Higher order representation stability and ordered configuration
spaces of manifolds

Jeremy Miller* and Jennifer C. H. Wilson
February 24, 2019

Using the language of twisted skew-commutative algebras, we define secondary representation
stability, a stability pattern in the wunstable homology of spaces that are representation stable in
the sense of Church—Ellenberg—Farb [CEF15]. We show that the rational homology of configuration
spaces of ordered points in noncompact manifolds satisfies secondary representation stability. While
representation stability for the homology of configuration spaces involves stabilizing by introducing a
point “near infinity,” secondary representation stability involves stabilizing by introducing a pair of
orbiting points — an operation that relates homology groups in different homological degrees. This
result can be thought of as a representation-theoretic analogue of secondary homological stability in
the sense of Galatius—Kupers—Randal-Williams [GKRWa, GKRWb]. In the course of the proof we
establish some additional results: we give a new characterization of the homology of the complex of
injective words, and we give a new proof of integral representation stability for configuration spaces of
noncompact manifolds, extending previous results to nonorientable manifolds.
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1 Introduction

The objective of this paper is to introduce the concept of secondary representation stability and prove
that this phenomenon is present in the homology of the ordered configuration spaces of a connected
noncompact manifold. Church—Ellenberg—Farb [CEF15] proved that, in each fixed homological degree
1, these homology groups are representation stable: up to the action of the symmetric groups, the
homology classes stabilize under the operation of adding a point “near infinity.” In this paper, we
exhibit patterns between unstable homology groups in different homological degrees. We show that
certain sequences of unstable rational homology groups stabilize under the new operation of adding
pairs of points orbiting each other “near infinity.” We formalize this secondary representation stability
phenomenon using the theory of twisted skew-commutative algebras.

1.1 Stability for configuration spaces

For a manifold M, let F(M) := {(ma,...,my)|m; € M, m; # m; if i # j} C M" be the configuration
space of k distinct ordered points in M. The symmetric group &y, acts on Fj (M) by permuting the
terms, and so induces a Z[Sy]-module structure on the homology groups H;(F(M)). Although these
homology groups do not exhibit classical homological stability as k increases, Church—Ellenberg—Farb
[Chul2, CEF15] showed that they do stabilize in a certain sense as Gy-representations. To make this
statement of representation stability precise, we recall the definition of the stabilization map.
Assume throughout that M is a connected noncompact n-manifold with n > 2. Since M is not
compact, there is an embedding e : M UR™ < M such that e|y; is isotopic to the identity, as in
Figure 1. Such an embedding exists, for example, by Kupers—Miller [KM15, Lemma 2.4]. Using this
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Figure 1: The embedding e : M UR"™ — M.
embedding, we construct a map
t: kal(M) — Fk(M)

which maps a configuration in M to its image in e(M), and then adds a point labeled by % in e(R™).
This map is illustrated in Figure 2.

Figure 2: The stabilization map t : F5(M) — Fy(M).

The following stability result is a consequence of work of Church-Ellenberg—Farb [CEF15, Theorem
6.4.3].

Theorem 1.1 (Church-Ellenberg—Farb [CEF15, Theorem 6.4.3]). Let M be a connected, orientable,
noncompact n-manifold with n > 2. For i < %,

ZISk] - t(H(Fp—1(M); Z2)) = Hi(Fi(M); Z).

In this paper, we consider a higher order stabilization map, t’. Using the embedding e we can also
construct a map Fy_o(M) x F5(R"™) — Fj(M) which places two points in e(R"™), labeled by (k —1) and
k. This induces a map Hy(Fr—2(M)) @ Hp(Fo(R™)) = Hyyp(Fr(M)). We then define the stabilization
map

t: Hi_l(Fk_Q(M)) — Hl(Fk(M))

by pairing a class in H;_1(Fx—2(M)) with the class in Hq(F2(R™)) of the point labeled by k orbiting
the point labeled by (k — 1) counterclockwise, as in Figure 3. This class is zero for n > 3, but is nonzero



Figure 3: The secondary stabilization map t' : Hi(F3(M)) — Ho(F5(M)).

for n = 2. Note that this operation is symmetric in k and (k — 1). While the classical stabilization map
t, raises the number of points by one and keeps homological degree constant, the map ¢’ increases the
number of points by two and homological degree by one.

With the definition of ¢/, we can state the following version of our main theorem, secondary
representation stability for the rational homology of configuration spaces. For this theorem we do not
need to assume M is orientable, but we assume that our manifold M is finite type (that is, the homotopy
type of a finite CW complex) to ensure that the rational homology groups of the configuration spaces
are finite-dimensional. Let Ny denote the set of nonnegative integers.

Theorem 1.2. Let M be a connected noncompact finite type n-manifold with n > 2. There is a
function r : Ng — Ny tending to infinity such that for i < % + r(k),

Q[&y] - (t*(Hi(Fk—l(M);Q)) + t/(Hi—l(Fk—Q(M);Q))> = H;(Fx(M); Q).

Up to the action of &, the homology group H;(Fj(M); Q) is generated by the images of ¢, and
t’ in a range. In other words, Theorem 1.1 says that when the homological degree 7 is small enough
relative to the number k of points, the group H;(Fy(M); Q) is spanned by classes where at least one
point is stationary “near infinity.” Theorem 1.2 says that there is a larger range in which the homology
group is spanned by classes where at least one point is stationary, or two points are orbiting each other
“near infinity.”

When dim(M) > 3, we will see that Theorem 1.2 implies an improved representation stability range
for the groups H;(Fy(M); Q). For 2-manifolds, however, this result is a novel form of stability among
these homology groups.

Remark 1.3. The idea to study homological degree-shifting stabilization maps originated with the work
of Galatius—Kupers—Randal-Williams [GKRWa, GKRWb]. Their work generalizes classical homological
stability, whereas we generalize representation stability. See also Hepworth [Hep, Theorem B and C]
for a related result.

1.2 Categorical reformulation

In order to prove Theorem 1.2, and interpret it within the broader field of representation stability, we
will reformulate the result in terms of finite generation of a module over a certain enriched category
(or equivalently as a module over a certain twisted skew-commutative algebra). From this perspective,
Theorem 1.2 becomes a structural algebraic result on the homology of configuration spaces. We now
review elements of the theory of FI-modules.

FI-modules

Let FI denote the category of finite sets and injective maps. An Fl-module (over a commutative unital
ring R) is a covariant functor V from FI to the category of R-modules.

Given an Fl-module V, we write Vg to denote the image of V on a set S, or for k € Ny we let
Vi denote the value of V on the standard set [k] := {1,...,k} or [0] :== @. The endomorphisms
Endp1([£]) & & induce an action of & on Vj.. The FI-module structure on V is completely determined
by these Gj-actions and the maps Vi, — Vi1 induced by the standard inclusions [k] C [k + 1].

Given an Fl-module V, the minimal generators H{'(V) of V are a sequence of &y-representations
that we think of as encoding the “unstable” elements of V. In degree k, the &-representation H'(V)
is defined to be the cokernel

HgI(V)k := cokernel @ V[k]\{a} — Vi
a€k]



where the maps are induced by the natural inclusions [k] \ {a} < [k]. Minimal generators should not
necessarily be viewed as FI-module generators; in general they are a quotient and not a subobject.
They do, however, give a lower bound on the size of a generating set. They are analogous to the
indecomposable elements of an algebra with respect to an augmentation. onendomorphisms morphisms
act by zero.

We say that an FI-module V is generated in degree < d (or has generation degree < d) if

HEY (V) =0 for k > d.

We say that V is finitely generated if @~ HEY(V) is finitely generated as an R-module. Finite
generation is equivalent to the condition that there is a finite subset of @), Vx whose images under
the FI morphisms generate @, Vi as an R-module.

The FI-modules central to this paper have additional structure: they are free FI-modules in the
sense of Definition 2.13. A free FI-module V admits natural splittings HE' (V) < Vi, and in this case
the images of minimal generators under these splittings do give a canonical generating set for V. Free
FI-modules are highly constrained; all FI morphisms act by injective maps, and they are completely
determined by their minimal generators (see Theorem 2.16, quoting [CEF15, Theorem 4.1.5]).

Stability in the homology of configuration spaces

Given a noncompact manifold M of dimension at least 2 and ¢ € Np, the ¢th homology groups
{H;(F(M))}2, of the configuration spaces have the structure of an FI-module, denoted H;(F(M)),
which we now describe. We take homology with coefficients in a fixed commutative, unital ring R
unless otherwise stated. Given a finite set .S, let Fs(M) denote the space of embeddings of S into M.

If |S| = k, a choice of bijection S 22 [k] gives a homeomorphism Fg(M) = F,(M). Every injective
map of sets f : S < T defines a map f : Fs(M) — Fr(M), as in Figure 4. We use the injection S < T

f:8S=T
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Figure 4: The FI-module structure on H;(F(M);R).

to relabel the configuration, and insert points labeled by the elements of 7'\ f(.S) in the image e(R")
of the embedding e.

Although the map f depends on many choices, up to homotopy it only depends on the isotopy
class of the embedding e and the injection S < T, and so for a fixed choice of embedding we obtain a
well-defined FI-module structure on the homology groups H;(F(M)). In the language of FI-modules,
Theorem 1.1 is the statement that H{'(H;(F(M))s vanishes when |S| > 2i. If M has finite type then
the FI-module H;(F(M)) is finitely generated. For k > 2i, every homology class in H;(Fy(M)) is an
R-linear combination of homology classes of the form of Figure 5: there are at most 2i points moving
around M in an i-parameter family, and the remaining points remain fixed “near infinity.”

Figure 5: A stable homology class in Ho(F'(M)){apb.c,d,e,f}-

Church-Ellenberg-Farb showed that the homology groups of configuration spaces H;(F(M)) are free
FI-modules when M is noncompact [CEF15, Definition 4.1.1 and Section 6.4]. The &y-representations
HEY(H;(F(M))) therefore determine all homology groups of Fi(M); the objective of this paper is to
achieve a better understanding of these groups.



Secondary representation stability

In general there are no natural nonzero maps from HE'(H;(F(M)))x to HEY(H;(F(M)))g+1. However,
t’ induces a map

HY (H(FOM)), — HE (Hia (FOM))

and our main result is a stability result with respect to this operation.
Given i > 0 and a finite set S, let W (S) be the sequence of minimal generators

WH(S) i= HE" (Hises (F(M): R)) .
2

By convention, fractional homology groups are zero. Any injection S < T with |T'| — |S| = 2 induces a
map WM (S) — WM(T) as shown in Figure 6.

g:S—=T
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Figure 6: Stabilization by orbiting points.

If |T|—|S| = 2d for d > 1, the data of the injection is not enough to define a map WM (S) — WM (T).
In addition to the injection f : S < T, we choose a perfect matching on the complement T\ f(S5),
that is, a partition of T'\ f(S) into d sets of size 2. This matching determines how the points will
be paired. To specify the sign of the resultant homology class, we then choose an orientation on the
perfect matching (see Definition 2.8). We define a stabilization map on the homology of Fg(M) by
introducing these d pairs of orbiting points “near infinity,” as in Figure 7.
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Figure 7: The A (Sym?®R)-module structure on WM.

These operations and the &x-actions give the sequences WM the structure of modules over the
twisted skew-commutative algebra N\ (Sym2R), or, equivalently, a module over the enriched category
FIM™ of Definition 2.8. See work of Sam—Snowden and Nagpal-Sam-Snowden [SS, SS15, NSS16, NSS]
and Section 2.1 for more information on twisted (skew-)commutative algebras. In this language,
Theorem 1.2 can be formulated as follows.

Theorem 1.4. If R is a field of characteristic zero and M is a connected noncompact manifold of
finite type and dimension at least two, then for each i > 0 the sequence of minimal generators

W (k) = HE" (Hege (FOI); R))

is finitely generated as a )\ (Sym?R)-module.

We call this finite generation result secondary representation stability. This implies that there is
some number N; such that for any k the minimal generators HE'(H ivx (F(M))), are spanned by classes
of the form given in Figure 8, where all but at most N; many pozints move in orbiting pairs “near
infinity.” For connected, noncompact surfaces, representation stability is shown graphically in Figure 9,
and secondary representation stability in Figure 10.

Viewing these homology groups as a A (Sym?R)-module and drawing on the theory of twisted
skew-commutative algebras, we can prove a version of the main theorem that establishes isomorphisms
instead of just surjections.



Figure 8: A secondary stable class in HS' (Ha(F (M) {ap,cde,f}-
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Figure 9: The FI-modules H;(F(M); R) for a noncompact connected surface M.

i=k

homology vanishes /

(above homological

dimension)

— module HE! (H@ (F(M);R))k

homological
degree

secondary rep stability range
minimal generators vanish (precise bounds not known)
(rep stability range)

FI degree k

Figure 10: The minimal generators HS' (H;(F(M))), for a noncompact connected surface M.

Corollary 1.5. Let R be a field of characteristic zero. For k sufficiently large compared to i, WM (k)

is isomorphic to the quotient of Indgiizx(SQWiM(k —2)X R by the image of the sum of the two natural
maps:
mdS oo, (W{”(k - 4)) MRXR=mdS e (W;Vf(k - 2)) X R.

Here R represents the trivial Go-representation.

Concretely, this says that, in the stable range, HE' (Hk+i (F(M); R))k is the coequalizer of the
2
(appropriately signed) maps

1AZS ceyxe, B3 (Mo 5 (F(M):R)) ~ MRNR = 10dS) o, HE' (Hise ( (F(M);R))  ®R

k—4 k—2

In particular, the representations WM (k — 4) and WM (k — 2) together with the maps WM (k — 2) —
WM (k — 4) completely determine the representations W (k) in the stable range. This corollary can
be viewed as a secondary version of central stability in the sense of Putman [Putl5]. The stability
range where the isomorphisms of Corollary 1.5 hold is typically smaller than the surjectivity range of
Theorem 1.4.

If M is at least three-dimensional, then the maps Indg’;72X@2Wf‘/[(k - 2)X R — WM(k) are
both zero and surjective in a range. Hence, WM (k) vanishes for k sufficiently large, and secondary
representation stability is the statement that H;(F)(M)) is representation stable in an improved range.
In Theorem 3.27 we prove explicit stability bounds for these homology groups with integral coefficients.



For surfaces, however, the groups W (k) are generally nonzero as k tends to infinity. For example,
WiRQ (2k + 1) is a sequence of free abelian groups whose ranks grows super-exponentially in k; see
Proposition 3.33. In Section 3.6, we formulate some conjectures for tertiary and higher order stability.

Since it was first observed that FI-modules could be interpreted in the language of tca’s (Definition
2.4), it has been an open question (see Part 4 of Motivation 1.2 of [NSS16]) if algebraic properties of
more general (skew-)tca’s would have applications to topology in a similar fashion to the theory of
FI-modules. Our paper represents one of the first examples of such an application.

The proof of secondary representation stability

The proof of Theorem 1.4 involves the analysis of a semi-simplicial space, the arc resolution of Fj (M),
described in Section 3.2. In Section 3.3, we compute certain differentials in spectral sequences associated
to the arc resolutions, which we use to prove the desired finiteness properties of the sequences WM in
Section 3.4. The algebraic underpinnings of our proof of secondary representation stability is developed
in Section 2, and draws on the theory of FI-modules introduced by Church—Ellenberg—Farb [CEF15], the
central stability complex introduced by Putman in [Put15], and the theory of twisted skew-commutative
algebras. In particular, our proof relies on the Noetherian property for A (Sym2R)—m0du1es established
by Nagpal-Sam-Snowden [NSS, Theorem 1.1].

This Noetherian property for A (Sym?R)-modules is currently only known when R is a field of
characteristic zero. If it were possible to prove this result over more general commutative unital rings
R, then (with a modification of our Proposition 3.23) our proof would establish our main results,
Theorem 1.2, Theorem 1.4, and Corollary 1.5, over these rings. Some conjectural generalizations and
strengthenings of Theorem 1.4 are discussed in Section 3.6.

