indicator for Black student race. There are no substantial differences between the results that
uses the weighted and unweighted post-reform reference models.

Mean squared bias with different cohorts: We also verify that our finding are robust to
comparing different pairs of pre- and post-reform cohorts. Our primary analysis compares the
2004/5 cohort to the 2007/8 cohort, as the mandatory ACT policy was piloted in some schools
in 2006 and not implemented in all schools in 2007. We also compare the 2004/5 cohort to
the 2006/7 cohort (Appendix Figure VI), the 2005/6 cohort to the 2006/7 cohort (Appendix
Figure VII), and the 2005/6 cohort to the 2007/8 cohort (Appendix Figure VIII). Our main
findings are still visible for all pairs of cohorts: no method systematically outperforms OLS,
parametric estimators generally have higher biases than semiparametric estimators, and bias is
generally higher when we use only a few discrete covariates.

Mean squared bias with subsets of instruments: Our main analysis uses two sets of

95



Appendix Figure IV: Coefficient on Free Lunch Receipt Indicator Using Unweighted Post-Reform Estimates
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Notes: Figure shows the estimated coefficient on an indicator for free or reduced-price lunch receipt for every covariate set, for every selection correction and for the
reference model that uses complete post-reform data without weights.
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Appendix Figure V: Coefficient on Black Race Indicator Using Unweighted Post-Reform Estimates
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Notes: Figure shows the coefficient on an indicator for Black student race for every covariate set, for every selection correction and for the reference model that uses
complete post-reform data without weights.
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Appendix Figure VI: Mean Squared Bias Using 2004/5 and 2006/7 Cohorts by Selection Correction and Covariate Set
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Notes: Figure shows the mean squared bias for every selection correction and covariate set, where the sample is students in the 11*" grade cohorts of 2004/5 and
2006/7. We omit the bivariate normal correction without instruments for the model with the basic student demographics. Including this estimate, which has MSB of
6.84, compresses the other estimates and makes them difficult to read.
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Appendix Figure VII: Mean Squared Bias Using 2005/6 and 2007/8 Cohorts by Selection Correction and Covariate Set
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Notes: Figure shows the mean squared bias for every selection correction and covariate set, where the sample is students in the 11*" grade cohorts of 2005/6 and 2008.
We omit the bivariate normal correction without instruments for the model with the basic student demographics. Including this estimate, which has MSB of 6.94,
compresses the other estimates and makes them difficult to read.
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Appendix Figure VIII: Mean Squared Bias Using 2005/6 and 2006/7 Cohorts by Selection Correction and Covariate Set
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Notes: Figure shows the mean squared bias for every selection correction and covariate set, where the sample is students in the 11*" grade cohorts of 2006 and 2007.
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Appendix Figure IX: Mean Squared Bias Using Only Distance Instruments by Selection Correction and Covariate Set
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Notes: Figure shows the mean squared bias for every selection correction and covariate set, using only the driving distance instruments in the first stage models. We
omit the bivariate normal correction without instruments for the model with the basic student demographics. Including this estimate, which has MSB of 7.54,
compresses the other estimates and makes them difficult to read.

instruments related to distance to the ACT test center and exposure to severe weather near
an ACT test center. We show in Appendix Figures IX and X that our main findings still hold
when we use only the distance instruments or only the weather instruments.

Mean squared bias with another covariate set: We further explore the importance
of the choice of covariates with a fourth covariate set: student demographics and student test
scores, without school- and district-level covariates. We might expect adding student test scores
to substantially reduce mean squared biases relative to using only student demographics. The
two test score measures explain 59% of the variation in ACT scores in a linear regression
of selected scores, compared to 17% for all other covariates we observe. The pseudo-R? from
regressing ACT-taking on these two measures is 0.19, compared to 0.06 for all other measures. In
other education research, conditioning on lagged student test scores is particularly important for
eliminating biases in value-added models (Angrist et al., 2013, 2017). However, mean squared

bias from this fourth covariate set is only slightly lower than with only student demographics
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Appendix Figure X: Mean Squared Bias Using Only Weather Instruments by Selection Correction and Covariate Set
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Notes: Figure shows the mean squared bias for every selection correction and covariate set, using only the weather instruments in the first stage models. We omit the
bivariate normal correction without instruments for the model with the basic student demographics. Including this estimate, which has MSB of 7.54, compresses the
other estimates and makes them difficult to read.

