1 Connected topological spaces

Definition 1.1. (Disconnected spaces; connected spaces). A topological space (X, \mathcal{T}) is disconnected if there exist disjoint nonempty open subsets A and B in X such that $X = A \cup B$. We call the sets A and B a separation of X. If no separation of X exists, then X is called connected.

A subset S of X is said to be disconnected (respectively, connected) if it is disconnected (respectively, connected) when viewed with the subspace topology (S, \mathcal{T}_S) . Being disconnected means . . .

Lemma 1.2. A topological space X is disconnected if and only if there exists a subset $A \subseteq X$, with $\varnothing \subsetneq A \subsetneq X$, that is both closed and open.

Example 1.3. Is this empty set connected?

Example 1.4. Determine which of the following topological spaces are connected.

- (a) $X = \mathbb{Q}$, Euclidean
- (b) $X = \{\frac{1}{n} \mid n \in \mathbb{N}\}$, Euclidean
- (c) $X = \mathbb{R}, \mathcal{T} = \{(-\infty, a) \mid a \in \mathbb{R}\} \cup \{\mathbb{R}, \emptyset\}$

(d)
$$X = \{a, b, c, d\}, \mathcal{T} = \{\emptyset, \{a, b\}, \{c\}, \{a, b, c\}, \{d\}, \{a, b, d\}, \{c, d\}, \{a, b, c, d\}\}$$

Example 1.5. (a) Can a connected space X have a disconnected subset $S \subseteq X$?

(b) Can a disconnected space X have a connected subset $S \subseteq X$?

You will prove the following important results on the homework.

Theorem 1.6. A subset I of $(\mathbb{R}, Euclidean)$ is connected if and only if it has the following property: given any $x, y \in I$, if $z \in \mathbb{R}$ satisfies x < z < y, then $z \in I$.

Such subsets I are called *intervals*.

Theorem 1.7. (Generalized Intermediate Value Theorem). Let X be a connected topological space, and $f: X \to (\mathbb{R}, Euclidean)$ be a continuous function. If $x, y \in X$ and c lies between f(x) and f(y), then there exists $z \in X$ such that f(z) = c.

In-class Exercises

1. Prove the following (often useful) lemma:

Lemma 1.8. Let X be a topological space, and let A, B be a separation of X. Let $S \subseteq X$. If S is connected, then $S \subseteq A$ or $S \subseteq B$.

- 2. (a) Prove the following. Hint: Lemma 1.8. **Lemma 1.9.** Let X be a topological space, and let A_i , $i \in I$, be a collection of **connected** subsets of X. Suppose that $\bigcap_{i \in I} A_i \neq \emptyset$. Then the union $\bigcup_{i \in I} A_i$ is connected.
 - (b) Show by example that the union $\bigcup_{i \in I} A_i$ may be disconnected if $\bigcap_{i \in I} A_i = \emptyset$.
- 3. Prove the following.

Theorem 1.10. Let $f: X \to Y$ be a continuous function of topological spaces. If X is connected, then so is f(X).

4. (Optional). Which of the following subsets of $(\mathbb{R}, \text{Euclidean})$ are connected?

$$\{x \in \mathbb{R} \mid d(x,1) < 1 \text{ or } d(x,-1) < 1\}$$
$$\{x \in \mathbb{R} \mid d(x,1) \le 1 \text{ or } d(x,-1) < 1\}$$
$$\{x \in \mathbb{R} \mid d(x,1) \le 1 \text{ or } d(x,-1) \le 1\}$$

5. (Optional). Consider the set $X = \{a, b, c, d\}$. For which of the following topologies \mathcal{T} is the topological space (X, \mathcal{T}) connected?

(a)
$$\mathcal{T} = \left\{ \emptyset, \{c\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\} \right\}$$

(b) $\mathcal{T} = \left\{ \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, d\}, \{a, b, d\}, \{a, b, c, d\} \right\}$

6. (Optional). Consider the following topologies on \mathbb{R} . Which of these topological spaces are connected?

(a) indiscrete topology	(f) $\mathcal{T} = \{\mathbb{R}, \{0, 1\}, \{0\}, \{1\}, \emptyset\}$
(b) discrete topology	(g) $\mathcal{T} = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\varnothing\} \cup \{\mathbb{R}\}$
(c) Euclidean topology	(h) $\mathcal{T} = \{A \mid A \subseteq \mathbb{R}, \ 0 \in A\} \cup \{\varnothing\}$
(d) cofinite topology	(i) $\mathcal{T} = \{A \mid A \subseteq \mathbb{R}, \ 0 \notin A\} \cup \{\mathbb{R}\}$
(e) $\mathcal{T} = \{\mathbb{R}, (0,1), \varnothing\}$	(j) $\mathcal{T} = \{A \mid A \subseteq \mathbb{R}, 1 \in A\} \cup \{\emptyset\}$

- 7. (Optional). Let (X, \mathcal{T}) be a topological space. Let $\{A_n \mid n \in \mathbb{Z}\}$ be a family of connected subspaces of X such that $A_n \cap A_{n+1} \neq \emptyset$ for every n. Prove $\bigcup_{n \in \mathbb{Z}} A_n$ is connected.
- 8. (Optional). Let (X, \mathcal{T}) be a topological space. Let $\{A_n \mid n \in \mathbb{N}\}$ be a family of connected subspaces in X such that $A_{n+1} \subseteq A_n$ for every $n \in \mathbb{N}$. Is $\bigcap_{n \in \mathbb{N}} A_n$ is necessarily connected?
- 9. (Optional). Let (X, \mathcal{T}) be a topological space, and let $A, B \subseteq X$. Suppose $A \cup B$ and $A \cap B$ are connected. Prove that if A and B are both closed or both open, then A and B are connected.