1 Convergent sequences in metric spaces

Definition 1.1. (Convergent sequences in \mathbb{R} .) Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of real numbers. Then we say that the sequence *converges* to $a_\infty \in \mathbb{R}$, and write $\lim_{n\to\infty} a_n = a_\infty$, if ...

Definition 1.2. (Convergent sequences in metric spaces.) Let (X, d_X) be a metric space, and let $(a_n)_{n\in\mathbb{N}}$ be a sequence of elements of X. Then we say that the sequence *converges* to $a_\infty \in X$, and write $\lim_{n\to\infty} a_n = a_\infty$, if . . .

Rephrased:

In-class Exercises

1. Prove the following result:

Theorem (An equivalent definition of convergence.) A sequence $(a_n)_{n\in\mathbb{N}}$ of points in a metric space (X,d) converges to a_{∞} if and only if for any open set $U\subseteq X$ which contains a_{∞} , there exists some N>0 so that $a_n\in U$ for all $n\geq N$.

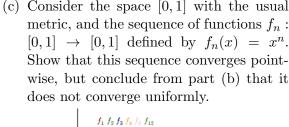
2. (Uniqueness of limits in a metric space). Let (X,d) be a metric space. Show that the limit of a sequence, if it exists, is **unique**, in the following sense. Suppose that $(a_n)_{n\in\mathbb{N}}$ is a sequence in X that converges to a point $a_\infty \in X$, and converges to a point $\widetilde{a}_\infty \in X$. Show that $a_\infty = \widetilde{a}_\infty$.

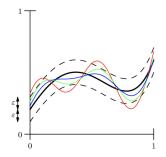
16 September 2025

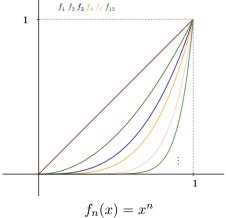
- 3. (Optional) Definition (Pointwise and Uniform Convergence). Let (X, d_X) and (Y, d_Y) be metric spaces. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of functions $f_n : X \to Y$.
 - The sequence $(f_n)_{n\in\mathbb{N}}$ converges at a point $x\in X$ if the sequence $(f_n(x))_{n\in\mathbb{N}}$ of points in Y converges.
 - The sequence $(f_n)_{n\in\mathbb{N}}$ converges pointwise to a function $f_\infty: X \to Y$ if for every point $x \in X$ the sequence $(f_n(x))_{n\in\mathbb{N}}$ of points in Y converges to the point $f_\infty(x) \in Y$.
 - The sequence $(f_n)_{n\in\mathbb{N}}$ converges uniformly to a function $f_\infty: X \to Y$ if for every $\epsilon > 0$ there is some $N \in \mathbb{N}$ so that $d_Y(f_n(x), f_\infty(x)) < \epsilon$ for every $n \geq N$ and $x \in X$.

In other words, if the sequence $(f_n)_{n\in\mathbb{N}}$ converges pointwise to f_∞ , then for each $\epsilon>0$ the choice of N may depend on the point $x\in X$. To converge uniformly to f_∞ , there must exist a choice of N that is independent of the point x.

(a) Use the following picture of functions f_1 , f_2 , f_3 , and f_∞ to explain the concept of uniform convergence of functions $\mathbb{R} \to \mathbb{R}$, and how it differs from pointwise convergence.







- (b) Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of continuous functions $f_n: X \to Y$ that converges uniformly to a function $f_\infty: X \to Y$. Show that f_∞ is continuous.
- (d) Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of functions $f_n:X\to Y$. Show that uniform convergence implies pointwise convergence.
- (e) Recall the metric on the space $\mathcal{C}(a,b)$ of continuous functions $[a,b] \to \mathbb{R}$,

$$d_{\infty}: \mathcal{C}(a,b) \times \mathcal{C}(a,b) \longrightarrow \mathbb{R}$$
$$d_{\infty}(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)|.$$

Consider a sequence of continuous functions $f_n \in \mathcal{C}(a,b)$. Show that $(f_n)_{n \in \mathbb{N}}$ converges with respect to the metric d_{∞} if and only if it converges uniformly.

(f) (Challenge) Is there a metric on C(a, b) where convergence of a sequence is equivalent to pointwise convergence?