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1 Compactness and sequential compactness

Our definition of sequential compactness in metric spaces (Worksheet #8) generalizes to all topo-
logical spaces.

Definition 1.1. (Sequential compactness.) A topological space X is called sequentially com-
pact if . . .

Similarly, a subset S ⊆ X is sequentially compact if every sequence of points in S has a subsequence
that converges to a point in S.

For general topological spaces, a space can be sequentially compact but not compact, and a space
can be compact but not sequentially compact. We will prove, however, that these two concepts are
equivalent for metric spaces.

Theorem 1.2. (Compactness vs sequential compactness in metric spaces).
Let (X, d) be a metric space. Then X is compact if and only if X is sequentially compact.

Theorem 1.2 and Worksheet #8 Theorem 1.7 imply the following.

Theorem 1.3. (Compactness in metric spaces). A compact subset of a metric space is closed
and bounded.

Theorem 1.2 and Worksheet #8 Theorem 1.8 allow us to fully classify the compact subsets of
Euclidean space.

Theorem 1.4. (Compactness in Rn). A subspace S ⊆ (Rn, Euclidean) is compact if and only
if it is closed and bounded.

In-class Exercises

1. (a) Let (X, d) be a metric space. Suppose that (an)n∈N is a sequence in X that contains no
convergent subsequence. Prove that, for every x ∈ X, there is some ϵx > 0 such that
Bϵx(x) contains only finitely many points of the sequence.

(b) Prove the first direction of Theorem 1.2: any compact metric space is sequentially compact.

2. (a) Definition (Lebesgue number of an open cover). Let (X, d) be a metric
space, and let U = {Ui}i∈I be an open cover of X. Then δ > 0 is a Lebesgue
number for U if, for every x ∈ X, there is some associated index ix ∈ I such that
Bδ(x) ⊆ Uix .

Let U = {Ui}i∈I be an open cover of a metric space X. Suppose that U does not have a
Lebesgue number. Explain why it is possible to construct a sequence (xn)n∈N in X such
that B 1

n
(xn) is not contained in Ui for any i.

(b) Show that the sequence (xn)n∈N cannot have a convergent subsequence. Deduce that, if
X is sequentially compact, then every open cover of X has a Lebesgue number.

(c) Definition (ϵ-nets of a metric space). Fix ϵ > 0. A subset A of a metric
space X is called an ϵ-net if {Bϵ(a) | a ∈ A} is an open cover of X.

Fix ϵ > 0. Prove that any sequentially compact metric space has a finite ϵ-net.

(d) Prove the second direction of Theorem 1.2: a sequentially compact subset of a metric
space is compact.
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3. (Optional). Consider the following definitions.

Definition (Local compactness). A topological space X is locally compact if for
all x ∈ X, there exists a compact subset of X that contains a neighbourhood of x.

Note that this implies that any compact space is locally compact.

(a) Find an example of a space that is not locally compact.

(b) Suppose that X is a Hausdorff topological space. Show that X is locally compact if and
only if every point x ∈ X has a neighbourhood whose closure is compact.

(c) Suppose that X is a Hausdorff topological space. Show that X is locally compact if
and only if for every point x ∈ X and every neighbourhood U of x, the neighbourhood U
contains a neighbourhood of x whose closure is compact.

(d) Do either of the previous two equivalences hold for all topological spaces?

(e) Find criteria for a subspace of a locally compact space to be locally compact.

4. (Optional). Given a Hausdorff and locally compact space X, our goal is to embed X into a
compact Hausdorff space.

Definition (One-point compactification). Let X be a topological space, and
let X̂ = X ∪ {∞} be the set we obtain by adding a point ∞ which we call the point
at infinity. We endow X̂ with the following topology:

T = {U ⊆ X̂ | U ⊆ X is open, or X̂ \ U is a closed, compact subset of X}.

The resulting topological space X̂ is called the Alexandroff extension of X. If X
is a noncompact, locally compact, Hausdorff space, then X̂ is called the one-point
compactification or the Alexandroff compactification of X.

Notice, in particular, that X is an open subset of X̂.

(a) Verify that T is in fact a topology.

(b) Verify that X̂ is compact.

(c) Suppose that X is locally compact and Hausdorff. Verify that X̂ is Hausdorff.

(d) An embedding of topological spaces f : X → Y is an injective map that preserves the
topology on X, in the following sense.

Definition (embedding). A map f : X → Y of topological spaces is an
embedding if f is injective, and for all subsets A ⊆ X, the set f(A) is open in the
subspace f(X) ⊆ Y if and only if A is open in X.

Show that the inclusion map X ↪→ X̂ is an embedding.

(e) Show that, if X is not compact, then the closure of X (as a subset of X̂) is X̂. Show, in
contrast, that if X is compact, then X ∪ {∞} is a separation of X̂.

(f) Suppose that X is noncompact, locally compact and Hausdorff. Show that any compact-
ification of X by one point must be homeomorphic to the Alexandroff compactification.

(g) Suppose that a topological space X is a subspace of a compact Hausdorff space Y such
that Y \X is a single point. Show that X must be Hausdorff and locally compact.
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