1.3 Other results

In the process of establishing secondary representation stability for configuration spaces, we prove some
other results which may be of independent interest. In particular, we prove new representation stability
results for the homology of configuration spaces, and we give a new Lie-theoretic description of the top
homology group of the complex of injective words.

The homology of the complex of injective words

The complex of injective words Inj, (k) on the set [k] is a semi-simplicial set which was used by Kerz
[Ker05] to give a new proof of homological stability for the symmetric groups (see Definition 2.17). It
has found application in algebraic topology, representation theory, and algebraic combinatorics. The
complex of injective words has only one nonvanishing reduced homology group, a subgroup of the free
abelian group on the set of k-letter words on the set [k]. In Section 2.3, we describe an explicit basis for
this group that resembles the Poincaré-Birkhoff-Witt basis for the free Lie superalgebra on [k]. The
following result may be viewed as an analogue of the Solomon—Tits Theorem [Sol69] for the complex of
injective words.

Theorem 2.40. The reduced integral homology group Hy_1(||[Inj,(k)||) is the submodule of the free
associative algebra on the set [k] generated by products of iterated graded commutators where every
element of [k] appears exactly once. An explicit Z-module basis for this group is given in Lemma 2.58.

Primary representation stability for configuration spaces

The work of Church, Ellenberg, Farb, and Nagpal [Chul2, CEF15, CEFN14] on representation stability
for configuration spaces uses Totaro’s spectral sequence [Tot96], which assumes that the manifold is
orientable. We remove this assumption by giving an entirely different proof of representation stability
for configuration spaces (see also Palmer [Pall8, Remark 1.8] and Casto [Cas, Corollary 3.3]). Following
methods of Putman [Putl5] on congruence subgroups, we adapt Quillen’s approach to homological
stability to prove representation stability.

Theorems 3.12 and 3.27. Let M be a connected noncompact manifold of dimension n > 2.

(a) Then HEY(H;(F(M);Z)), =0 for k > 2i.



(b) Suppose M has dimension at least 3. Then HEY(H;(F(M);Z))x =0 for k > i.
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2 Algebraic foundations

The goal of this section is to lay the algebraic groundwork necessary to state and prove the main
theorem. We begin, in Section 2.1, with a review of FI-modules and their generalizations, modules
over a twisted (skew-)commutative algebra. This provides a very general context for formulating
representation stability for sequences of Gp-representations. We then discuss the relationship between
Putman’s central stability chain complex [Put15] and Farmer’s complex of injective words [Far79] in
Section 2.2. In Section 2.3, we give a new description of the homology of the complex of injective
words. In Section 2.4, we conclude with an analysis of a generalization of the central stability chain
complex for FIM*-modules. These chain complexes will appear in Section 3 on the pages of the arc
resolution spectral sequence, a spectral sequence we use to prove secondary representation stability for
configurations spaces.

2.1 Review of twisted (skew-)commutative algebras

Throughout this paper, we fix a commutative unital ring R. All homology groups will be assumed to
have coefficients in R, all tensor products will be taken over R, and so forth, unless otherwise specified.

Definition 2.1. Let FI be the category whose objects are finite (possibly empty) sets and whose
morphisms are injective maps. Let FB be the category of finite sets and bijective maps.

Definition 2.2. Let C be a category. A C-module (over the ring R) is a covariant functor from C
to R-Mod, the category of R-modules. A C-space is a covariant functor from C to the category of
topological spaces and a homotopy C-space is a covariant functor from C to the homotopy category
of topological spaces. Co-C-modules and (homotopy) co-C-spaces are the corresponding contravariant
functors.

Recall that we denote the value of an FB or FI-module V on a set S by Vs (or possibly V(S) in
instances where V has other subscripts). When S is the set [k] = {1,2,...,k}, we write Vj or V(k).

The category of FI-modules studied by Church-Ellenberg-Farb [CEF15] was later understood to be
an example of a category of modules over a twisted commutative algebra (tca). We will use the theory
of (skew-)tca’s to define secondary representation stability, and we summarize the relevant aspects of
this theory here.

Definition 2.3. Let V and W be FB-modules. The Day convolution of two FB-modules V and W is
the FB-module defined by the formula
(V®@re W)s = @ Va®Vp.
AUB=S

This product is symmetric monoidal with symmetry 7 : V ®pg W — W ®Qpp V induced by the
canonical bijection AL B — B U A.



Definition 2.4. A (skew-)twisted commutative algebra is a (skew-)commutative unital monoid object
in category of FB-modules with Day convolution. A module over a twisted (skew-)commutative algebra
is a module object over the associated monoid object.

See Sam-Snowden [SS, Section 8] for more details.

Definition 2.5. Let
T : FB-Mod — FB-Mod

be given by the formula

(TV) = P (Ver=F).

k

For the same reasons that tensor algebras are unital rings, this is a unital monoid object with respect
to the Day convolution. In particular, there is a natural multiplication map p: TV Qpp TV — TV.

Definition 2.6. Let TCA denote the category of twisted commutative algebras over R, and let STCA
denote the category twisted skew-commutative algebras over R. Let Sym : FB-Mod — TCA be given
by the formula

SymV := cokernel (u —rou:TV @ TV — Tv)
and let A : FB-Mod — STCA be given by the formula

/\V = cokernel(,u+To;L TV @ TV — TV)

where the multiplicaiton is induced by monoid structure on TV. Let Sym”* V or /\k V denote the image
of V®rek in SymV or AV respectively.

The tca Sym (Sym'R) is the FB-module with a rank-1 trivial &,-representation R in every degree,
and all multiplication maps given by the canonical isomorphisms R ® R =2 R. The data of a module
over Sym (Sym'R) is equivalent to an Fl-module V over R. See Sam-Snowden [SS, Section 10.2].

The tca Sym (Sym?R) is generated by

Sym (Sym?R) ) = R(Tap [Tap = p.0)-

The multiplication map is given by multiplication of (commutative) monomials in the variables x,,
with the caveat that by definition we must take the disjoint union of the indices of each factor. For this
reason Sym (SymzR) s is not simply a polynomial algebra on variables of the form z, p; the indices of
any monomial are all distinct by construction. Modules over Sym (Sym2R) are equivalent to modules
over the combinatorial category FIM we now define (see also Sam—Snowden [SS15, Section 4.3]).

Definition 2.7. A matching of a set B is a set of disjoint 2-element subsets of B, and a matching is a
perfect matching if the union of these subsets is B. Let FIM be the category whose objects are finite
sets and whose morphisms are injective maps f : S < T together with the data of a perfect matching
of the complement 7'\ f(S) of the image. Composition of morphisms is defined by composing injective
maps and taking the union of one matching with the image of the other.

The skew-tca A (Sym®R) is generated by A (SymzR){a’b}. In general for sets S of even parity the
group A (Sym?R)g is spanned by anticommutative monomials with distinct indices

Tai by Lag,by such that S ={a1,b1,...,a4,bq}.

The category of modules over A (SymzR) cannot be encoded as a functor category to R-Mod, however,
A (Sym2R)—modules are equivalent to modules over an enriched category which we denote by FIM™.

Definition 2.8. Let FIM™ be the following category enriched over R-Mod. The objects are finite sets.
The module of morphisms between sets of different parity is the R-module 0. Between sets [a — 2] and
[a], the module of morphisms is the following quotient:

R<(f:[a—2b]—>[a], Av, Ag, . Ay f is injective, |A;| =2, [a]im(f)uA1|_I~~|_|Ab>

so {A;} is an ordered perfect matching on [a] \ im(f)
< (f, A1, As,... Ap) = sign(o) (f, As(1), Ag(2)s - - +» Ag(b)) for all o € G, >




In other words, when & = m (mod 2), the morphisms from [k] to [m] are the free R-module on the set
of all injective maps [k] < [m] along with a perfect matching on the complement of the image. These
perfect matchings are oriented and reversing the orientation gives a sign. We denote a free generator of
the morphisms by

F=(f,Ai NAsA---NAp).

The composition of the maps
F=(f, AANAyN---NAp) and G= (g, CtyANCoA---NCy)
is given by the map
GoF:=(gof, CyNCaN---ANCygAg(A1) ANg(A2) A+ A g(Ap)).

Definition 2.9. Let C be a category enriched over R-Mod. We define a C-module to be an enriched
functor from C to R-Mod.

We now extend the definition of HE! to modules over a general (skew-)tca.

Definition 2.10. Let V be a module over a (skew-)tca A. Let Hg'(V)s be the quotient

Hi'(V)s := cokernel @ Ap ®Vg — Vs
S=PUQ, P#®

The R-modules Hg'(V)s assemble to form an FB-module. We say that V is finitely generated if
@i, Hi' (V) is finitely generated as an R-module.

We often replace the superscript A in the notation H, 54(V) with the corresponding category. Following
Church—Ellenberg [CE17], we use the following terminology.

Definition 2.11. Let V be an A-module with A a (skew-)tca. We say that degV < d if V}, = 0 for all
k> d. We say V is generated in degrees < d if deg Hg'(V) < d.

The following Noetherianity result of Nagpal-Sam—Snowden [NSS, Theorem 1.1] is key to our
understanding of FIMT-modules, equivalently, of A (Sym?®R)-modules.

Theorem 2.12 (Nagpal-Sam—Snowden [NSS, Theorem 1.1]). Let R be a field of characteristic zero.
Any submodule of a finitely generated module over \ (Sym?R) is finitely generated.

A similar Noetherian property also holds for FI-modules; see Snowden [Snol3, Theorem 2.3], Church—
Ellenberg-Farb [CEF15, Theorem 1.3], and Church-Ellenberg-Farb-Nagpal [CEFN14, Theorem A].

Definition 2.13. Let A be a (skew-)tca. We define
M# : FB-Mod — A-Mod

via the formula
MAYW) := AQpp V.

The A-module structure on M+(V) is induced by the map A ®pp A — A. We call modules of the form
MA(V) free A-modules. Given an R[G4]-module W, we define M4 (W) by viewing W as the FB-module
with module W in degree d and 0 in all other degrees. We let M#(d) := MA(R[&,]). We will often
replace the superscript A with its corresponding category, and (following Church—Ellenberg—Farb
[CEF15, Definition 2.2.2]) simply write M for M.

We now give another description of M“(d) for the (skew)-tca’s of interest.

Proposition 2.14. There is a natural isomorphism of functors MF™" (d) and R [Homppy+ ([d], —)].
Similarly, there is a natural isomorphism of functors M¥(d) and R [Homgpy+ ([d], —)].

Proof. Both pairs of functors are left adjoint to the forgetful functor A-Mod — FB-Mod for A =
A Sym?R or A= Sym Sym'R. O
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See Proposition 3.38 for an explicit description of M FIM™ (W) as induced representations. Using
the fact that M (W) is a left Kan extension, Church, Ellenberg, and Farb observed that, given an
Gg-representation W, the free FI-module M (W) satisfies

MW), = @ W = hndgt,s, ,WHER
ACIk]
|Al=d
where R denotes the trivial &j_4-representation. These authors prove that the free FI-modules M (W)
can be promoted to modules over the larger category FIff, which we define as follows.

Definition 2.15. Define a based injection f : Sy — Ty between two based sets Sy, 1y to be a based
map such that |f~!({a})| < 1 for all elements a € Ty except possibly the basepoint. Let FIf be the
category whose objects are finite based sets and whose morphisms are based injections.

The category defined in Definition 2.15 is isomorphic to the category called FIf by Church—Ellenberg—
Farb [CEF15, Definition 4.1.1]. The operation of adding a basepoint gives an embedding of categories
FI C FIf. Hence an FIf-module is an FI-module with additional structure and constraints, notably,
the FI morphisms have one-sided inverses and so must act by injective maps. These backwards maps
give FIf-modules the structure of co-FI-modules, and we may view FIf-modules as co-FI-modules
with a compatible FI-module structure. The following result of Church, Ellenberg, and Farb gives
a classification of FIf-modules: they are precisely the free FI-modules. They show moreover that
the functors M : FB-Mod — FIf-Mod and H{! : FIf-Mod — FB-Mod are inverses, and define an
equivalence of categories.

Theorem 2.16 (Church-Ellenberg-Farb [CEF15, Theorem 4.1.5]). An Fl-module V is the restriction
of an FI{-module if and only if it is free, in which case it is the restriction of a unique FIi-module. In
particular, for an FIi-module V, there is a natural isomorphism

= @M(Hgl(v)k).
k=0
Theorem 2.16 implies that an FIf-module V is completely determined by its minimal generators.

2.2 Twisted injective word complexes

Putman [Put15] defined a chain complex associated to a sequence of Gy-representations called the
central stability chain complex. This chain complex arises as the E'-page of a certain spectral sequence,
and its homology is the E?-page. Natural analogues of the chain complex exist when the symmetric
groups are replaced by other families of groups such as general linear groups. See for example Putman-—
Sam [PS17, Section 5.3]. In the context of FI-modules, we show that this chain complex is closely
related to the complex of injective words and accordingly we will denote the complex using the notation
Inj. We first recall the definition of the complez of injective words.

Definition 2.17. For a set S and an integer ¢ > —1, let Inj,;(S) := Homp1 ({0, ..., i}, 5).

For a fixed set S, Inj,(S) has the structure of an augmented semi-simplicial set. The face map d;
acts by precomposition with the order-preserving injective map {0,...,i — 1} — {0,...,4} that misses
the element j. Farmer [Far79] proved the following result on the connectivity of ||Inj,(S)]|.

Theorem 2.18 (Farmer [Far79]). The geometric realization ||Inj,(S)|| is |S| — 2 connected.

Since |[Inj,(S)|| has dimension |S| — 1, the reduced homology of |[Inj,(S)|| is concentrated in
dimension |S| — 1. We now recall Putman’s central stability chain complex, which we view as a twisted
version of the complex of injective words.

Definition 2.19. For a set .S, an FI-module V, and integer i > —1, let

mjVs= P  Vsump-

These groups assemble into an augmented semi-simplicial FI-module Inj, (V). Let Inj, (V) denote the
associated FI-chain complex. When V is the FI-module M (0), for a set S the complex Inj, (V)s is
precisely the chain complex associated to the augmented semi-simplicial set Inj, (5).
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Remark 2.20. Given an FI-module V, the chain complex Inj, (V) has appeared in the literature under
a variety of different notations, and frequently with a shift in indexing. It is closely related to Putman’s
chain complex TA, 1 (Vy—s«—1) [Putlh, Section 4], and the complexes computing FI-homology in work
of Church, Ellenberg, Farb, Nagpal [CEF15, CEFN14, CE17] and Gan and Li [Ganl16, GL17]. The
complex Inj, (V) itself is denoted by Bi41(V) in Church-Ellenberg-Farb—Nagpal [CEFN14, Definition
2.16], by X,41(V) in Putman-Sam [PS17, Section 3], by CL?; in Church-Ellenberg [CE17, Section 5.1],

and by C1V in Patzt [Pat, Definition 2.5]. We apologize for adding yet another name for this chain
complex.

The goal of this subsection is to compute the homology of this chain complex on FIf-modules.

Remark 2.21. Suppose that )V is an FI-module such that V, = 0 for all k¥ < d. Observe that by
Definition 2.19, Inj;,(V)s = 0 whenever |S| —i—1 < d.

Remark 2.22. It follows from the definition of Inj, (V) that there is an isomorphism of &-representations
Inj,(V)r = Indg* Vi i1,

In particular, for the FI-module M (d) there is an isomorphism of &y-representations
Inj,(M(d))r = M(d+i+ 1).