62



Appendix Figure XI: Mean Squared Bias Using Extra Covariate Set With Student Demographics and Test Scores
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Notes: Figure shows the mean squared bias for every selection correction and covariate set. The second column adds an extra covariate set consisting of basic student
demograpics and prior test scores, but no school- and district-level characteristics. We omit the bivariate normal correction without instruments for the first two
models, with the basic student demographics. Including these estimates, with MSBs of respectively 7.54 and 5.99, compresses the other estimates and makes them
difficult to read.

(Appendix Figure XI), and this result persists when we use standardized covariates.

Mean squared bias with different series orders in the semiparametric first stage:
Estimates of the coefficients of the ACT score models using semiparametric first stages may
be sensitive to the series orders used in the first stages. This is particularly relevant for the
differencing methods, as the consistency arguments in Ahn and Powell (1993) and Powell (1987)
assume that the first stage model is undersmoothed, i.e. uses a higher series higher than might
be chosen by cross-validation. We therefore estimate the mean squared biases of the polynomial
and differencing methods using several different series orders as a sensitivity analysis.

The polynomial method’s mean squared bias is generally robust to changes in the series or-
der (Appendix Table XII). Undersmoothing with respect to the covariates slightly reduces bias
only with the richest set of covariates. Perhaps surprisingly, oversmoothing with respect to
the covariates slightly reduces bias with all but the basic (demographics only) set of covariates

and sometimes leads to slightly lower bias than OLS. The series order in the instrument has
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Figure XII: Mean Squared Bias of Semiparametric Polynomial Methods with Different First

Stage Orders
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Figure shows the mean squared bias over all coefficients except the intercept from regressions using semiparametric (series
logit) first stages and polynomial second stages, with different values of the series orders. The ‘preferred” specifications use
the series orders chosen by cross-validation. The “higher” and “lower covariate” models respectively increase and decrease
the series order for the covariates by one. The “higher” and “lower instrument” models respectively increase and decrease the

series order for the instruments by two.

a negligible effect on the bias. These patterns are similar for the differencing method (Ap-

pendix Table XIIT). The most noticeable difference is that undersmoothing in the covariates

substantially increases the bias when using the basic set of covariates.
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Figure XIII: Mean Squared Bias of Semiparametric Differencing Methods with Different First
Stage Orders
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Figure shows the mean squared bias over all coefficients except the intercept from regressions using semiparametric (series
logit) first stages and differencing second stages, with different values of the series orders. The ‘preferred” specifications use
the series orders chosen by cross-validation. The “higher” and “lower covariate” models respectively increase and decrease
the series order for the covariates by one. The “higher” and “lower instrument” models respectively increase and decrease the
series order for the instruments by two.
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D Quantile Selection Correction Models

In the main paper we focus on the conditional mean function E[ACT}|X;]. Researchers may
also be interested in the conditional quantile functions ¢(7, X) = FX(J{T*‘ «(7) of the latent test
score distribution for different values of 7. The conditional quantiles may behave in particularly
interesting ways in the presence of sample selection. For example, if students with higher latent
scores conditional on their covariates are more likely to select into test-taking, then sample
selection will lead to larger biases at low than high quantiles.

Arellano and Bonhomme (2017), among others, propose methods for studying selection-
corrected quantile estimation. Like the semiparametric correction methods for the mean, their
approach assumes that there exist instruments Z that shift the probability of test-taking but
are jointly independent of unobserved factors affecting both latent test scores and unobserved
factors affecting test-taking. Their approach achieves nonparametric point identification if the
instruments shift the probability of test-taking from zero to one (identification at infinity). If
this condition fails, as it does in our data, their approach can deliver nonparametric bounds or
point identification under parametric assumptions. Their approach assumes the two unobserved
factors are strictly continuous and the distribution function of the latent outcomes conditional
on the covariates is strictly increasing. This condition does not hold in our data as ACT scores,
like many measures of educational achievement, take on a finite number of integer values.

The estimation approach involves three steps. First, we estimate the probability of test-taking
given the covariates and instruments. Second, using the predicted probabilities, we estimate the
parameters of the copula function that describes the joint distribution of the unobserved factors
affecting latent test scores and test-taking. Third, using the copula function, we estimate the
selection-corrected conditional quantile functions.

