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1 Compact topological spaces

Definition 1.1. (Open covers; open subcovers.) Let (X, T ) be a topological space. A col-
lection {Ui}i∈I of open subsets of X is an open cover of X if X =

⋃
i∈I Ui. In other words, every

point in X lies in the set Ui for some i ∈ I.

A sub-collection {Ui}i∈I0 (where I0 ⊆ I) is an open subcover (or simply subcover) if X =
⋃

i∈I0 Ui.
In other words, every point in X lies in some set Ui in the subcover.

Definition 1.2. (Compact spaces; compact subspaces.) We say that a topological space
(X, T ) is compact if every open cover of X has a finite subcover.

A subset A ⊆ X is called compact if it is compact with respect to the subspace topology.
This means . . .

Example 1.3. Let (X, T ) be a finite topological space. Then X is compact.

Example 1.4. Let X be a topological space with the indiscrete topology. Then X is compact.

Example 1.5. Let X be an infinite topological space with the discrete topology. Then X is not
compact.

We will prove the following results on the worksheet problems and homework.

Theorem 1.6. (i) Any closed subset of a compact subset is compact.

(ii) A compact subset of a Hausdorff topological space is closed.

Theorem 1.7. Let f : X → Y be a continuous map of topological spaces. If X is compact, then
f(X) is a compact subspace of Y .

Theorem 1.7 states that the continuous image of a compact set is compact. We will use this
result to prove the following theorem on the homework.

Theorem 1.8. (Generalized Extreme Value Theorem). Let X be a nonempty compact
topological space, and let f : X → (R, Euclidean) be a continuous function. Then sup(f(X)) < ∞,
and there exists some z ∈ X such that f(z) = sup(f(X)). That is, f achieves its supremum on X.
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In-class Exercises

1. (a) Let X be a set with the cofinite topology. Prove that X is compact.

(b) Let X = (0, 1) with the topology induced by the Euclidean metric. Show that X is not
compact.

2. Prove Theorem 1.6.

3. Prove Theorem 1.7.

4. (Optional). Determine which of the following topologies on R are compact.

• Any topology T consisting of only finitely
many sets.

• the discrete topology

• T = {(a,∞) | a ∈ R} ∪ {∅} ∪ {R}
• T = {A | A ⊆ R, 0 ∈ A} ∪ {∅}
• T = {A | A ⊆ R, 0 /∈ A} ∪ {R}

5. (Optional). Consider R with the topology T = {A | A ⊆ R, 0 /∈ A} ∪ {R}. Give necessary
and sufficient conditions for a subset C ⊆ R to be compact.

6. (Optional). Let X be a nonempty set, and let x0 be a distinguished element of X. Let

T = {A ⊆ X | x0 /∈ A or X \A is finite }.

(a) Show that T defines a topology on X.

(b) Verify that (X, T ) is Hausdorff.

(c) Verify that (X, T ) is compact.

This exercise shows that any nonempty setX admits a topology making it a compact Hausdorff
topological space.

7. (Optional). Let K1 ⊇ K2 ⊇ · · · be a descending chain of nonempty, closed, compact sets.
Then

⋂
n∈NKn ̸= ∅.

8. (Optional). Let X be a topological space, and let A,B ⊆ X be compact subsets.

(a) Suppose that X is Hausdorff. Show that A ∩B is compact.

(b) Show by example that, if X is not Hausdorff, A ∩B need not be compact.
Hint: Consider R with the topology {U | U ⊆ R, 0, 1 /∈ U} ∪ {R}.

9. (Optional). Suppose that (X, TX) and (Y, TY ) are topological spaces, and f : X → Y is a
closed map (this means that f(C) is closed for every closed subset C ⊆ X). Suppose that Y is
compact, and moreover that f−1(y) is compact for every y ∈ Y . Prove that X is compact.
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