Given an G4-representation W, there is an isomorphism of G-representations

Inj, (M (W) = M (Indgj““ W) g

Lemma 2.23. There is an isomorphism of G, -representations:

H.(Inj, (M(d)))n = H. \V |nj, ([n] — im(g))]|
g€Homy([d],[n])

Proof. This follows from the existence of a natural isomorphism of chain complexes between Inj, (M (d)),,
and the direct sum over g € Hompy([d], [n]) of the reduced cellular chains of |[Inj,([n] — im(g))||. O

Theorem 2.24. Let W be an integral representation of G4. There is an isomorphism:
Hi(Ing. (M(W)))s = (Hi(Inj, (M(d)) @z, W)
In general, given an FIf-module V,

H,(Inj, (V)i = IndS* H,(Inj,(p+ 1)) X (HF" V) k—p-1-

Spt1XGk—p—1
Proof. Recall that M(W) = M(d) ®z(s,) W. Then
Inj, (M (W))s = Inj, (M(d))s @z, W-

The homological Kiinneth spectral sequence (see for example Theorem 10.90 of Rotman [Rot08)), is a
first quadrant spectral sequence:

B2, = Tor}S) (H, (Inj. (M (a))) ,W).

Since the Z[&4]-modules Inj,(M(d))s are flat, the spectral sequence converges to Hy4(Inj, (M (W)))s.
Theorem 2.18 and Lemma 2.23 imply that Eg,q = 0 except for ¢ = |S| — 1 — d. Since the E;q page has
only a single nonzero column, the spectral sequence collapses on this page. The limit is nonzero only
when ¢ > (|S| — 1 — d), and in this case we see that:
: ~ o L[S :
H,(Inj, (M(W)))s = Tor S 1y (Hisi-1-a(Inj. (M () . W).

On the other hand, M (W), = 0 for k < d, and so by Remark 2.21, H;(Inj, (M (W)))s = 0 whenever
i>|S|—d-1.

12



Thus this spectral sequence has a single nonzero entry. The homology groups H;(Inj, (M (W)))s
are nonzero only in degree i = |S| — 1 — d, in which case we have

Hig|—1-a(Inj, (M(W)))s = Torg[Gd] (HISIflfd (Inj*(M(d))) s’ W)

= (H|S|—1—d (Inj*(M(d)U ®z[& 4] W)S-

Theorem 4.1.5 of [CEF15] (here Theorem 2.16) implies that every FIf-module is a direct sum of
modules of the form M (W). Additionally, for an &4-representation W, HF'{(M(W)); = W and
HEY(M(W)); =0 for i # d. These two facts imply the general result. O

We obtain the following corollary.

Corollary 2.25. Let V be an FIi-module with generation degree < d. Then H;(Inj,(V))s = 0 for
i<|S|—-2-d.

Unwinding definitions gives the following.

Proposition 2.26. For any Fl-module V, H_;(Inj,(V))s = HE'(V)s.

2.3 Homology of the complex of injective words

In the previous subsection, we computed the homology of the injective words chain complex of an
FIf-module in terms of the top homology group of the complex of injective words. We now will show
this top homology group is a certain space of products of graded Lie polynomials, and compute a basis.

Throughout this section we let C,Ek) denote the reduced cellular chains on the semi-simplicial space
Inj, (k). In the language of the previous subsection, M = Inj, (M(0))g. For ¢ > —1, the group C’q(k)
is the free abelian group on words of ¢ + 1 distinct letters in [k]. By Theorem 2.18; this chain complex
has only one nonvanishing homology group, in homological degree k — 1.

Definition 2.27. Let Tj, := Hy_1(C®) 2 Hy,_ 1 (||Inj, (k)|]).

The symbol 7 stands for “top homology group.” Since Cék) = 0, the homology group 7} is a submodule
of Clgkjl, the kernel of the differential:

k—1
P e )
=0

where d; is the face map that forgets the jth letter of each word. The top chain group C,i]i)l is naturally
isomorphic to the regular representation Z[Sg], with a Z-basis given by all injective words on k letters
in [k]. The main objective of this section is to compute an alternate Z-basis for C’,@l in the style of
the Poincaré-Birkhoff-Witt theorem (Theorem 2.35), and identify a sub-basis that spans the kernel of
D (Lemma 2.38 and Theorem 2.40). The result of this calculation is shown explicitly for £ = 2, 3,4 in
the Example 2.31.

We adopt the following notational conventions. If a is a word in the alphabet [k], then in this
section we write |a| to mean the word-length of a. If p is an integer linear combination of words, we
call p a (noncommutative) polynomial in [k], and define its degree |p| to be the length of the longest
word occuring in p. Polynomials are assumed to be homogeneous unless otherwise stated. For words a
and b, we write ab to denote their concatenation; this operation extends linearly to a multiplication on
the additive group of polynomials in [k]. A word is injective if each letter appears at most once. We
introduce a graded Lie bracket on polynomials in [k].

Definition 2.28. Define a graded Lie bracket on words in [k] by
[a,b] := ab — (=1)1%1%lpg

and extend bilinearly to a bracket on the free abelian group on words in [k].

13



On homogeneous polynomials a, b, ¢, the Lie bracket satisfies the graded antisymmetry rule
[a7 b] = _(_1)\a||b\ [ba a]
and the graded Jacobi identity

(_I)MHC‘[C"’ [bv C]] + (_1)|a”b|[b’ [Cv a]] + (_l)leC|[Cv [a7 b” =0

Definition 2.29. A Lie polynomial is any element of the smallest submodule of the free abelian group
on words in [k] that contains the elements of [k] and is closed under the Lie bracket.

The space of Lie polynomials is isomorphic to the free Lie superalgebra on [k]. This space naturally
embeds into the free abelian group of words on [k], which, by a graded-commutative version of the
Poincaré-Birkhoff-Witt Theorem, we can identify with its universal enveloping algebra. The following
result appears in Ross [Ros65, Theorem 2.1]; see also Musson [Mus12, Theorem 6.1.1].

Theorem 2.30 (See, eg, Ross [Ros65, Theorem 2.1]). Let R be a commutative ring with unit such that
2 is invertible. Let L be a homogeneously free Lie superalgebra over R with homogeneous bases Xq for
its even-graded part and X, for its odd-graded part. If < is a total order on X = XoU X1, then the set
of monomials of the form

b1b2 N bm with bz € X, bi S bi—i—l; and bz 7& bi+1 ’Lf bz € X1
and 1 form a free R-basis for the universal enveloping algebra U(L).

We remark that this set of monomials is not a basis when R is Z. In the case of the free Lie
superalgebra on [k], this failure is in some sense due to factors of two that appear with (nested) brackets
involving repeated letters, for example, [1,1] = 11 + 11. Fortunately for our purposes, we will show in
Theorem 2.35 that those basis elements for which every letter is distinct do form an integer basis for
C,gk_)l. The following example illustrates the main result of this subsection, the bases for C,gk_)l and the
top homology group, for small k.

Example 2.31. When k = 2,3, or 4, Theorems 2.35 and 2.40 give the following Z-bases for the chain

group C,gli)l, and the top homology group Hj_ 1(C£k)). (Here we have taken the graded lexicographical
ordering on the set B of Theorem 2.35).

The Z-basis for the rank-2 group 01(2) is {[1, 2], 12} and H1(0£2)) is the rank-one subgroup spanned
by [1,2] = 12 4+ 21. This is the trivial Sy-representation.

The basis for C’é‘q’) is

(11,2, 3], [[1,3],2], 1[2,3], 2[1,3], 3[1,2], 123,
and Hs (Cig)) is the rank—two subgroup spanned by
[1,2],3] = 123 + 213 — 312 — 321,  [[1,3],2] = 132 + 312 — 213 — 231

isomorphic to the standard S3-representation.
The basis for C§4) is

([[1,2],3],4], [[[1,2],4],3], [[[1,3],2],4], [[[1,3],4],2], [[[1,4],2],3], [[[1,4],3],2],
(1,2][3,4], [1,3][2,4], [1,4][2,3],

1{[2,3],4], 1([2,4],3]], 2[[1,3],4], 2[[1,4],3], 3[[1,2],4], 3[[1,4], 2], 4[[1,2], 3], 4[[1,3],2],
12[3,4], 13[2,4], 14[2,3], 23[1,4], 24[1,3], 34[1,2],

1234.

The top homology group H3(6’£4)) is the rank-nine free abelian group on the elements

(1,21, 3], 4], [[[1,2],4],3], [[[1,3],2],4], [[[1,3],4],2], [[[1,4],2],3], [[[1,4],3],2],
(1,2][3,4], [1,3][2,4], [1,4][2,3].

In general, the homology group will consist of all the basis elements that consist of a product of
brackets, that is, the basis elements that contain no singleton factors.
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We now introduce notation for the free Lie superalgebra which we will view as a submodule of C’,gk_)l.

Definition 2.32. For a finite set S with |S| > 2, let Lg denote the subset of homogeneous degree-|S|
Lie polynomials whose terms are all injective words in S. We write £ when S = [k]. It is spanned by
(k — 1)-fold iterated brackets such that each letter in [k] appears exactly once. We define Lg =0 if S
has one or zero elements.

For example, £5 2 T is the rank-1 abelian group with basis [1,2] = 12 + 21, £3 = T3 is the rank-2
abelian group spanned by the elements [1, [2,3]],[2,[1,3]] and [3, [1,2]], which (by the Jacobi identity)
sum to zero. The group £4 C 7y is the rank-6 abelian group spanned by the Lie polynomials

(11,21, 3], 4], [[[1,2],4],3], [[[1,3],2],4], [[[1,3],4], 2], [[[1,4],2],3], [[[1,4],3],2].

We give a basis for £ using a graded-commutative variation on an argument appearing in Reutenauer
[Reu93, Section 5.6.2].

Theorem 2.33 (Compare to Reutenauer [Reu93, Section 5.6.2]). The abelian group Ly, is free of rank
(k — 1)! with a Z-basis all elements of the form

[[---[1,a2), asl, . - ], ax—1], ax] for any ordering (as,as, ..., ax) of the set {2,3,...k}.

More generally, for S C [k], we define the Reutenauer basis for Lg to be the (|S| — 1)! elements as
above with the letter 1 replaced by the smallest element of S under the natural ordering on [k].

Proof. As in Reutenauer’s proof, we may inductively apply the antisymmetry and Jacobi relations

[L, [P, Q] = (-1)9I"*[L, @, P+ [[1, PL. Q)]

to write any element in £y as a linear combination of these generators. The generators must be linearly
independent over Z, since [[[- - - [1,az], asl, . . .], ax—1], ax] is the only Lie polynomial in the list whose
expansion includes the word lasas...ar. We note that this last observation also implies that these
elements span a direct summand of C,(Ck_)l, and not a higher-index subgroup of a direct summand. [

Corollary 2.34. The exponential generating function for the sequence {y := rank(Ly) is
L(z)=—-log(l—2)—=

.Tz l‘g 1‘4 .135
= (15 + @5 + B + @)

2! 3! o

In the spirit of the PBW theorem, we will now construct a new basis for the free Z-module C,ili)l
using the bases defined in Theorem 2.33. Our eventual goal is to prove that a certain subset of this
basis spans the top homology group of the complex of injective words.

Theorem 2.35. Fix k > 2. For each subset S C [k] with |S| > 2, let Bg be the basis of Lg of Theorem
2.83. For each singleton subset S = {a} C [k], let Bs = {a}. Put a total order < on B = Ugc[yBs.
Then the set 11 of polynomials of the form

PP P, such that [k] = S1USaU---USy,, P, €Bg,, and PL< P, <...< P, €B
is a Z—basis for C,gli)l.

Proof. The set II is a subset of the basis given in Ross [Ros65, Theorem 2.311]; the elements of
IT are linearly independent over Z[%] and therefore over Z. We must show that they span C,gli)l.
Assume without loss of generality that 1 < 2 < ... < k in our total order on B. Observe that the
one element of II associated with the decomposition [k] = {1} U {2} U--- U {k} is the single word
P=PP---P, =123---k. We wish to show all permutations of this word are also contained in the
span of II. We proceed by induction.

Let II,,, C II be the subset of polynomials in IT associated to a decomposition [k] = S1USaU-- LS,
with ¢ < m. We prove by induction on m that elements in the subset II,,, span the space of all products
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of elements of B (in any order) with m or fewer factors. This is trivial when m = 1; suppose m > 1.
Observe that, given a polynomial P = PP, --- P,, € Il and a transposition (i i + 1) € S,,, we have:

(p1p2...pi+1pi...pm) — (_1)|Pi||Pi+1‘ ((P1P2"’-Pipi+1"'Pm) _ (p1p2...[pi7pi+1]...pm)), (1)

We may re-express [P;, P;y1] as a linear combination of Reutenauer basis elements for Lg, s, 41, and by
induction (P1P2 -+ [Piy Pig1] - -Pm) is in the span of polynomials in IT,,_;. Since transpositions of
the form (¢ i + 1) generate S,,, this implies that all S,,,~permutations of the factors of P = Py Py--- P,
are in the span of II,,, which concludes our induction. In particular, when m = k all permutations of

our word P =123 -k of length k are contained in the span of II; = II, so C,gli)l is contained in the
span of II as claimed. O

Our next goal is to identify H, k_l(C’,ik)) - C,@l. We will show that the top homology group is
spanned by certain polynomials we call £L-products.

Definition 2.36. We call an element P of C,(C]i)l an L-product if it has the following form. For some
partition of [k] = S; U Sy U -+ S, we can decompose P as a product:

P=PPFP---P, WithPi€£Si.

Note that, in contrast to the elements of the basis IT in Lemma 2.35, £L-products exclude factors P;
that are a single letter. For example, the polynomial

[1,2][3,4] = (12 + 21)(34 + 43) = (1234 + 1243 + 2134 + 2143)
is an L—product in C§4), but
[1,[2,3]]4 = (1(23 + 32) — (23 + 32)1)4 = (1234 + 1324 — 2314 — 3214)

is mot an L—product. The following proposition shows that all L—products are in the kernel of the
differential D.

Proposition 2.37. Any L—product in C’,gi)l s a cycle.

Since the homology group H, k,l(Cik)) is the subgroup of cycles in C,ik_)l, we may view elements in
the span of the L—products as homology classes.

Proof of Proposition 2.37. We will verify that elements of L) are contained in ker(D). Since the
differential D satisfies the Leibniz rule on elements of C,gli)l

D(ac) = D(a)c + (—1)1*laD(c),

it follows that products of these Lie polynomials are in the kernel of D. We will proceed by induction
on k. When k = 2 we have L5 = Z[1,2] and

D([1,2]) =D(124+21) =2—1+1-2=0.

Now fix k and suppose that any Lie polynomial of degree less than k is mapped to zero by D. To
show that L£j, C ker(D), it suffices to check Lie polynomials of the form [P, a;] of Reutenauer’s basis
(Theorem 2.33). We have:

D([P, a;)) = D(Pak - (—1)‘P|akp)

- (D(P)ak + (_1)\PIPD(ak)) — (=1)”! <D(ak)P - akD(P))

=0+ (-D)IPIPD(az) — (-1)PID(ax)P +0 since DP = 0 by the inductive hypothesis,
= (-)"(P-P)
=0.

Thus the Lie polynomials in £, and their products are cycles, as claimed. O
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The next result gives a basis for the subgroup of C,ik_)l spanned by L—products. Theorem 2.40 will
then show us that this subgroup is, in fact, precisely the top homology group 7.

Lemma 2.38. Fiz a finite set [k] with k > 2. As in Theorem 2.35, for each subset S C [k], let Bg
be the basis of Ls of Theorem 2.35. Put a total order < on B := Ugc,|s|>2Bs. The set II* of
polynomials of the form

PP---P, suchthat[k]:SluSgl_l-nl_ISm, PiEBSi; and PL< P, <...< P, €B

form a basis for the subgroup of Clgli)l spanned by L—products. Moreover, this subgroup is a direct

summand of C,ik_)l.
Note that, in contrast to Theorem 2.35, our generating set B excludes all words of length 1.

