## 1 Compact topological spaces

**Definition 1.1.** (Open covers; open subcovers.) Let  $(X, \mathcal{T})$  be a topological space. A collection  $\{U_i\}_{i\in I}$  of open subsets of X is an *open cover* of X if  $X = \bigcup_{i\in I} U_i$ . In other words, every point in X lies in the set  $U_i$  for some  $i \in I$ .

A sub-collection  $\{U_i\}_{i\in I_0}$  (where  $I_0\subseteq I$ ) is an open subcover (or simply subcover) if  $X=\bigcup_{i\in I_0}U_i$ . In other words, every point in X lies in some set  $U_i$  in the subcover.

**Definition 1.2.** (Compact spaces; compact subspaces.) We say that a topological space  $(X, \mathcal{T})$  is *compact* if **every** open cover of X has a finite subcover.

A subset  $A \subseteq X$  is called *compact* if it is compact with respect to the subspace topology. This means . . .

**Example 1.3.** Let  $(X, \mathcal{T})$  be a finite topological space. Then X is compact.

**Example 1.4.** Let X be a topological space with the indiscrete topology. Then X is compact.

**Example 1.5.** Let X be an infinite topological space with the discrete topology. Then X is **not** compact.

We will prove the following results on the worksheet problems and homework.

**Theorem 1.6.** (i) Any closed subset of a compact subset is compact.

(ii) A compact subset of a Hausdorff topological space is closed.

**Theorem 1.7.** Let  $f: X \to Y$  be a continuous map of topological spaces. If X is compact, then f(X) is a compact subspace of Y.

Theorem 1.7 states that the continuous image of a compact set is compact. We will use this result to prove the following theorem on the homework.

**Theorem 1.8.** (Generalized Extreme Value Theorem). Let X be a nonempty compact topological space, and let  $f: X \to (\mathbb{R}, Euclidean)$  be a continuous function. Then  $\sup(f(X)) < \infty$ , and there exists some  $z \in X$  such that  $f(z) = \sup(f(X))$ . That is, f achieves its supremum on X.

## In-class Exercises

- 1. (a) Let X be a set with the cofinite topology. Prove that X is compact.
  - (b) Let X = (0,1) with the topology induced by the Euclidean metric. Show that X is not compact.
- 2. Prove Theorem 1.6.
- 3. Prove Theorem 1.7.
- 4. (Optional). Determine which of the following topologies on  $\mathbb{R}$  are compact.
  - Any topology  $\mathcal{T}$  consisting of only finitely many sets.
- $\mathcal{T} = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}$
- $\mathcal{T} = \{A \mid A \subset \mathbb{R}, \ 0 \in A\} \cup \{\emptyset\}$
- $\mathcal{T} = \{A \mid A \subseteq \mathbb{R}, \ 0 \notin A\} \cup \{\mathbb{R}\}$

- the discrete topology
- 5. (Optional). Consider  $\mathbb{R}$  with the topology  $\mathcal{T} = \{A \mid A \subseteq \mathbb{R}, 0 \notin A\} \cup \{\mathbb{R}\}$ . Give necessary and sufficient conditions for a subset  $C \subseteq \mathbb{R}$  to be compact.
- 6. (Optional). Let X be a nonempty set, and let  $x_0$  be a distinguished element of X. Let

$$\mathcal{T} = \{ A \subseteq X \mid x_0 \notin A \text{ or } X \setminus A \text{ is finite } \}.$$

- (a) Show that  $\mathcal{T}$  defines a topology on X.
- (b) Verify that  $(X, \mathcal{T})$  is Hausdorff.
- (c) Verify that  $(X, \mathcal{T})$  is compact.

This exercise shows that **any** nonempty set X admits a topology making it a compact Hausdorff topological space.

- 7. (Optional). Let  $K_1 \supseteq K_2 \supseteq \cdots$  be a descending chain of nonempty, closed, compact sets. Then  $\bigcap_{n\in\mathbb{N}} K_n \neq \emptyset$ .
- 8. (Optional). Let X be a topological space, and let  $A, B \subseteq X$  be compact subsets.
  - (a) Suppose that X is Hausdorff. Show that  $A \cap B$  is compact.
  - (b) Show by example that, if X is not Hausdorff,  $A \cap B$  need not be compact. *Hint:* Consider  $\mathbb{R}$  with the topology  $\{U \mid U \subseteq \mathbb{R}, 0, 1 \notin U\} \cup \{\mathbb{R}\}.$
- 9. (Optional). Suppose that  $(X, \mathcal{T}_X)$  and  $(Y, \mathcal{T}_Y)$  are topological spaces, and  $f: X \to Y$  is a closed map (this means that f(C) is closed for every closed subset  $C \subseteq X$ ). Suppose that Y is compact, and moreover that  $f^{-1}(y)$  is compact for every  $y \in Y$ . Prove that X is compact.