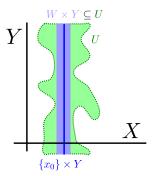
1 Products of compact spaces

The goal of this worksheet is to prove the following theorem.

Theorem 1.1. (Products of compact spaces). Let X and Y be nonempty topological spaces. Then $X \times Y$ is compact with respect to the product topology if and only if both X and Y are compact.

To prove this result, we will use the following lemma. Some other applications of this lemma appear in the bonus problems.

Lemma 1.2. (The tube lemma). Let X and Y be nonempty topological spaces, with Y compact. Consider the product $X \times Y$ with the product topology. Suppose U is an open subset of $X \times Y$ containing $\{x_0\} \times Y$ for some $x_0 \in X$. Then there exists an open neighbourhood W of x_0 in X such that $W \times Y \subseteq U$.



In-class Exercises

- 1. Prove the first direction of Theorem 1.1: Let X and Y be nonempty topological spaces. Suppose that their Cartesian product $X \times Y$ is compact. Prove that X and Y are compact.
- 2. (a) Suppose that Y is compact. Prove, for any $x_0 \in X$, that $\{x_0\} \times Y$ is a compact subspace of the product space $X \times Y$.
 - (b) Prove Lemma 1.2.
- 3. In this problem, we will prove the second direction of Theorem 1.1. Let X and Y be nonempty, compact topological spaces. Let \mathcal{U} be any open cover of $X \times Y$.
 - (a) Show that, for any $x_0 \in X$, there exists an open neighbourhood W_{x_0} of x_0 so that $W_{x_0} \times Y$ is covered by finitely many elements of \mathcal{U} .
 - (b) Prove that $X \times Y$ is covered by finitely many elements of \mathcal{U} .
- 4. (Optional). Definition (Closed map). A function $f: X \to Y$ of topological spaces is called *closed* if for all closed subsets $C \subseteq X$, the image f(C) is closed in Y.
 - (a) Let X and Y be topological spaces, and $X \times Y$ their product with the product topology. Let $\pi_X : X \times Y \to X$ be the projection map. Show by example that the map π_X may not be a closed map.
 - (b) Now suppose that Y is compact. Show that $\pi_X: X \times Y \to X$ is a closed map.
 - (c) Suppose that Y is compact and Hausdorff. Show that a function $f: X \to Y$ is continuous if and only if the graph G_f of f,

$$G_f = \{(x, f(x)) \mid x \in X\} \subseteq X \times Y,$$

viewed as a subset of $X \times Y$ with the product topology, is closed in $X \times Y$.

5. (Optional).

Definition (Lindelöf). A topological space X is called $Lindel\"{o}f$ if every open cover of X has a countable subcover.

Suppose that X is a Lindelöf space and Y is a compact space. Prove that the product $X \times Y$, with the product topology, is Lindelöf.

6. (Optional). Prove the following generalization of the tube lemma.

Theorem (Generalized tube lemma). Let A and B be subspaces of topological spaces X and Y, respectively. Let N be an open set in $X \times Y$ containing $A \times B$. If A and B are compact, then there exist open sets U in X and Y in Y such that $(A \times B) \subseteq (U \times V) \subseteq N$.