Proof. Because IT* is a subset of the basis II for Clgli)l of Theorem 2.35, the polynomials in IT* must be

linearly independent, and their span must be a direct summand of C’,gk_)l. Each polynomial in IT* is an
L—product, so it remains to show that they span. As in the proof of Theorem 2.35, we need to show
that any permutation of the factors of an element P, Ps - - - Py, of IT* is in the span of IT*, and we may
use the same induction argument from Theorem 2.35. Again let I, C II* be the subset of polynomials
of II with at most m factors; we prove by induction that II}, spans the space of L-products with m or
fewer factors. When m = 1, the polynomials P; are precisely the elements in Reutenauer’s basis for Ly
(Theorem 2.33). For m > 1, Equation (1) in the proof of Theorem 2.35 again completes the inductive
step, which concludes our proof. O

To prove that the subgroup of the chains C,gk_)l given in Lemma 2.38 is in fact the entire top
homology group, we will compare their ranks. We now use an Euler characteristic argument to compute
the rank of 7.

Proposition 2.39. The top homology group of the complex of injective words is a free abelian group
with rank
k' kU KDE!

rankT; = — — 4o (—1)k2

k! k! L k!
IR T R

TR P TR S

The exponential generating function for the ranks of these groups is:

e
H =
(@)= 1—
Proof. Since the group C(gk) has rank (&, : Gp_q_1] = ﬁ, the Euler characteristic of the chain
complex Cik) is:
k! k! k! 3 k! k! k!
e (DR (DS (D)

A Ry § TR () 9l 1! o

Farmer’s results imply that the homology of the complex Cik) is a free abelian group concentrated in

degree (k — 1); see Theorem 2.18. Tt follows that its Euler characteristic is (—1)*~1hy. Thus,

k! kDK p_o K! i1 K! . k!

S R R B L —1)F=,
o n Tyt Ty T Y oy T

By inspection, the sequence {h;} satisfies the relation hy = khy,_1 + (—1)* for k > 1.
Since hg = 1, we infer that its exponential generating function H(z) satisfies the relation:

k

xk
H(z)—1= thﬁ

E>1
k k
B x BT
= Fhiapg + D (=)
k>1 k>1

=zH(z)+e ¥ —1.
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Solving for H(x) gives:

H(z) =

1—x
2 3 4 5 6 7

1+ (0)% ()G + @+ O+ (44)% + (265)% + (1854)% to. O

Theorem 2.40. Ty is equal to the subgroup of C’,(Ck_)l spanned by L—products. It has a Z-module basis
given by Lemma 2.38.

Proof. Because the subgroup spanned by the L—products is a direct summand of C,gk_)l by Lemma 2.38,

to prove the theorem it is enough to prove that its rank is equal to the rank of Hk._l(C’ik)). Recall for
k > 2 the basis given in Lemma 2.38,

P PP, such that [k] =S U S, U---US,,, P, € Bg,,and P, < P, <...< P, € B.

In Theorem 2.33 we saw that |B,| has order £, = (a — 1)!. The number of ways to decompose [k]

into subsets of orders ay,as, ..., a,, is aridnea ), and the number of products of Reutenauer basis

elements for these subsets (where factors can appear in any order) is (a1 az’“_mam)ﬁalﬂaz <4y, . The

number of products with factors in ascending order is % (a1 agk.._ " )€a1£a2 -+, . Hence the basis II*
for the space of L—products given in Lemma 2.38 has cardinality:

1 k 1 k 1 k
g D ()it g 2 (ane)titer g T (g g ittt
a+b=k a-+b+c=k a-+b+c+d=k

This implies that the exponential generating function for the rank of this space is given by exponentiating
the generating function L(z) = —log(1 — x) — z for ¢;, found in Corollary 2.34. But

oL@) — 16 = H(z),

where H (z) is the exponential generating function found in Proposition 2.39, and so we conclude that
for k > 1 the cardinality of the basis IT* is equal to the rank of Hk_l(CZEk)). Hence Hk_l(Cik)) is equal
to the subgroup of C,i’i)l spanned by L-products. O

Remark 2.41. We remark that Theorem 2.40 and the basis for T; given in Lemma 2.38 make it
apparent that the rank of Ty will be equal to the number of derangements of &;. The Reutenauer
basis for Lg, |S| = k of Theorem 2.33 are the (k — 1)! elements {[[[- - - [a, a2], as],...], ax—1], ax]} where
a denotes the lexicographically first element of S and all permutations of the remaining elements a; of
S appear. Then the map

[[[---[a, az], a3, .. .], ak—1], ag] — (aazaz - - ax)

identifies the Reuntenauer basis elements with the set of k-cycles on S. Extending this map to the
basis in Lemma 2.38 identifies each basis element with a permutation without 1-cycles, written in cycle
notation, with cycles ordered lexicographically. We have a naturally defined bijection between our basis
for 7 and the set of derangements on k letters. This bijection, however, is not Gy-equivariant.

2.4 Secondary injective word complexes

In this subsection, we define a chain complex called the secondary injective words chain complex of
a A (Sym®R)-module. This chain complex should be thought of as a central stability complex for
A (SmeR)—modules and this complex will appear on the E2-page of a certain spectral sequence.

Recall that if A = {a,b} is a 2-element set, then £4 = R is the free R-module on the graded Lie
bracket [a,b] = ab + ba, that is, L4 is a rank-one trivial Go-representation.
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Definition 2.42. Let V be a FIM*-module, S a set of cardinality k. Let

j2(V)s := Indf% LTV RV,

(G2)PHIXGr_2p_2

= @ La, @ LA @ @La, ®Vp.

ordered partitions
S=AgUA; u-HUApUB
|4s|=2, | B|=k—2p—2

These groups assemble to form a chain complex as follows. Define maps
di - Inj(V)s — Injy_,(V)s (i=0,....p)
La,@La, @ @La, ®VE —> L4, ® La, ®-~-®Z;®---®£Ap,l ® VBua,

as follows: let d; act by the identity on the tensor factors L4, EAI,...,Z;., ... La, ,,and act on
the factor V by the map Vp — Vg4, induced by the FIM* morphism associated to the inclusion

Because the composition of maps Vg — Vpua, — VBua,ua, is the negative of the composition
VB — VBua, — VBua,ua,;, we must take the sum of the maps d; (instead of the alternating sum) to
obtain a chain complex. Let Inj?(V)g denote the chain complex with differentials given by the sum of
the maps d;.

Proposition 2.43. There is an isomorphism of chain complezes (which is non-equivariant with respect
to the permutation group of S):

o: o) Inj. (M(0))7 = Tnj? (M (d))
f€Hompr([d],S)
Z a perfect matching on S\im(f)

g

Proposition 2.43 and Theorem 2.18 imply that InjZ(M FIM* (d))s is highly acyclic.
Corollary 2.44. The homology groups Hl-(Injz(MFIMJr (d))s =20 ifi < (‘SlT*d — 2),

Proof Proposition 2.43. Let k = |S|; we may assume k = d (mod 2) or both chain complexes are zero.
By an order on a matching {{z1,y1},...,{z;,u1}}, we mean a bijection to [/]. Choose an order on
every perfect matching of every (k — d)-element subset of S. The map © that we will construct will not
be equivariant with respect to the G-action and will depend on the choice these choices of orderings,
but only up to sign.

Fix a homological degree p and let f € Homp;([d], S). Let Z be a perfect matching on S\ im(f)
and let z be an injective word in Z of length (p + 1). The data (f, Z, z) specifies a generator of the
domain of ©. Let {a;,b;} denote the 2-element set that is the jth letter of z. Let

2 = [ao, bo] X...Q [ap, bp} S C{aoybo} ®...Q »C{a,,,b,,}-
Let
w = {ap+1, bp+1} JANIVAY {ak—g—z , bk—g—z}

be an oriented perfect matching of the set of elements of Z not appearing in z, written in an arbitrary
order (see Definition 2.8). Up to sign, this depends on choice of ordering on the set

{{aerl, bp+1}, ey {ak—;i—z y bk—g—2 }}

Our construction will ultimately be independent of this choice of order, in contrast to the choices of
orders made in the first paragraph. Let Q@ = S\ {ao,bo,-..,ap,b,} and let F = (f,w). Using the
isomorphism

MP™ (d) g = Homppy+ ([d], Q)
described in Proposition 2.14, we may view F as an element of MF™M" (d)q. Let 0 : Z — Z be the
permutation from our pre-selected order on Z to the order {ag,bp},. .., {a%,b¥} defined by
(z/,w). Define © via the formula

(p+1)(p)
2

O(f, Z,z) == (—1) sign(o) (2 K F)
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and extend linearly. We will check that this map is well defined, an isomorphism of abelian groups and
a map of chain complexes.

To see that © is well defined, it suffices to check that it does not depend on the choice of order on
the set

{{ap+1, bp+1}, ey {ak—g—Q , bk—g—Q }}

This is the reason that we included a sign(o) term in the definition of ©; permuting two terms of the
oriented matching {ap+1,bp41} A ... A {a k=g=2,brmg=s } gives a minus sign which exactly cancels the
sign change in the sign(o) term.

We now check that this map is an isomorphism of abelian groups. Both

D Inj (M(0)); and  Inj? (MFIW (d))
fEHOmFI([d],S)
Z a perfect matching on S\im(f)

S

are isomorphic as abelian groups to the free abelian group on the set
{(f,Z,2) | f:[d] — S,Z a perfect matching on S\ im(f), z an injective word of length (p+ 1) in Z}.

This gives bases of the domain and the codomain of ©. Up to sign, © maps one basis to the other basis
and so it is an isomorphism of abelian groups.

All that remains is to check that © is a map of chain complexes. The differential on the domain of
© is an alternating sum of maps which we called d; and the differential on the codomain is a (non-
alternating) sum of maps which we also called d;. Thus, it suffices to check that d; 0 © = (—1)'© o d;.
We will continue to use the notation of the second paragraph. We have

di(f.2,2) = (£, Z.{a0.bo} -+ {ai,bi}, - {ap, by} ) € Inj, 1 (M(0))z.

Let
2 = [a0,b0] ® .. ® [0, 5] ® - .- ® [ap41,bp11] € Liagbo) @ - @ Liarpy @ -+ @ Lia 15
w; = {ai, b} A{api1,bpp1} AL A {a%,bﬁ}
and F; = (f,w;) € Mgﬂ\gb} Let 0; : Z — Z be the permutation from our pre-selected order on Z to
the order
{a0,bo}- - {aibits - {ap by}, {ai, b {apst, bpsa s {Qhmgoz g},
We have

0d;(f,2,2)) = (—1) 5 sign(oy) (/K F;) .

In contrast,
(+1)(p)

d;(0(f,Z,2)) = (1) =z sign(o) (2} X F}).

Since o; can be obtained from o by composing with (p — ) simple transpositions, we see that
sign(o;) = (—1)P"‘sign(o), and the claim follows.
O

Using Theorem 2.12, will prove a vanishing result for H, (Inj%(V)) for V finitely generated and R a
field of characteristic zero.

Proposition 2.45. Let R be a field of characteristic zero and let V be a finitely generated \ (Sym>R)-
module. For each p, there is a number N; such that if |S| > le, the homology group H,(Inj2(V))s
vanishes.

Proof. First we will use Theorem 2.12 to construct a free resolution of V. That is, we will show there
are integers d;,e;, m;; and maps making the following an exact sequence of A (Sym2R)—modules:

o D@ G = P () = v 0.
j=d1 j=do
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Suppose for the purposes of induction that we have constructed the first k stages of a resolution by
modules of the form @j:d, (MFIM+ (j))™ii. The kernels of the last map is a submodule of a finitely
generated FIMT-module. Hence it is finitely generated, and so there exists a surjection onto it from an
FIM™-module of this form. Using this map, we construct the next term in the sequence.

Let C, be the chain complex obtained by replacing V in the above sequence with 0. Note that the
functor W — Inji(W) is exact for all p. Consider the double complex spectral sequences associated to
the double complex Inj%(C,). One spectral sequence has:

By, = H,(Inj2 (Hy(Cy))).

Since H,(C,) vanishes for ¢ > 0, this spectral sequence collapses on the second page. Since Hy(Cy) =V,
this spectral sequence converges to H,(Inj2(V)). The other spectral sequence has:

/E;,q = Hp(Inji(Cq))~

Since
€q

Cy = €D (MBI (j))ymas,

Jj=dq
Corollary 2.44 implies that Ell,vq(S) vanishes in range increasing with the size of S. Thus, this spectral

sequence converges to zero in a range increasing with the size of S. This implies that Hp(Injz(V)) g =
for S sufficiently large compared with p. O

The following corollary shows that Theorem 1.4 implies Corollary 1.5.

Corollary 2.46. Let R be a field of characteristic zero and V a finitely generated )\ (Sym2R)-m0dule.
For k sufficiently large, Vi is isomorphic to the quotient of Indg:_ﬂ%l}k,g by the image of the sum
of the two natural maps -

Indg* e, xe, Ve—a = Indgt s Vioo

Proof. This statement is exactly the condition that
Ho(Inj (V) 2 Hoy (InfZ (V)5 = 0.

This is true for large k£ by Proposition 2.45. U

3 Configuration spaces

In this section, we apply the tools of the previous section to prove secondary representation stability.
We begin by recalling the definition of configuration spaces and their stabilization maps in Section 3.1.
Then, in Section 3.2, we define the arc resolution and an associated spectral sequence, which we use to
prove representation stability for configuration spaces of (possibly nonorientable) manifolds. In Section
3.3, we compute some differentials in this spectral sequence, and use this calculation to prove secondary
representation stability for configuration spaces of surfaces in Section 3.4, as well as an improved range
for representation stability for configuration spaces of high-dimensional manifolds in Section 3.5. In
Section 3.6, we give some computations for specific manifolds, and some conjectures. For simplicity, we
will assume that M is a smooth manifold, although all results are true for general topological manifolds.
See Remark 3.11 for a discussion of the necessary modifications needed to address non-smoothable
manifolds.

3.1 Stabilization maps and homology operations

In this subsection, we define stabilization maps and an FIf-module structure on the homology of
the configuration spaces of a noncompact manifold. Throughout the section M will always denote a
connected manifold of dimension n > 2. Manifolds in this paper are assumed to be without boundary,
unless otherwise stated.

Definition 3.1. For M and N smooth manifolds possibly with boundary, let Emb(N, M) denote the
space of smooth embeddings topologized with the C'* topology.
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Definition 3.2. Given a finite set S, let Fg(M) := Emb(S, M). We write Fj,(M) for Fy,(M). Let
Cr (M) denote the quotient of Fj, (M) by the action of &) = Aut([k]). The space

F (M) = {(m1,...,my) € M*|m; # m; for i # 5}

is the configuration space of k ordered points in M, and the space Cx(M) is the configuration space of
k unordered points in M.

Given an embedding of smooth manifolds N U L — M and sets S and T, we get a map of spaces
Fs(N) X FT(L) — FSUT(M)~

Recall n := dim(M). If M is not compact, there exists a smooth embedding e : R™ U M — M with
el isotopic to the identity, as described in Section 1 (see Figure 1). We fix such an embedding for
the duration of this paper. With this embedding we define the following maps on the homology of
configuration spaces.

Definition 3.3. Let M be a noncompact smooth manifold. Given a class a € H;(Fg(R™)), let
to : Ho(Fr(M)) — H.yi(Frus(M))
be the map on homology induced by the embedding e : R” LU M — M.

The sequence of Sy-representations H,;(Fy(M)) assemble to form an FI-module as follows. For
a set P, let [P] be the class of a point in Ho(Fp(R™)). Let f:.S — T be an injective map of finite
sets. The FI-module structure on H;(F(M)) is defined so that the map f is sent to the composition
of the map induced by the diffeomorphism Fg(M) — Fyg)(M) and tp\ (). See Figure 4 for an
illustration. This FI-module structure on homology arises from a homotopy-FI-space structure on the
functor S — Fs(M).

