1 Topological spaces

Definition 1.1. (Topology; Topological space.) Let X be a set. A topology \mathcal{T} on X is a collection of subsets of X that satisfies the following properties:

- **(T1)** The sets \varnothing and X are elements of \mathcal{T} .
- **(T2)** If $\{U_i\}_{i\in I}$ is any collection of elements of \mathcal{T} , then $\bigcup_{i\in I} U_i$ is in \mathcal{T} .
- **(T3)** If $U, V \in \mathcal{T}$, then $U \cap V \in \mathcal{T}$.

A set X endowed with a topology \mathcal{T} is called a *topological space* and denoted by (X, \mathcal{T}) , or simply denoted by X when \mathcal{T} is clear from context. The elements of \mathcal{T} are called the *open subsets* of the topological space X.

Definition 1.2. (Closed subsets of a topological space.) Let (X, \mathcal{T}) be a topological space. A subset $C \subseteq X$ is called *closed* if its complement is open, that is, if $X \setminus C$ is an element of \mathcal{T} .

Example / Definition (The discrete and indiscrete topologies.) Let X be a set.

The topology $\mathcal{T} = \{\emptyset, X\}$ is the *indiscrete topology* on X.

The collection \mathcal{T} of all subsets of X is the discrete topology on X.

We have already proved the following result:

Theorem 1.3. (Metrics induce a topology.) Let (X, d) be a metric space. Then the collection \mathcal{T}_d of all open sets in X forms a topology on X.

The topology \mathcal{T}_d is called the topology induced by the metric d. We will see that not every topology on a set X necessarily arises from a metric structure on X.

Definition 1.4. (Metrizable topologies.) A topology \mathcal{T} on a set X is said to be *metrizable* if there exists a metric d on X such that \mathcal{T} is the set \mathcal{T}_d of open sets for the metric space (X, d).

In-class Exercises

- 1. Let X be a set.
 - (a) Show that the discrete topology is metrizable.
 - (b) Suppose that X contains at least 2 elements. Show that the indiscrete topology is not metrizable.
- 2. (A useful criterion for openness). Let (X, \mathcal{T}) be a topological space. Show that $V \in \mathcal{T}$ (that is, V is open) if and only if for every $x \in V$ there is some set $U_x \subseteq X$ containing x such that $U_x \in \mathcal{T}$ and $U_x \subseteq V$.
- 3. (a) Verify that X and \emptyset are closed.
 - (b) Suppose that B and C are closed subsets of X. Verify that $B \cup C$ is closed.
 - (c) Suppose that $\{C_i\}_{i\in I}$ is a collection of closed sets in X. Verify that $\bigcap_{i\in I} C_i$ is closed.

- 4. (Optional).
 - (a) Let $X = \{a\}$. Explain why the only topology on X is $\{\emptyset, X\}$.
 - (b) Let $X = \{a, b\}$. Find all possible topologies on X.
 - (c) Let $X = \{a, b, c\}$. Find all possible topologies on X. *Hint:* Look at the picture on our Canvas homepage.
- 5. (Optional). Verify that the following sets are topologies on \mathbb{R} .
 - The topology induced by the Euclidean metric

 - $\mathcal{T} = \{A \mid A \subseteq \mathbb{R}, \mathbb{R} \setminus A \text{ is finite}\} \cup \{\emptyset\}$ $\mathcal{T} = \{A \mid A \subseteq \mathbb{R}, 1 \in A\} \cup \{\emptyset\}$
 - $\mathcal{T} = \{A \mid A \text{ is a union of intervals of the form } [a, b) \text{ for } a, b \in \mathbb{R} \} \cup \{\emptyset\}$
- 6. (Optional). Consider the following definitions.

Definition (Coarser topology; finer topology). Let X be a set. Let \mathcal{T}_1 and \mathcal{T}_2 be two topologies on X. If $\mathcal{T}_1 \subseteq \mathcal{T}_2$, then the topology \mathcal{T}_1 is said to be *coarser* than \mathcal{T}_2 , and the topology \mathcal{T}_2 is said to be *finer* than the topology \mathcal{T}_1 .

- (a) Let X be a set. Show that the indiscrete topology on X is coarser than any other topology on X.
- (b) Let X be a set. Show that the discrete topology on X is finer than any other topology on X.
- (c) Consider all the topologies on \mathbb{R} in Problem 5. For each pair of topologies, determine either that one is coarser than the other, or show that they are not comparable.
- 7. (Optional). Let X be a set, and let \mathcal{P} be its power set, that is, the collection of all subsets of X. A function $\mathbf{i}: \mathcal{P} \to \mathcal{P}$ is called a *Kuratowski interior operator* if it satisfies the following properties.
 - i(X) = X.
 - For all subsets $A \subseteq X$, $\mathbf{i}(A) \subseteq A$.
 - For all subsets $A \subseteq X$, $\mathbf{i}(\mathbf{i}(A)) = \mathbf{i}(A)$ (*Idempotence*).
 - For all subsets $A, B \subseteq X$, $\mathbf{i}(A \cap B) = \mathbf{i}(A) \cap \mathbf{i}(B)$.
 - (a) Given a Kuratowski interior operator \mathbf{i} on X, show that the fixed points of \mathbf{i} (that is, the subsets U of X satisfying $\mathbf{i}(U) = U$) form a topology on X.
 - (b) Let X be a topological space, and for each $A \subseteq X$ let $\mathbf{i}(A)$ be the union of all open subsets of X that are contained in A. Prove that \mathbf{i} is a Kuratowski interior operator.