1 The Product Metric

Definition 1.1. (Product metric). Let (X, d_X) and (Y, d_Y) be metric spaces. Then their Cartesian product $X \times Y$ has a metric space structure, defined by the metric

$$d_{X\times Y}: (X\times Y)\times (X\times Y) \longrightarrow \mathbb{R}$$
$$d_{X\times Y}\Big((x_1,y_1),(x_2,y_2)\Big) = \sqrt{d_X(x_1,x_2)^2 + d_Y(y_1,y_2)^2}.$$

We will call $d_{X\times Y}$ the product metric on $X\times Y$.

Example 1.2. Let $X = \mathbb{R}^m$ and $Y = \mathbb{R}^n$ be Euclidean spaces with the Euclidean metric. What is the product metric on $X \times Y$?

In-class Exercises

- 1. Verify that $d_{X\times Y}$ does in fact define a metric on $X\times Y$.
- 2. (Optional.) Let (X, d_X) and (Y, d_Y) be metric spaces. Prove that $(X \times Y, d_{X \times Y})$ is a bounded metric space if and only if both X and Y are bounded.
- 3. (Optional.) Let (X, d_X) and (Y, d_Y) be metric spaces. Let $A \subseteq X$ and $B \subseteq Y$ be subsets. Let $x_0 \in X$ and $y_0 \in Y$ be elements.
 - (a) Suppose that x_0 is an accumulation point of A, and y_0 is an accumulation point of B. Prove or disprove: (x_0, y_0) is an accumulation point of $A \times B$.
 - (b) Suppose that x_0 is an isolated point of A, and y_0 is an isolated point of B. Prove or disprove: (x_0, y_0) is an isolated point of $A \times B$.
 - (c) Suppose that (x_0, y_0) is an accumulation point of $A \times B$. Prove or disprove: x_0 is an accumulation point of A, and y_0 is an accumulation point of B.
 - (d) Suppose that (x_0, y_0) is an isolated point of $A \times B$. Prove or disprove: x_0 is an isolated point of A, and y_0 is an isolated point of B.
- 4. (Optional.) Let (X, d_X) and (Y, d_Y) be metric spaces. Let $A \subseteq X$ and $B \subseteq Y$ be subsets. Consider the subset $A \times B \subseteq X \times Y$. We now have two ways to define a metric on this subset:
 - View A and B as metric spaces, by restriction of the metric d_X and d_Y respectively. Take the product metric on $A \times B$.
 - Take the product metric on $X \times Y$. Restrict this metric to the subspace $A \times B \subseteq X \times Y$.

Verify that these two metrics on $A \times B$ are in fact equal.