The configuration spaces of M also admit a co-FI-space structure defined as follows. View Fg(M)
as the spaces of embeddings Emb(S, M) and let injections act by precomposition, as in Figure 11. The

Figure 11: The co-FI-space structure on F(M).

induced co-FI-module structure on H;(F(M)) is compatible with the FI-module structure in such a way
as to give H;(F(M)) the structure of an FIf-module. Church-Ellenberg-Farb describe this structure in
detail [CEF15, Section 6.
Generalizing the construction of the stabilization map, for smooth manifolds N, L, M there is a
natural map:
Emb(N UL, M) X Fs(N) X FT(L) — FSUT(M)-

Define a map 0 : S"~! — Emb(R" UR",R") as follows: Let r : R® — R™ be a map which induces an
orientation preserving homeomorphism between R™ and the open unit ball around the origin. View
S™~1 as the unit vectors in R™ and let (%) : R™ LUR™ — R™ be the function mapping Z in the first
copy of R™ to r(Z) + ¥ and mapping Z in the second copy of R™ to (&) — ¥. By restricting to the class
of a point in Hy(S™~1), this induces a product on the homology of ordered configuration space of R™:

o Hi(Fs(R")) @ H;(Fr(R")) = Hiyj(Fsur(R")).
By restricting to a fundamental class of S®~!, this induces a bracket:
V" Hy(Fs(R")) @ Hj(Fr(R")) = Hitjyn—1(Fsur(R™)).

The map 9™ can be thought of as a version of the Browder operation for E, -algebras in the category of
FB-spaces. See May [May72, Definition 4.1] for the definition of E,,-algebras and Browder [Bro60, Page
351] for the definition of Browder operations. The operations e and " are illustrated in Figure 12.
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(2) The homology class o e . (b) The homology class 1*(c, B).

Figure 12: Chains representing the homology operations on H,(F(R™)).

In this paper, we are primarily interested in the operation 2, which we simply call 1. The maps
" come from maps at the chain level which we will also call ¢"™. We define v in dimension n > 2 at
the chain level as follows. Let 6’ : S — Emb(R™ LU R"™,R™) be the restriction of 6 to an equatorial
circle. The (counterclockwise) fundamental chain of S* induces a map:

¥ Ci(Fs(R") ® Cj(Fr(R™)) = Citjta (Fsur(R™)).

Figure 13: The homology class ¢(«, ) € H,(F(R?)).

Figure 13 shows the map 1 on H,(F(R3?)). Given a singleton set S = {s}, let s denote the class of a
point in Hy(Fs(R™)). Figure 14 shows t(1,2) € Hy(F>(R™)).
2.
i
Figure 14: A chain representing ¥(1,2).

Cohen described the algebraic structure on H, (F}(R™)) imposed by the operations ™ and e: the
groups H, (Fi(R™)) assemble to form the n-Poisson operad. Cohen denoted the Browder operations by
An—1 and described relations they satisfy [CLM76, Chapter III Theorem 1.2] (also see Sinha [Sinl3,
Sinha Theorem 2.10]).

Theorem 3.4 (Cohen [CLM76, Chapter III)). Fiz n > 2. The product e is an associative and graded
commutative product, and the Browder operation ¥™ is a graded Lie bracket of degree (n — 1), which
together satisfy the Gerstenhaber relations. Specifically, these operations satisfy the following identities.
Let | - | denote the degree of a homology class.

(Degrees of & and yr) e Bl =lal+ 18, ["(a,B)] = lal + 8] + (n — 1)
raded commutativity for e aef= (-1 L Xo"
Graded f 8 lel181 3
(Graded antisymmetry law for ¢¥™) Y™ (a, B) = f(—l)lo“‘BH("*U(I“HWMWJ"(ﬂ, a)
(Graded Jacobi identity for ¢™)
(=1)flelrnm D=y n (o, 4 (8,4)) + (=1) = DAER =Dy (5, 4% (4, 0))
+ (=)= DUE =D (y, 4% (0, 8)) = 0
(The Browder operation Y™ is a derivation of the product e in each variable)

P (o, Bey) =" (a, B) @y + (—1) =V 0 4 (ar, )
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Remark 3.5. When we say that e is a commutative product, we do not mean that 9, , H;(Fy(R"))
is a commutative ring. Instead, we mean that the associated FB-module has the structure of graded
tca. Similarly, 4" gives an appropriate shift of the FB-module associated to {@®; ,H;(F(R™))};—, the
structure of an algebra over the Lie operad in FB-modules with Day convolution.

3.2 The arc resolution and representation stability

We now recall two related semi-simplicial spaces. One was used by Kupers—Miller [KM18, Appendix]
to give a new proof of homological stability for unordered configuration spaces. We will use the second
to give a new proof of representation stability for ordered configuration spaces. If M is a noncompact
manifold, there exists a (not necessarily compact) manifold with non-empty boundary M such that M
is the interior of M (see for example Miller—Palmer [MP15, Section 3]).

Definition 3.6. Let M be the interior of a (not necessarily compact) smooth manifold M with
nonempty boundary OM. Fix an embedding « : [0,1] — OM. Let

Arc;(F,(M)) C Fp(M) x Emb(U;41[0,1], M)
be the subspace of points and arcs (z1,...Zx; Qo, . . . ;) satisfying the following conditions:

- a;(0) € v([0,1]) - a;(t) ¢ OM U{xq,...,zi} for t € (0,1)

- a;(1) €{zy,..., 2} - v Hay,(0)) > v (), (0)) whenever j; > jo.

Let Arc;(Cy(M)) denote the quotient of Arc;(Fy(M)) by the action of &y, as in Figure 15.

Figure 15: An element of Arcs(Ch2(M)).

As j varies, the spaces Arc,;(Fy(M)) assemble into an augmented semi-simplicial space. The ith face
map d; : Arc;(Fj(M)) — Arcj_q1(Fi(M)) is given by forgetting the ith arc a;. The space Arc_q (F(M))
is homeomorpic to Fy(M), and so the augmentation map induces a map ||Arce (Fx(M))|| = Fr(M).
Similarly Arc;(Cy(M)) assemble to form an augmented semi-simplicial space and

Arc_ (Cy(M)) = Cy(M).

We call the two augmented semi-simplicial spaces Arce(F)(M)) and Arce(Cy(M)) the ordered and
unordered arc resolutions, respectively.

Building on Hatcher—-Wahl [HW10] and a lecture of Randal-Williams, Kupers—Miller [KM18, Ap-
pendix] proved the following.

Theorem 3.7 (Kupers—Miller [KM18, Appendix]). Let M be a smooth noncompact connected manifold
of dimension at least two. The map ||Arce(Cr(M))|| = Cr(M) is (k — 1)-connected.

This implies the same connectivity for the arc resolution of ordered configuration spaces.

Proposition 3.8. Let M be a smooth noncompact connected manifold of dimension at least two. The
map ||Arce(Fy(M))|| = Fr(M) is (k — 1)-connected.

Proof. Since the map ||Arce (C(M))|| = Cx(M) is (k — 1)-connected, its homotopy fibers (the stan-
dard path space construction) are (k — 2)-connected. The quotient map Fy(M) — Cy(M) induces
homeomorphisms between the homotopy fibers of ||Arce(Fj(M))|| — Fr(M) and the homotopy fibers
of [|Arce(Cr(M))|| = Cr(M). Thus the homotopy fibers of ||Arce(Fj(M))|| — Fi(M) are (k — 2)-
connected and so the map ||Arce(F(M))|| — Fr(M) is (k — 1)-connected as well. O
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If M is connected and of dimension at least two, then the connected components of Arc;(Fy(M))
are determined by which arc connects to which point. For example, a connected component could be
specified by saying that ag connects to x3, that oy connects to xg, and so forth. Thus Arc; (Fp(M))
has k!/(k — j —1)! connected components. Kupers-Miller [KM18, Appendix]| showed that Arc;(Cj(M))
is homotopy equivalent to Ck_;_1(M), and their result implies that each connected component of
Arc;(Fy(M)) is homotopy equivalent to Fy_;_1(M). The face maps of the unordered arc resolution are
homotopic to the stabilization maps for unordered configuration spaces [KM18, Appendix]. It follows
that the face map on Arc;(Fj(M)) that forgets the arc attached to the point labeled by ¢ has the effect
of stabilizing by a point labeled by 1.

An augmented semi-simplicial space A, gives rise to a homology spectral sequence; see for example
Randal-Williams [RW13, Section 2.3]. This spectral sequence satisfies

E;,q = Hq(Ap) = Hp+q+1(A717 [ Ael])
and the differentials on the E'-page are given by the alternating sum of the face maps.

Definition 3.9. We call the spectral sequence associated to an (augmented) semi-simplicial space A,
the (augmented) geometric realization spectral sequence. We call the augmented geometric realization
spectral sequence for the ordered arc resolution the arc resolution spectral sequence. We will denote the
(p, ¢)th spot on the rth page by E [M](S) and will often drop the M or S from the notation.

Proposition 3.10. Let M be a noncompact connected smooth manifold of dimension at least two. The
arc resolution spectral sequence satisfies:

E} ,(S) = Inj,(Hy(Fs(M)))  forq>0 andp> —1.

p,q

It converges to:
Hpq11(Fs(M), |[[Arce(Fs(M))]]).

3 H3(Fs(M)) «— @B Hs(Fs_jqop(M)) «<— P HolFs_joap (M) «— -
f{0}—=S f:{0,1}—=5S

2 Hy(Fs(M)) «— € Ha(Fs_jqop(M)) «— @B Ha(Fs_poap(M)) «— -+
f{0}=s f:{0,1}=5

1 Hi(Fs(M)) «— € Hi(Fs_jqop(M)) «— @B  Hi(Fs_pqoap(M)) «— -
f{0}—=s f:{0,1}=S

0 Ho(Fs(M)) «— @ Ho(Fs_sqop(M)) «<— O  Ho(Fs_po1p (M) «— -+
f:{0}—S f:{0,1}—=5S

-1 0 1 2

Figure 16: E! (S) = H,(Arc,(Fs(M))) = Tnj, (Hq(F(M)))S.

For |S| =k, the E*-page satisfies

E;(S)= @ Hy(j,(P)l)) ® Hy (Hy(F(M)))q
S=PUQ,
|Pl=p+1
= Indg* e, Tpr1 ®HG (Hy(F(M)))g—p 1.

where Ty1 = Hy(||Inj, (p + 1)]]).
In particular, the leftmost E? column p = —1 are the FI-homology groups

B2, () = B (H,(F(M)))s
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0 IndS® o ToRHE(Hy(F(M))s IndSS o TR HE(Hy(F(M)))s

6 GoxGy G3X63
3| HEY(Hz(F(M)) ;0 Indg®, o, T2 @ HEY(Hs(F(M)))a  Tnd@S o T3 B HEL(Hs(F(M)))s

T3 & HE (H2(F(M)))s

S3xXG3

0 Idg®, o, T2 WHS(HI(F(M))s  IndgS, o T3 & HE(Hi(F(M)))s

6 GoxXGy

0 IndS® o 75X HEY(Ho(F(M))s  Indg

6
S3x63

( )
( )
o | HI (HQ(F(M))) 0 dSS, o, Ts R HE(H(F(M))s  TndS
( )
( ) Ta & HE (Ho(F(M))s

6 GoaxX6y

Figure 17: E2 (6) = Indg® o, Tpr1 B HE (Hy(F(M)))s—p-1-

The Oth column is identically zero because Ty = 0; see for example Proposition 2.59.

and the bottom E? row q = 0 are the reduced homology groups of the complex of injective words
E; o(S) = Hy(|[j, (5)]])
which vanish except at p =k — 1.

The Ei-page and Fs-page of the arc resolution spectral sequence are shown in Figures 16 and 17.
Proof of Proposition 3.10. By definition, the arc resolution spectral sequence satisfies
Ezl,yq(S) = H,(Arc,(Fs(M))) for ¢ > 0 and p > —1.

Since Fg (M) is the space of (—1)-simplices, the spectral sequence converges to Hpyq+1(Fs(M),||Arce(M)]]).
By the above remarks on the structure of the space Arc,(Fs(M)), the El-page satisfies

Ep (S) = Hy(Arey(Fs(M)) = @D Hy(Fs\im(p)(M))
f:{0,1,....p}—S

and has d! differentials induced by the alternating sum of face maps on Arce(Fs(M)) which are
homotopic to stabilization maps. Hence each row of the E'-page is precisely the twisted complex of
injective words

B},(S) = Inj, (Hy(F(M)) )

of Definition 2.19. It follows that
B} o(8) 2 Hy (Inj, (Hy(F(M))) )

When p = —1, by Proposition 2.26,

B2, ,(8) = HY'(H,(F(M)))

Since n > 2 and M is connected, the configuration space Fj(M) is connected, and there is an
isomorphism of FI-modules Hy(F(M)) = M(0). Therefore when g = 0,

E2o(S) = Hy (In. (Ho(F(M))) ) = Hy (In, (M(0))) = H,(|[inj($)]),

a group that is nonzero only when p = |S| — 1 by Theorem 2.18. When |S| = k, the FIf-module
structure on Hy(F(M)) and Theorem 2.24 imply that the E*-page has the form

E2 (k) = Hy (Inj, (H,(Fy(M)))) = Indg}

Spt1XSk_p-1

Hy(|Itj (p + 1)I]) B Hy' (Hy(F(M)))e—p-1

as claimed. O
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Before we discuss applications of the arc resolution, we describe modifications necessary to deal
with non-smoothable manifolds.

Remark 3.11. If M or N does not have a smooth structure, then the space of smooth embeddings
of N into M is not defined. To modify the arguments of [KM18] to prove a version of Theorem
3.7 which applies to topological manifolds, we need to consider a space of embeddings that satisfies
a parameterized isotopy extension theorem (see Burghelea—Lashof [BL74, Page 19]). One space of
embeddings of topological manifolds that is compatible with the proof in [KM18] is the following: Let
Embl.f (N, M) denote the simplicial set whose space of k-simplices is the set of locally flat embeddings of
A* x N into A x M that commute with the projection to A¥. Using |[EmbL/ (N, M)|| in the definition
of the arc resolution allows us to apply the arguments of [KM18] to topological manifolds without
significant modifications. For ease of exposition, we will only give proofs in the smooth case.

Theorem 3.12. Let M be a noncompact connected smooth manifold of dimension at least two. Then
deg H{Y(H;(F(M); Z)) < 2i.

When M is orientable, Theorem 3.12 is a result of Church—Ellenberg—Farb [CEF15, Theorem of
6.4.3] proved by different methods.

Proof of Theorem 3.12. Consider the arc resolution spectral sequence described in Proposition 3.10.
For p + q < |S| — 2, Proposition 3.8 implies that the sequence converges to zero:

Ep(8) = Hypqi1(Fs(M), |[Arce(Fs(M))[[) =0 for p+q <|S]—2.
We now prove Theorem 3.12 by induction on homological degree i. Observe that
deg Hy ' (Ho(F(M))) =0

since Ho(F(M)) = M(0). Assume that deg HY'(H,(F(M))) < 2q for all ¢ < i. Using Theorem 2.25
and our inductive hypothesis, we obtain

2 .
E;,(S)=0 forp<|S|—2—-2¢ and q<i

(equivalently |S| > p + 2(¢ + 1)). This shows that there are no possible differentials into (or out of)
E", ;(8) for r > 1 and |S| > 2i. See Figure 18.

3 HE (Hg(F(M)))S * * * * * *
2 HE! (HQ(F(M)))S * * *
1 HE <H1(F(M)))S =~ * * *
0 HEL (HO(F(M)))S ~ 0 * *

-1 0 1 2 3 4 5

Figure 18: E7 (S) in the inductive step, illustrated for |S| =5 and i = 2.

Thus for |S| > 2i,
Hg'(Hi(F(M))s = B2, ;(S) = B ;(S) = 0.