Following the empirical example in Arellano and Bonhomme (2017), and because we do not
have identification at infinity, we impose parametric assumptions to implement all three steps.
We use a probit model to estimate the predicted probabilities of test-taking, which is identical to
the first stage of the bivariate normal selection method with instruments. We assume that the
copula is Gaussian, so the second stage requires estimating only one parameter. We assume that
the quantile functions are linear so that the third stage requires estimating only one parameter
per covariate. We focus on quantiles 10, 20, 30, 40, 50, 60, 70, 80, and 90. We obtain confidence

intervals using 50 replications of a nonparametric bootstrap that implements all three stages
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Figure XIV: Mean Squared Bias of Quantile Regressions with Demographic Covariates Only
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Figure shows the mean squared bias over all coefficients except the intercept from quantile regressions. The quantile regressions
use only student demographics as covariates. The estimates labelled “uncorrected” run quantile regressions that ignore sample
selection. The estimates labeled “Arellano-Bonhomme correction” apply the selection correction described in the text, with
the driving distance and weather instruments. Bootstrap confidence intervals use 500 replications for the uncorrected estimates
and 50 replications for the Arellano-Bonhomme-corrected estimates, running all steps of the estimation inside each replication.

of the estimation within each replication. We use only 50 replications because the second stage
of the estimation relies on a computationally intensive grid search.

As a reference, we estimate the conditional quantiles in the complete post-reform data. We
interpret the difference between the reference estimate for each covariate at each decile and the
selection-corrected estimate for each covariate at each decile using pre-reform data as the bias.
We calculate the mean squared bias at each decile over all the covariates except the intercept
and display this in Appendix Figures XIV, XVI, and XVII for our usual three sets of covariates:
respectively student demographics only, adding school- and district-level covariates, and adding
student test scores. We also estimate uncorrected quantile regressions using pre-reform data
that ignore the sample selection problem.

When we use only student demographics as covariates, the uncorrected estimates have mean
squared biases of 0.6 to 1.4, with perhaps a slight trend toward higher bias at higher quan-
tiles (Appendix Figure XIV). The corrected estimates are weakly lower than the uncorrected
estimates for deciles 3-9, although the confidence intervals overlap for deciles 1-8.

When we include school- and district-level covariates, the uncorrected estimates are more
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Figure XVI: Mean Squared Bias of Quantile Regressions with School-Level Covariates
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Figure shows the mean squared bias over all coefficients except the intercept from quantile regressions. The quantile regressions
use student demographics and school- and district-level characteristics as covariates. The estimates labelled “uncorrected” run
quantile regressions that ignore sample selection. The estimates labeled “Arellano-Bonhomme correction” apply the selection
correction described in the text, with the driving distance and weather instruments. Bootstrap confidence intervals use 500
replications for the uncorrected estimates and 50 replications for the Arellano-Bonhomme-corrected estimates, running all
steps of the estimation inside each replication. The confidence intervals for the uncorrected estimates have zero length at some
deciles because there is no variation in the estimates over bootstrap replications, due to the discrete covariates and coarse
outcome.

biased than the selection-corrected estimates at all deciles (Appendix Figure XVI). The pattern
changes when we include student test scores as covariates: the uncorrected estimates are less
biased at deciles 1-4 and 8-9, although the confidence intervals overlap at most quantiles and
some of the differences are small (Appendix Figure XVII). None of the three figures show a
clear trend toward lower bias at higher quantiles.

We conclude that there is suggestive evidence that the selection-corrected quantile method
has lower bias than the uncorrected method. But this pattern is not robust across quantiles
and covariate sets and the differences are seldom large relative to the confidence intervals. This
pattern may also change with different parametric assumptions used to estimate the corrected
estimates, or with instruments that more strongly shift the probability of test-taking. We
view detailed investigation of the relative performance of selection-corrected and uncorrected

methods as a topic for future work.
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Figure XVII: Mean Squared Bias of Quantile Regressions with Student Test Score Covariates
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Figure shows the mean squared bias over all coefficients except the intercept from quantile regressions. The quantile regressions
use student demographics, student test scores, and school- and district-level characteristics as covariates. The estimates labelled
“uncorrected” run quantile regressions that ignore sample selection. The estimates labeled “Arellano-Bonhomme correction”
apply the selection correction described in the text, with the driving distance and weather instruments. Bootstrap confidence
intervals use 500 replications for the uncorrected estimates and 50 replications for the Arellano-Bonhomme-corrected estimates,
running all steps of the estimation inside each replication.
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