This shows that deg H{'(H;(F(M))) < 2i. The claim now follows by induction. O
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3.3 Differentials in the arc resolution spectral sequence

The goal of this subsection is to compute many of the differentials in the arc resolution spectral sequence.
This calculation will be used in the subsequent two subsections to prove secondary representation
stability for manifolds of dimension 2 and an improved representation stability range for higher
dimensional manifolds. We begin by comparing the geometric realization spectral sequence to a double
complex spectral sequence.

In this subsection, the symbol C;(X) will denote the i-dimensional singular chains on a space X,
as opposed to the configuration space of ¢ unordered points. Let 9 : C;(X) — C;_1(X) denote the
usual boundary operator. Due to the abundance of the letter “d” in this subsection, we will denote
maps on singular chains induced by face maps in the arc resolution by f;. The differential d' of the arc
resolution spectral sequence is given by the alternating sum of the maps in homology induced by the
face maps. We will denote the map on singular chains given by the alternating sum of the face maps
by d! as well. See Bendersky—Gitler [BG91, Proof of Proposition 1.2] for a proof of the following.

Proposition 3.13. Let A, be a semi-simplicial space. Beginning on the E' pages, the geometric
realization spectral sequence agrees with the spectral sequence for the double complex Cy(A,) that has d°
differential induced by 8 and d* induced by the alternating sum of the face maps.

In particular, we will redefine the E%-page of the arc resolution spectral sequence to be the complex
B (k) = Cy(Arc,(F(M))) shown in Figure 19. Since we have reformulated the arc resolution spectral
sequence as a double complex spectral sequence, we can use the standard formula for the differentials
in a double complex spectral sequence (see for example Bott—Tu [BT82, Formula 14.12, Page 164]).

dl d! d!
3 C3(Arc_1(F(M))) o C3(Arco(Fi(M))) m C3(Arcy (F(M))) ‘m C3(Arce(F(M))) «——
o o o lo
Ca(Are_1(Fu(M))) <L Ca(areo(F(M)) <L OaArer (Fu(M))) <0 Cn(Ares(F(M))) <
2 2( TR fo ? oAk fo—r1 Pk fo—fi+ f2 2 2Tk
o o o lo
L Giare a(F) <L Cu(Areo(Bo(M) <L Cr(Aren (Fu(M)) <L Cy(Area(Fu(M)) <
vire (i fo TRy R R T e T
lo o lo lo
ColAre_1(Fu(M))) <L Co(arco(Fu(M)) <L Co(Arer (Fu(M))) < Cp(Ares(F(M))) <
0 oAre—1(Fi fo 0 oAk fo—f1 ok fo—fi+ f2 0 2k
0 1 2 3

Figure 19: EY (k)= Cy(Arcy(F(M))). The d* differentials are equal to the alternating sum of the
maps f; induced by the face maps.

We will now describe some functoriality properties of the arc resolution spectral sequence and then
make a calculation of some differentials emanating from the bottom row.

Definition 3.14. Let M be the interior of a smooth n-manifold M with an embedding [0, 1] < dM.
Choose an interval in the boundary of the half-closed disk R"~1 x (—oc,0]. Fix an embedding

e: MU MR x (—00,0]) = M
such that:

- On the interior of the domain, € restricts to an embedding of M LUR"™ into M such that & is
isotopic to the identity.

- The embedding € restricts to an embedding of the two boundary intervals of M and R™~* x (—oo, 0]
into the boundary interval of M.

Then the embedding € induces a map of spaces
epar : Arey(Fs(R™)) x Arey(Fr(M)) = Arc i1 (Fs (M)

as in Figure 20.
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Figure 20: The map ez : Arco(Fy1,2,343(R™)) X Arco(Fi53(M)) — Arcs(F1,2,3,4,53(M)).

Lemma 3.15. The maps ey, of Definition 3.14 induce maps

£ B [R(S) © By [M)(T) = Ejy 1. gsg [IMI(SUT)

These maps satisfy the following Leibniz rule with respect to the differentials; if a € E] ,[R"](S) and
be By, [M](S), then

(¢ (a® b)) = '(d (@) ® ) + (1P (@ @ d" ().

Proof. Let F[M](S). denote the filtered chain complex given by filtering the double complex E? , [M](S)
in the simplicial direction. The maps e, ,» assemble to form a filtered chain map

epgre s FIR'(S). © FIM|(T). — FIM](SUT). 1.

Filtered chain maps induce pairings of filtered chain complex spectral sequences which satisfy the
Leibniz rule with respect to the differentials (see for example Helle [Hell7, Lemma 3.5.2] or Massey
[Masb4, Section 8§]).

O

In this subsection, we will not use the full strength of Lemma 3.15 and will only use it to produce
maps of spectral sequences. However, in the next two subsections, we will use the pairing to compute
differentials.

Convention 3.16. We can produce chains in E] (k) = Cy(Arc,(F(M))) from g-parameter families
of points in Arc,(Fy(M)). For example, Figure 21 shows a map [0,1]> = Arco(F5(M)). Given any
subdivision of the product [0,1]? into triangles, we can express this map as a linear combination of
singular chains. We interpret Figure 21 to represent the associated chain in Cy(Arco(F5M)) or its
homology class in Ha(Arco(F5M)). To view a map s : [0,1]9 — Arc,(Fy(M)) as a sum of chains, we

Figure 21: A map [0,1]2 — Arco(F5M). As the first factor [0, 1] ranges from 0 to 1, point 8 moves
from bottom to top while simultaneously point 2 moves from top to bottom. As the second factor [0,1]
ranges from 0 to 1, point 5 moves in a closed loop around point 1.

need to choose an order on the ¢ factors e; : [0,1] — Arc,(Fi(M)) of the domain. To compute its
boundary, we use the formula

O0s = Z(—l)j'Hel X eg X -+ x 0(ej) X -+ X eq where  Je; = e;(1) — €;(0)
J

For example, if we order the two singular 1-simplices in Figure 21 as they appear left to right, and
observe that the second singular 1-simplex is a cycle, we find that the boundary is the chain shown in
Figure 22. More generally, consider e : [0,1] — Arcy,(Fi(M)) and y = Y maoa € Cq1(Arc,(Fi(M)))
with o4 : AT — Arc,,(Fj,(M)) and m,, € Z. Let (e x y) € Cy(Arc,(Fx(M))) be a chain obtained by
functorially subdividing [0, 1] x A?~! into copies of A (e.g. see Hatcher [Hat02, Theorem 2.10]). To
clarify how we orient the simplicies in the sudivision of [0, 1] x A9~ note that the desired construction
satisfies

oe x y) = ((9e x y) = (e x 9y)) = ((e(1) x y) = (e(0) x y) = (e x D).

For example, the product chain shown in Figure 23a has boundary given by the chain depicted in
Figure 23b. These conventions will feature in the computations carried out below and are important
for determining signs.
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Figure 22: The boundary of Figure 21.

— (< U = { Beuy
0'3‘ 03

(a) (ordered) product of chains. (b) boundary of a product of chains.

Figure 23: The boundary of a product of chains.

The main result of this section is the values of the differentials computed in the following lemma.
This result, combined with the Leibniz rule stated in Lemma 3.15, determines a large portion of the
differentials in arc resolution spectral sequence.

Lemma 3.17. Let E] (S) be the arc resolution spectral sequence and let k = |S|. Consider an element
of Reutenauer’s basis for Lg (Theorem 2.33)

L= [H e [alﬂaﬂ]a a3]7 . ’]’ akfl]v ak] € Ei,l’O(S).

Then d"(L) = 0 for r < k and d*(L) is the image of the class ty(..p(p(w(ar,a)as),a),ar) (Yo) N
Eﬁl,k—l(s)' Here yo denotes the class of a point in Ho(Fy(M)).

The image of the element [[[1,2],3],4] € EJ ((4) is shown in Figure 24.

Figure 24: (14([[[17 2], 3],4]) The points labeled 2, 3, and 4 orbit counterclockwise around the point

labeled 1 in concentric circles.
From now on, we will simply write statements such as the above as

k
d*(L) = by g (o9 (a,02),0),00), - ar) (Y0)
as we will implicitly identify elements that survive to later pages of spectral sequences with their images.

Proof of Lemma 3.17. The statement of the theorem involves two numbers k = |S| and r, the page of
the spectral sequence. Our proof will involve a nested induction, first inducting on k and then inducting
on r. Throughout our inductive argument, any assumption we make will be understood to apply to all
manifolds as opposed to just one particular fixed manifold.

We begin with the base case k = 1, S = {1}, where we observe that the d' differential maps the
singleton word 1 € Ef ([M](S) to the class of the point in Ho(Arc_y(F1(M))) = Ho(Fi(M)). This
result, shown in Figure 25, follows from the description of the spectral sequence in Proposition 3.10.

= 11— - 1-
=y H =y
Figure 25: d'(1).
Now suppose that k > 1, and let x_1 be the class [[-- - [a1, az], as], .. ], ar—1] € E}_5 o[M](S\{ar}).

Suppose by induction that xy_; survives to Er—a [M](S\{ax}), and

A" M (k1) = by arsaz)as)an) an_1) (Y0)-
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k—1
dl
k—2 dF 1 (zg—1) ‘T 1
JO
v—0 .
k-3 —0x1 Ll x2
0 /1
1
¢(—1)k_38
1 : : : (=1)*=30m)_3 <d— Tp—2
¢(_1)k726,
0 : : : : (—1)F 20wy < @y
-1 0 1 k—4 k—3 k—2

Figure 26: Computing d"~" (zk-1) = ty(p(w((ar.az).a5).00). 1) (Y0)-

This implies that there exist chains x4 _o,...,z; with z; € B}, , [M](S\{ax}), such that d'(z;) =
(=1)"'9(z;_1), as in Figure 26 (compare to Bott-Tu [BT82, Formula 14.12, Page 164]).

By plugging in the class of a point in E?; ;[R™]({ax}) and considering the map from Lemma 3.15,
we get a map Ej [M](S\{ax}) — E} ,[M](S). We will use this to view the classes z; as elements
of EY | ;_;_1[M](S). Similarly, by plugging in the class of a point in E%, [M](&) and considering
the map from Lemma 3.15, we get a map E} [R"|(S) — E] ,[M](S) which will allow us to associate
classes in £ [R"](S) with classes in £} [M](S). The chain z; can be taken to be in the image of
EY | i a[R™(S) = By _;_1[M](S). This uses our inductive assumptions applied to the case the

K2

manifold is R™ and the fact that
L={[[--la1,a2),as),. ..}, ax—1], ax] € Ej_; o[M](S)

is in the image of E,i_LO[R"](S). In other words, z; can be represented as in Figure 27. Remember
that the class x; is a chain on a space with ¢ arcs.

Figure 27: The points of the chain x; can be taken to be in the shaded box.

We may assume without loss of generality that the label ay is the letter k. Now consider the class
L=[zy1,kl € Eli—l,o[M](S)

as shown in Figure 28.

Figure 28: A chain representing [zr—1,k].

Our goal is to show that d"([zx_1,k]) = 0 for r < k, and to compute d*([z;_1,k]). To do this, we
will compute a zigzag of chains & € EY,_;_[M](S) satisfying (—1)'0(&—1) = d' (&), beginning with
&r—1 = L. The image

d'([er-1,K) = D (=1 fil[wr-1,K])
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Figure 29: A chain representing > (—1) f;([xx_1, k]).

is shown in Figure 29.

Then Y (—1)! fi([zx—1, k]) is equal to the boundary (—1)¥719(£,_2), where & _» is the chain shown
in Figure 30. Recall that z_s is defined such that (—1)*=20(xy_2) = d* (zx_1) = >_(=1)" fi(zx_1), and
that d(zk—1) = 0. In Figure 30, and in the images throughout this proof, we will order the simplicies
with the simplex designated by the dotted line first, and the class z; in the shaded region second, so
the boundary is computed as in Figure 23. We have shown that d*([z_1, k]) is zero in homology, and
[71_1, k] survives to E2.

Figure 30: The chain &;_o.

We now prove by induction on r that d"~*([zx_1,k]) = 0 for » < k. Suppose by induction that
d"Y([zx_1,k]) is represented by the boundary (—1)¥""19(&,_,), where the chain &, _,. is shown in
Figure 31. Then d"([xx_1,k]) = >_(=1)"fi(&k—r) is shown in Figure 32. If r < k — 2, then by inductive

Figure 32: The chain d"([zr_1,k]) = > (1) fi(&k_y) forr <k —1.
hypothesis there is a chain zp_,_; with
(Do = Y (1) ().
In this case, the chain &,_,_; in Figure 33 is such that (—1)*="=19(&;,_,_1) equals the chain representing

d"([xg-1,k]) in Figure 32, and so d"([zx-1,k]) =0 on E;_,  [M](S). By comparing Figure 33 to
Figure 31, we see we have completed the inductive step in the induction on 7.

Figure 33: A chain &_,—1 with (—1)*""20(& 1) = (=) fi(€x—y) forr < k —2.
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Now consider Figure 32 when r = k — 1. There are no arcs attached in the chain
d'(x1) = (=)' fi(w1) = folan),

and by induction d*(z;) = d*~!(x3_1) is a O-cycle. Hence the chain Y (—1) fi([zx_1, ¥]) is the boundary
of the chain in Figure 34. Again, we conclude that d*~*([x}_1,k]) = 0. We can compute d*([zx_1, k])

kr\

6

d!(x1)

Figure 34: A chain & with boundary —d* = ([xn_1,k]) = — S (=1) f;(&1).

by applying the map induced by the alternating sum of face maps to Figure 34, with the result shown
in Figure 35. By construction:

Figure 35: The image d*([x,_1,k]).

dl(xl) = dk_l(xk*:l) = tw(“'%b(w(w(al,a2)¢a3),a4),'“ ,ak—l)(yo)'

Hence the chain in Figure 35 is homologous to the chain in Figure 36. In this figure we have negated the
chain by reversing the direction of the arrow from clockwise to counterclockwise. Figure 36 concludes

dF=L(zy 1)

3

Figure 36: The image d*([zy_1,k]).
the induction on k, and the proof. O

3.4 Proof of secondary representation stability

In this subsection, we prove Theorem 1.4, secondary representation stability for the homology of
configuration spaces. For this result we need to assume R is a field of characteristic zero. The reason
for this assumption is so that we can apply corollaries of Theorem 2.12. Assuming that R is a field also
makes the formulation of Proposition 3.23 easier, although workarounds do exist for general rings. We
will also assume that the manifold M has finite type. This implies that the homology groups of the
ordered configuration spaces are finitely generated as abelian groups. The A (SmeR)—modules which
we will show exhibit secondary representation stability are defined as follows.

Definition 3.18. Let WM (S) := H}! (Hﬁ (F(M)))S Here we use the convention that fractional

homology groups are 0.

The collection of &y-representations WH (k) assemble to form a A (Sym?R)-module as follows.
Let (f,Q) € Homprp+(S,T) be a standard generator with f : S — T an injective map and @ =
{(z1,91),...,(x4,yq)} an oriented matching of the complement of the image. Let f’': S — f(S) be the
bijective map defined by f and let

fl:H,

S
i+

(F(M))s — H

. S
i+

(F(M)) f(s)

be the map on homology induced by the FI-modules structure. The element (f, Q) acts on a homology
class in H§'(Hy 512 (F(M)))s by ty(zaya) © - - - © ty(z,) © f4, s shown in Figure 7. Although this
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map is defined on the homology of configuration spaces, it descends to a map on minimal generators
HEYH,(F(M))). The order of the composition factors ¢y, ,.) only affects the sign of the homology
class: this sign is exactly what differentiates the category FIM™ from the linearization of FIM.

To prove secondary representation stability we will need to better understand the algebraic structure
on the E?-page of the arc resolution spectral sequence. To that end, we now define a filtration on the
top homology of the complex of injective words.

Definition 3.19. For d and b of the same parity, let 7 be the image of the natural map:
Indg:XGQX...XGQ’E XLK... KLy — Ty
By Proposition 3.20 below, we can identify the groups 7 with the groups:

Indg?, o, xe, Tt R Ly K. K Lo

For example, 77 is the span of the elements:

{ Mo, dldellfgl lla.cblldellf.g] | decompositions [7] = {a,b,chU{de}Uif.g} }.

Proposition 3.20. The map Indgfxezx“.xeztn&ﬁ?g' XLy — Ty defining the group T is injective.
Proof. We must show that the module

mdS? e, x. e, T N L2 K. KLy =2 &b Te@La, ® - ®La,,
[d]:BHAlLlAgu---uAu 2
|Bl=bAil=2

injects into Ty. The summand indexed by the set decomposition [d] = BUA; UAsU---U Aas embeds
2
as the span of injective words:

{ L[al,bl}[ag,bﬂm[a%,b%} | A ={ai b}, LeTs }

Given any element in the image of this summand — viewed as a linear combination of injective words —

and given any word w appearing as a term in this element, we can uniquely recover the decomposition

[d=BUA; UAsU--- U Aas by observing the order of the letters [d] in w. Hence the intersection of
2

the image of distinct summands is zero, and the map is injective as claimed. O

Proposition 3.21. There is a short exact sequence:

b b+2 Sy
0 7~d 7; IIld6b+2X62X-ux62

(Tor2/Ton) R Lo R ... R Ly — 0.
Proof. By Proposition 3.20, we may identify:
Ty =Indg? e, e, To W LK. KLy

~ S S
=T, e xes (IMdar i, T B L) M Lo B B L
> Indg? L oyx. xe, (Toro) B LR KLy,

b+2 ~ Sa
Moreover, 7,7 = Ind6b+2><62><~-

_><627;)+2 |Z£2 |Z| e ®£2

Under these identifications, the map 77 — 7:lb+2 is induced by the map 7;’1_2 — Tpy2. Since tensor
product and induction are right-exact operations, from the short exact sequence

0— 7;13_2 — Tpyo — (77,_5_2/7;1;2) —0 (exact by Proposition 3.20)

we can conclude that the sequence in question is exact at each point except possibly 7}’. But Proposition
3.20 implies that the composition of the maps T — ’7?1b+2 — T4 is injective. This implies that the

map 7;’ — 7:1b+2 is injective, and we conclude that the sequence
0—T) — T3 — Indg! | eun.xe, (Tor2/Tin) RL2 R KLy — 0

is exact. O
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Definition 3.22. Let E; (k) denote entry (p,q) on the rth page of the arc resolution spectral sequence
for the set [k]. For ¢ > 0, let

A;(k) = E22j71,i7j+[k/2] (k).
The groups A% (k) with the d? differential form a chain complex which we call the “ith even diagonal.”
For i > 0, let _
Bj(k) == E3; iy y2 (K)-
Call the chain complex B! (k) the “ith odd diagonal.”

Some examples of these complexes on E> (6) and are illustrated in Figure 37. A3(k) will always be
the third (counting from i = 0) diagonal above the triangle of zeroes, and similarly B}l (k) is the first
(counting from i = 0) offset diagonal above the triangle of zeroes.

2 2 2 2 2 2 2 2 2
61 El16 Eje FEie F2s FE3e Fis E56 Fse Eie

2 2 2 2 2 2 2 2
S l&F1s  Fos Pis _Fis P35 PR E5s g

Figure 37: The complezes A3(6) (differentials in red) and B, (6) (in blue bold) on EZ (6).

We now relate the chain complexes A’ (k) and BZ(k) to the chain complexes Inj?(W). Note that
Al (k) and Bi(k) are 0 for x < 0 in contrast to Injz(W]]-”), which is potentially nonzero for * = —1. To
simplify indexing in the following proposition, we introduce two A (Sym?R)-modules:
V=W ewil, and Ui =Wyl @ Wi,

Concretely,

Vilk) = HE' (Hyy s (FOM)))  and (k) = Y (Hyy pas (F(M)))

k k-

Proposition 3.23. Suppose R is a field. The chain complex Al (k) has a filtration by chain complezes

such that the filtration quotients are isomorphic to

Sy
Ind@'szek—%

(Tap/ Ty %) W (Inﬁ—bflvi>

k—2b

The chain complex Bi(k) has a filtration such that the filtration differences are isomorphic to

Indg:lH»l XSk _2b-1 (7-21""‘1/7-221)!1&-_11) K (Inji_b_l uﬁ) k—2b—1

These groups are chain complexes with the differential induced by the second factor and these isomorphism
are isomorphisms of chain complexes.

Proof. By Proposition 3.21, there is a filtration of 7y given by

0= TR m T s T2 o T =T, when d is even, and

0=T} =T =T T2 ST =T when d is odd,
whose quotients are the groups:

b
Ta =~ [ndSe
7—b—2 - SpxGaX...X
d

&, (To/TY R LK. K Lo,

35



Since R is a field, it follows that

% @ 7;;+1 ®HgI(Hq(F(M)))k*P*1

=PUR,
IP\ =p+1
is filtered by the modules
@ T2 (P) @ HE (Hy(F(M))k—p-1  forb=p+1 (mod 2)
=PUR,
\Pl p+1

with filtration quotients

B (4 e T/ T2 B Lo 8 8 L) @ HE (H(F (M)
[k]=PUR,
|P|=p+1

Sy
IndGbXGQX XGQXGk_p_l

_ Sr_
=TS, (To/T ) B (G5 e,y L2 o B Lo B HE (H,(F(M)))ip1).

(To/ TP R Lo R 8 Ly B HE (Hy(F(M)))e—pr

This means that the filtration differences for A%(k) = E3;_; ; ;. ) /o1 (k) are given by

— S
IndngCIC b(n/nb 2) X (IndGbe X G2 XGp_2; £2 X. &EQ X H(] (Hi—j+[k/2] (F(M)))kfgj) (b even)

= dZ e, (/T2 8 (2, Vi) .
Similarly, the filtration differences for Bj(k) = Egj_i_j +1x/21 (k) are given by

ndg! s, ,(To/T) %) K (IndEZ;b‘..erXm_%_lﬁz 5.8 Lo WHG (Himjo a2 (F(M)))k—2j—1) (b odd)

- IndngGk b<7z/7?72) ™ (Inﬁ*%*% ui)kfb.

For simplicity, we will reindex these filtrations by replacing odd values of b with 2b + 1 and even
values of b with 20b.
Let F3(A%) be the portion of the filtration of A% constructed above containing elements of the form

Indg’;bxck %Tgb X (Inﬁ,b,lvi)k,gb and similarly define F,(B%). We have constructed filtrations on

the groups A% and B!, and now it remains to check that these are filtrations of chain complexes. We
must also verify that the boundary maps on the filtration quotients induced by the d? differential in
the spectral sequence agree with the boundary maps of

Indg* s, . (Too/Toy " ?) B (Inj2V;)g—2 and Indg’;mxbk sy (Tooa1/ Tob 7' ) B (Inj2 Uy ) -1

First we will show that the subgroups JF,(A%) are in fact subchain complexes. An element of
Fu(A%) (k) can be written as a sum of elements of the form:
tRGKR.. K, Ko with ¢ € Tap, Iy € L2 and v € HOFI(HFM%W(F(M)))QJ-_L
Moreover, we may assume that ¢ is a product of Lie polynomials (and not a linear combination of

products of Lie polynomials). By the Leibniz rule (Lemma 3.15) and our calculations of the differentials
in the arc resolution spectral sequence from Lemma 3.17, it follows that the differential

PRI R... Kil;_p, Kv)

is given by a signed sum of terms which remove one £ factor and then stabilize v by the appropriate
Browder operation. Note there is no nonzero term involving applying ds to v since v corresponds to
an element of the —1st column of the arc resolution spectral sequence. Since all of the terms in the
sum are in F,(A%_;)(k), this establishes that that F,(A%) is a filtration of chain complexes. There are
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two types of terms in the signed sum, the first involves removing an £, factor from ¢ and the second
involve deleting one of the [, factors. The portion of the sum involving terms of the second type is
exactly the boundary map of the chain complex

Indg’;bXGHbTQb X (Inj? Vi) k—2p-

Thus, it suffices to show that the portion of the sum involving terms of the first type are in Fp,_1 (Az;l)(k),
and hence zero in the quotient. But removing an Lo factor from ¢ yields a Lie polynomial that is two
letters shorter and hence in Top_o. A similar argument works for B%. O

The following result shows that vanishing on the E3-page of the arc resolution spectral sequence
implies secondary representation stability.

Proposition 3.24. There are isomorphisms of FB-modules:
Ho(AL) = HE™M (1),
There are isomorphisms of symmetric group representations:
Ho(A)(2k) = HE™M (WM (2k)  and  Ho(AL)(2k + 1) = HE™ (WL )(2k + 1),
Proof. Let Q be a A (SymzR)—module. In analogy to Proposition 2.26, there is an isomorphism

H_y(Inj2(Q)) = H{™" (Q).
By Proposition 3.23, the map Inj2_,(V;) — A% is an isomorphism for * = 0, 1. Thus,
H_(Inj}(V;)) = Ho(AL).
The second pair of isomorphisms follow from the fact that V; = W2 & Wil .. O

We now prove the main theorem: if M is a finite type noncompact connected manifold, and R is a
field of characteristic zero, then W is a finitely generated A (Sym?R)-module. For convenience, we
will also assume M is smooth but see Remark 3.11 for a discussion of the case of general topological
manifolds.

Proof of Theorem 1.4. We will prove by induction that the A (Sym?R)-modules WM are finitely
generated. Because the homology of configuration spaces of manifolds with finite type homology is
finitely generated (as abelian groups), it suffices to show that these A (Sym?R)-modules have finite
generation degree.

Before we proceed, we make some preliminary observations. By combining Proposition 2.45,
Proposition 3.23, and considering the spectral sequence associated to a filtered chain complex, we
conclude the following results:

(a) If Y; is finitely generated for ¢ < d, then for all j,

H;(BL(k)) =0 for all ¢ < d, and all k sufficiently large (depending on i, j, and M).

(b) If V; is finitely generated for i < d, then for all j,

H;(AL(k)) =0 for all ¢ < d, and all k sufficiently large (depending on i, j, and M).

The proof of Theorem 3.12 implies that W vanishes for 4 strictly negative. This will be the base
case of the following two-step induction argument. In the first part of the induction argument, we will
assume that WM is finitely generated for i < 2m and then prove that W31 1 is finitely generated. This
induction hypothesis is equivalent to the statement that U; and V; are finitely generated for i < m — 1.
By Proposition 3.24, the conclusion is equivalent to the statement that Ho(A7*(k)) = 0 for sufficiently
large odd k. In the second part of the induction argument, we will assume that W is finitely generated
for i < 2m + 1 and then prove that W31 o is finitely generated. This induction hypothesis is equivalent
to the statement that V; is finitely generated for i < m and U; is finitely generated for ¢ < m — 1, and

the conclusion is equivalent to the statement that Ho(A™"1(k)) = 0 for sufficiently large even k.
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First induction step: Assume W is finitely generated for i < 2m. Our goal is to show
Ho(A7(k)) = 0 for odd k sufficiently large. By definition, when & is odd,

Ay (k) = E” (k) and  Ho(AT(k) = E? ().

71,m+% 71,m+%
Since the connectivity of the arc resolution is (k — 1) by Proposition 3.8, we know that for large k,

B> (k) = 0.

—l,m—l-%

There are no differentials out of E” ., (k) so to prove that Ho(A%L(k)) vanishes we will show
) 2

m+
that there are no nonzero differentials d" into this group for » > 2. The domains of such differ-

entials are EiH 14t (k) for r > 2. When r > 2m + 4, the proof of Theorem 3.12 implies
rm—r =
2

N gk (k) =2 0. The differentials are shown in the case m =1,k = 7 in Figure 38.
rm—r ==

2 2 2 2 2 2 2
E2,5 ES‘S E4,5 E5,5 E6,5 E7,5 ES‘S

5 E2 5 E§ 5 E? 5

4 E31,4 E(2),4 E%,4 E§,4 E§,4 Ei,4 E§,4 E§,4 E$,4 E§,4

3 0 EBis BEisnoEis  Eis  Eily  Bi;  Eis  Eig;  Eig

2 0 0 0 E3 , B3, E}, EZ, Eg o EZ, E3 o

1 0 0 0 0 0 B3, E2, B}, EI, E3,

0 0 0 0 0 0 0 0 ES, EI, Ej,
-1 0 1 2 3 4 5 6 7 8

Figure 38: The compler AL(7) and the differentials d°, d*, d°, and d® (shown in green).

For 2 < r < 2m + 4, the groups EfH 14 21 (k) are of the form H;(Al(k)) for i <m —1 and
rm—r ==

2 <j<m+1 or of the form H; (Bi(k)) for i <m and 1 < j < m+ 1. Thus by observations (a) and

(b), there is some uniform bound K € Z such that these groups are all zero for k > K. Hence for large

k and r > 2, there cannot be nonzero differentials with codomain E” L k1 (k). It follows that, for k
yMT —5—

sufficiently large and odd,

Ho(AT (k) = B2 e (k) = B (k) = 0.

—1mt kL

This establishes the first induction step.

Second induction step: Assume WM is finitely generated for i < 2m + 1. Our goal is to show
Ho(A™ (k) 22 0 for even k sufficiently large. When k is even,

APFRY =B, () and HQ(ATT(R) S ES (k).

Again, it suffices to show that Eil 1k
) 2
once k is sufficiently large. The domains of the only possibly nonzero differentials are E” | otk (k)
m—r+2+%
for 2 <r < 2m+5. But for 2 < r < 2m + 5 the groups Eiur m—rioy k (k) are one of H;(AL(k)) for
) 2

i<mand2<j<m+2, or Hj(Bi(k)) fori <m+1and 1 <j<m+ 1. By observations (a) and (b)
these groups vanish for large even k. This establishes the second induction step and the theorem. [J

k) is not the target of any nonzero differentials d”, r > 2,
( g y

Remark 3.25. To prove secondary representation stability, one only needs information about d?-
differentials in the arc resolution spectral sequence. This information can be obtained by using the
Leibnitz rule if one can compute d? : Ef 4[R"](2) — E2,,[R"](2). This can be computed in the
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following alternative way. The map is surjective since £°9 ;[R"](2) = 0. Since H;(F1(R")) = 0,
E? | | [R"](2) = Hy(F2(R™)). One can then compute this differential from the fact that Fp(R™) ~ §"~*
with H,,_1(F2(R™)) generated by the Browder operation applied to two copies of the generator of
Ho(F1(R™)). We included calculations of higher differentials since they will be needed in the next
subsection to establish an improved stable range in higher dimensions and are suggestive of even higher
order stability for surfaces.

3.5 Improved range in higher dimensions

Although Theorem 1.4 holds for manifolds of dimension n > 3, the result in higher dimensions is
degenerate: the homology operation v is zero for n > 3, and the isomorphism of Corollary 1.5 is
also the zero map. Thus, in high dimensions secondary representation stability manifests itself as
an improved range for representation stability. We begin by showing that the arc resolution spectral
sequence collapses at the E2-page if dim M > 2. In this subsection, we work with integral coefficients.

Proposition 3.26. If M is a noncompact connected smooth manifold of dimension n > 3, the arc
resolution spectral sequence collapses at the E?-page.

Proof. Since Fo(R™) =~ S"~1 the class 1(1,2) € Hy(F(R™)) is zero for n > 3. Since Browder operations
are bilinear, the iterated product ¥ (1,%(2,...,%(k—1,k)...) vanishes in Hg_1(F;(R™)). In particular,
Ly(1,0(2,....(k—1,k)...) 15 the zero map. By Lemma 3.17, for L = [1,...[k — 1,k],.. ] € E,i_LO(S), the
differential d" (L) vanishes for r < k and

d*(L) =ty (.. wk-1.5)..)) ¥o)

where g is the class of a point in Hy(Fo(M)). Thus d*(L) = 0 as well. For degree reasons, for r > k
the codomain of the differential d” is zero, and so d"(L) = 0.

Now consider T € E}_, ,(5). By Theorem 2.40, T'= L; K ... X L,, with L; Lie polynomials. By
Lemma 3.15, d"(T) is a signed sum of products of d"(L;). These terms vanish by the above paragraph
so d"(T) =0 for all r > 2.

Consider r > 2 and assume by induction that we have shown that d* = 0 for all 2 < ¢t < r. Thus
E2 = E7 . In the language of Lemma 3.15, Proposition 3.10 implies that E? [M](S) is generated by
classes of the form ¢"(T ® «) with T € E} ,[R"](U) and o € E?, ,[M](S\ U) for U C S a subset of
size p+ 1. Then d"(T') = 0 by the above paragraph and d"(«) = 0 since « is in the —1st column. Thus,
d"(t"(T ® a)) = 0 and we have shown that d” = 0. The claim follows by induction. O

Using Proposition 3.26, we can prove an improved stable range for the homology of configuration
spaces of higher-dimensional manifolds. This result was proven by Church—Ellenberg—Farb for non-
compact connected orientable manifolds [CEF15, Theorem 6.4.3], and we extend their result to all
noncompact connected manifolds.

Theorem 3.27. Let M be a noncompact connected smooth manifold of dimension at least three. Then
deg Hy'(H;(F(M); Z)) < i.

Proof. Consider the spectral sequence described in Proposition 3.10. We proved in Proposition 3.8 that
E,(S) =0 for p+q < |S| — 2. Proposition 3.26 implies that E° (S) = EZ (S) for all p and ¢. Since
HG'(Hi(F(M)))s = E?, ;(S), the claim follows. O
3.6 Conjectures and calculations

In this subsection, we make several conjectures. We give evidence for some of these conjectures by
proving them in special cases.

Higher-dimensional manifolds and higher order stability

We begin with some questions concerning configuration spaces.

Question 3.28. (a) Is there a notion of tertiary and higher order representation stability that is
present in the homology of configuration spaces?

(b) What is the stable range for secondary representation stability?
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(c) Is there any form of nontrivial secondary representation stability for configuration spaces of
higher-dimensional manifolds?

We suggest a conjectural answer to all three questions. Its statement requires the following definition.

Definition 3.29. Define the following twisted (skew-)commutative algebras:

n._ { Sym Hg—1)(n-1)(Fa(R")), (d—1)(n —1) even
/\I‘I(d,l)(n,l)(Fd(Rn))7 (d — 1)(1’L - 1) odd.

d =
Note that H(g_1y(n—1)(Fa(R™)) is L4 when (d —1)(n —1) is odd. For (d —1)(n — 1) even, there is a
similar description except with different signs. For d = 1 and n arbitrary, £}-modules are precisely
FI-modules. For d = 2, these £j-modules are modules over A(Sym?R) if n is even and modules over
Sym(A* R) if n is odd.
For a noncompact n-manifold M, the embedding R™ LI M — M induces maps

Hg—1)(n—1)(Fa(R")) @ H;(Fu(M)) — Hyy (n—1)(a—1) (Frta(M)).

For d = 1, this gives the FI-module structure on H;(F(M)) and for d = n = 2, this gives the A (Sym?R)-
module structure on WM. In general these embeddings induce L£h-module structures on the groups
WId)M(S) defined as follows.

2
Definition 3.30. Let M be a noncompact connected manifold of dimension n and let

WM (S) = Hyi ( . (H(fT (H(n_md;msw (F(M);R))) N .)S

Note that we use the £7-module structure on W[d]M to define W[d + 1]¥(S). For d = 1, W[d]M is
just the FI-module H;(F(M)). For d = n = 2, W[d]M is the A (Sym?R)-module WM. We conjecture
that these modules have finite generation degree when M is sufficiently highly connected, and we

conjecture an explicit stable range.
Conjecture 3.31. Let M be a noncompact manifold of dimension n > 2. If M is q-connected with
q2 {%J, then H(’)gd (WIdIM) (S) =0 for

(2

. 2 .
|S| > max (l(d +d) id ) .

n—1 "qgd—(n—1)(d-1)

The above conjecture can be interpreted as three separate conjectures, addressing the three parts
of Question 3.28. Note that [((n — 1)(d —1))/d] = 0 when n = 2 and thus for surfaces we are only
assuming that the manifold is connected. Our heuristic for assuming that the manifold needs to be
[((n—1)(d —1))/d]-connected is to bound the slope of certain homology classes, that is, the ratio of
homological degree to the number of moving points. This condition seems to ensure that the slope of
all homology classes in the configuration space that “come from the topology of the manifold” is higher
than those coming from Hg_1(Fyg(R™)). As support for Conjecture 3.31, we will next prove the result
in the case that the manifold is R™. From now on, we work with integral coefficients.

Configurations of (punctured) Euclidean space

Cohen [CLM76, Chapter III] proved that the homology groups H,.(Fj(R"™)) are the submodule of the
free graded commutative algebra on the free graded lie algebra on the set [k] such that in each product
of brackets, every element of [k] appears exactly once. The bracket is the E,-Browder operation
Y™ and the product is e (see Theorem 3.4). For example, a typical element of Hg,_1)(Fs(R")) is

209"(1,4) e " (3,9"(5,6)).
Proposition 3.32. Conjecture 3.31 holds for M = R™ with integral coefficients. Specifically, for n > 1,

n n y 2
ayt (W) ()20 for all|S] > Z(fl%ld).
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Proof. Cohen’s description of H,(F)(R™)) allows us to compute the groups W[d]}" explicitly. The
L7-module structure on W[d]}" is induced by stabilizing by (d — 1) nested FE,-Browder operations.

Thus, the £} generators HOE d (WI[d]¥") (S) are spanned by products of d or more nested Browder

K3
operations. The ratio of homological degree to number of points for these classes is at least %;

see Theorem 3.4. The group HOS d (WId]¥") (S) is defined as a subquotient (and in fact, for M = R", is

K2

a submodule) of the homology group H;, o-nw-us (Fs(R")). Thus, elements of HS:3 (WIE") (S)
d

?

have a ratio of homological degree to number of points given by ﬁ + %. If

i (n—1)(d-1)  (n—1)(d)
@+ d S Tdr1

then the set of abelian group generators for Hy 4 (WIE") (S) is empty and so H, d (W) (S)

1 1
vanishes in the indicated range. O

Cohen’s calculation completely determine the modules Wi-RQ. We describe the case of i = 0 in detail.
Proposition 3.33. For the plane M = R2, WE = MF™M" (0. Notably, WE" (2k) = HE'(Hy(F (R2)))as

2k)!
s a mnk((kél ) free module.

Proof. For any k > 0 the generators HE'(H;(F(R?))); can be identified with a subgroup of the free
abelian group H;(F}(R?)) where the products of iterated brackets have no degree-0 singleton factors.
In particular, HE'(Hy(F(R?)))2x has a basis indexed by the set of perfect matchings on [2k], where the
matching {a;,b;}%_, corresponds (up to sign) to the homology class 1(ay,b;) ®)(as, by) e - - - e)(a, by),
as in Figure 39. This description follows from the work of Cohen. As an Ggy-representation, the

Figure 39: The basis element for HE'(H3(F(R?)))g corresponding the matching {{4,2},{3,1}, {5,6}}.

group HEY(Hy,(F(R2)))qy, is precisely MF™M' (0),;,. Since ty(a,p) is the operation x — v(a,b) @ x, this
identification is compatible with the FIM™' action. O
The decomposition of the Gop—representation HEL(Hy,(F(R?); Q))as into irreducible constituents of

is given explicitly in Proposition 3.37.

Remark 3.34. The methods used to prove Proposition 3.33 can be used for other calculations. For ex-
ample, if M is a punctured 2-disk, then W)? = MEFMT (0) and WM =~ MFIMT (Hi(M)) &P MFIMT (L3).

Computing W} for some surfaces M

Proposition 3.35. Let M be a connected surface. If M is not orientable or of genus greater than
zero, then
wWHoy=z  and  W(2i) =0 fori>0.
Proof. By definition, W} (0) = HE' (Ho(F(M))), = Ho(Fo(M)). As claimed, this is isomorphic to Z
for any connected manifold M.
To prove the vanishing of W¥(2i) = HE' (H;(F(M))),,; for i > 0 we will first show, by assembling
known results, that the map

Hy'(Hy(F(R?)))2 — Hy' (H1(F(M)))2

induced by embedding R? < M is zero. We begin with the case that M is nonorientable. Let M
denote the Mdbius strip. Since M is open, H; (F(M)) is an FIf-module. By Church-Ellenberg-Farb
[CEF15, Theorem 4.1.5] (here Theorem 2.16) it follows that

2
Hy(F>(M)) = P Indg s, Hi ' (H1(F(M)))¢ K Z,
£=0
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with Z the trivial Go_p-representation. Since Hi(Fi(M)) =2 Hy(M) = Z and Hy(Fo(M)) =20, the
component of Hy(F3(M)) generated in degrees £ = 0, 1 is isomorphic to

Indg?, o, Hy (Hi(F(M)) RZ 2 Indg?, o, Z = 77,

the canonical & permutation representation. By Theorem 2.16 this component is a direct summand of
H1(F2(M)). Wang [Wan02, Lemma 1.6] showed that H'(Fy(M)) = Z? and that H?(Fy(M)) = Z and
hence is torsion free. We deduce that H;(Fy(M)) =2 Z? consists entirely of its £ = 1 component: the
component HE'(Hy(F(M)))s generated in degree ¢ = 2 is zero. Hence the map

Hg'(H1(F(R?)))s — Hy (H1(F(M)))2
is zero. For a general noncompact nonorientable surface M, the map
Hy'(H1(F(R?)))2 — Hg' (Hi(F(M)))2

factors through HE'(Hy(F(M)))s, and so is zero.

From a presentation of 71 (Fy(M)) for M a noncompact, orientable positive genus surface (for
example, Bellingeri [Bel04, Theorem 6.1]) we see that the map Hy(Fy(R?)) — Hy(Fa(M)) is zero even
before passing to the quotient module of minimal generators.

Consider the arc resolution spectral sequence described in Section 3.2. By the proof of Theorem 3.12,
the domain of any differentials d, , with codomain E”, ;(2i) are zero for r > 2. Since E} (2i) = 0 for
p < —1, there are no nontrivial differentials out of the group £”, ;. High connectivity of the arc resolution
(Proposition 3.8) implies that E> ;(2) =2 0 for 4 > 0. Thus the differentials d* : EY; ,(2i) — E” ;(2i)
are surjective for ¢ > 0. Equivalently, the maps

Indg? &, Wi (2i — 2) B Hi(Fy(R?)) — W) (2i)

surject for all i > 0. We have shown that the map HE'(H;(F(R?)))y — HEW(H(F(M)))s is zero if
M is not orientable or has positive genus, and so for ¢ =1,

Indg?, s, Wo" (0) K Hy (F2(R?)) — Wy (2)

is the zero map. Since it is also surjective, W (2) = 0. The claim for higher i then follows inductively,
using the fact that only the zero group can be the surjective image of the zero group. O

In Proposition 3.35 we saw that for nonorientable or positive genus surfaces M,
Wit (2i) = HE' (H;(F(M))),; =0 fori >0,
and this gives the following small improvement on known stable ranges.

Corollary 3.36. Let M be a connected noncompact manifold which is not a (possibly punctured) 2—disk,
and let i > 0. Then H;(F(M)) is generated in degree < 2i — 1.

The combinatorics of FIMt-modules

There has been considerable recent success in characterizing the structure of finitely generated modules
over the category FI and certain relatives, and these results suggest a number of questions about what
“representation stability” should mean for modules over FIM™. In Proposition 3.38, we describe the
decomposition of free FIMT-modules over Q into irreducible &-representations, using a calculation of
MFIMY (0) stated in Proposition 3.37. In Question 3.40, we pose some questions about the structure of
finitely generated rational FIM*-modules.

Let By = G516, C Gy denote the signed permutation group on k letters, the Coxeter group
in type By/Cg. Let V(1#,) denote the 1-dimensional rational Bj-representation pulled back from
the sign Gy-representation under the natural surjection By — Gj. There are isomorphisms of G-
representations:

MM (0)), 2 Ind§2* Vi 0.

The decompositions of these induced representations are described explicitly by Stembridge [Ste06,
Page 7], a result which he attributes to Littlewood. These decompositions are as follows.
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Proposition 3.37 (Littlewood, Stembridge [Ste06, Page 7]). There are isomorphisms of Gqp-representations:
MFIM+ (0)2k i~ @ V)\.
AEDsy,

Here V) the irreducible Gop-representation associated to the partition A. A partition A = 2k is in Doy,
if and only if it has the following symmetry: when the associated young diagram (in English notation)
is cut into two along the staircase shown in Figure 40, then the resultant two skew subdiagrams are

Figure 40: Staircase dividing young diagrams into two skew subdiagrams.

symmetric under reflection in the line of slope —1.

Figure 41 illustrates this symmetry in the case 2k = 6. Notably, identifying a partition in Do

: e
H SRR

(a) Partitions of 6 contained in Dg

(b) Partitions of 6 not in Ds.

Figure 41: The set Dg.

with one of its skew subdiagrams puts Dy in bijection with strict partitions of k, that is, partitions
with distinct parts. This computation of M FIMY (0) allows us to use the Littlewood-Richardson rule to
compute the decomposition of any free rational FIMT-module.

Proposition 3.38. Given a rational &4-representation W, the associated free FIM™T -module
MFIM+(W) o~ MFIM+(d) Do W
has the following decomposition:

MEM (117),, = { Indgjmk,dW X MM (0),_g, k=d (mod 2)

0, k#d (mod?2)

Example 3.39. For example, the first five nonzero components of the rational module M FIM+(1)
decompose as follows:

MFI™MT (1), 2 1 MM (1), = V@ am MFIMT (1), = @ LHJJ ® Vi
MM (1), 2 Ve @ Vi @ Vi @ Vi @ V

[T = = Hﬂﬂ
MM (1)g 2 Ve @ Vi @ Vi © Vi © Vi © Vi @ Vo

mam W] N T

In analogy to the other categories and (skew-)tca’s that have been studied under the scope of
“representation stability,” we pose the following questions.

Question 3.40. What constraints does finite generation put on the irreducible representations ap-
pearing in a rational FIMt-module? Given a finitely generated rational FIM*-module V, is there
some operation on Young diagrams for constructing Vx,1 from Vi in the stable range in the spirit of
Church-Farb’s multiplicity stability [CF13, Definition 1.1]7 Does Vj, even determine Vy 14 for large k?
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Algebraic finiteness properties for twisted (skew-)commutative algebras

Conjecture 3.31 suggests the following purely algebraic questions.

Question 3.41. Let R be a Noetherian ring. If W is a finitely generated £}-module and V is a
£h-submodule, is V necessarily finitely generated?

The main theorem of Church—Ellenberg—Farb—Nagpal [CEFN14] shows that the answer is yes for
d = 1. For R a field of characteristic zero, the answer is yes for d = 2. This is due to Nagpal-Sam-—
Snowden who address the case when n is odd [NSS16, Theorem 1.1] and the case when n is even [NSS,
Theorem 1.1]. The following question generalizes Church—Ellenberg’s results in [CE17] to the case of
d > 1. For a (skew-)tca A, let Hy* denote the ith left derived functor of Hg'.

Question 3.42. Is there a function f : Ny x Ny x Ny — Ny such that for all £]j-modules W with
deg H())gd (W) =g and deg Hl’gd (W) =r, then deg Hf"’ (W) < f(g,r,9)?
An affirmative answer to Question 3.42 for d = n = 2 would allow us to prove a quantitative version

of Theorem 1.4. An affirmative answer to either of these two questions for d > 2 seems relevant to
establishing tertiary and higher order representation stability, though more ideas appear to be needed.
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