1 Continuous functions on topological spaces

Definition 1.1. (Continuous functions of topological spaces.) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Then a map $f: X \to Y$ is called *continuous* if . . .

Example 1.2. (i) The constant map

$$f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$$

 $f(x) = y_0$

is continuous for (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) any topological spaces with $y_0 \in Y$.

- (ii) The identity map $id:(X,\mathcal{T}_X)\to (X,\mathcal{T}_X)$ is continuous for (X,\mathcal{T}_X) any topological space.
- (iii) Any function $f:(X, \text{discrete}) \to (Y, \mathcal{T}_Y)$ is continuous for any topological space (Y, \mathcal{T}_Y) .
- (iv) Any function $f:(X,\mathcal{T}_X)\to (Y,\text{indiscrete})$ is continuous for any topological space (X,\mathcal{T}_X) .

Theorem 1.3. (Restrictions of continuous functions). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and let $S \subseteq X$. Let $f: X \to Y$ be a continuous function. Then the restriction of f to S, $f|_S: S \to Y$, is continuous with respect to the subspace topology on S.

Proof.

In-class Exercises

- 1. Below are two results that you proved for metric spaces. Verify that each of these results holds for abstract topological spaces. This is a good opportunity to review their proofs!
 - (a) Theorem (Equivalent definition of continuity.) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Then a map $f: X \to Y$ is continuous if and only if for every closed set $C \subseteq Y$, the set $f^{-1}(C)$ is closed.
 - (b) Theorem (Composition of continuous functions.) Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) , and (Z, \mathcal{T}_Z) be topological spaces. Suppose that $f: X \to Y$ and $g: Y \to Z$ are continuous maps. Prove that the map $g \circ f: X \to Z$ is continuous.

- 2. An advantage of identifying a basis for a topology is that many topological statements can be reduced to statements about the basis. As an example, prove the following theorem.
 - **Theorem 1.4.** (Equivalent definition of continuity). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and let \mathcal{B}_Y be a basis for \mathcal{T}_Y . Prove that a map $f: X \to Y$ is continuous if and only if for every open set $U \in \mathcal{B}_Y$, the preimage $f^{-1}(U) \subseteq X$ is open.
- 3. (Optional). Let $f: X \to Y$ be a function of topological spaces. Show that f is continuous if and only if it is continuous when restricted to be a map $f: X \to f(X)$, with $f(X) \subseteq Y$ given the subspace topology.
- 4. (Optional).
 - (a) Let $f: X \to Y$ be a map of two topological spaces, and suppose that Y has the cofinite topology. Prove that f is continuous if and only if the preimage of every point in Y is closed in X.
 - (b) Let $f: X \to Y$ be a map of two topological spaces that both have the cofinite topology. Prove that f is continuous if and only if either f is a constant function or the preimage of every point in Y is finite.
- 5. (Optional). Consider the following functions $f: \mathbb{R} \to \mathbb{R}$.

(a)
$$f(x) = x$$

(c)
$$f(x) = x^2$$

(e)
$$f(x) = x + 1$$

(b)
$$f(x) = 0$$

(d)
$$f(x) = \cos(x)$$

(f)
$$f(x) = -x$$

Determine whether these functions are continuous when both the domain and codomain \mathbb{R} have the topology . . .

- standard (Euclidean) topology
- $\mathcal{T} = \{\mathbb{R}, \varnothing\}$
- $\mathcal{T} = \{ \mathbb{R}, (0,1), \emptyset \}$
- $\mathcal{T} = \{\mathbb{R}, \{0,1\}, \{0\}, \{1\}, \emptyset\}$
- $\mathcal{T} = \{A \mid A \subseteq \mathbb{R}\}$
- cofinite topology

- $\mathcal{T} = \{(-\infty, a) \mid a \in \mathbb{R}\} \cup \{\varnothing\} \cup \{\mathbb{R}\}$
- $\mathcal{T} = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\varnothing\} \cup \{\mathbb{R}\}$
- $\mathcal{T} = \{A \mid A \subseteq \mathbb{R}, \ 0 \in A\} \cup \{\varnothing\}$
- $\mathcal{T} = \{A \mid A \subseteq \mathbb{R}, \ 0 \notin A\} \cup \{\mathbb{R}\}$
- $\mathcal{T} = \{A \mid A \subseteq \mathbb{R}, \ 1 \in A\} \cup \{\emptyset\}$
- 6. (Optional). Let $X = \{a, b, c\}$ be the topological space with the topology

$$\{\varnothing,\{b\},\{c\},\{b,c\},\{a,b,c\}\}.$$

Let \mathbb{R} be the topological space defined by the usual Euclidean metric. Which of the following functions $f: \mathbb{R} \to X$ are continuous?

(i)
$$f(x) = b$$
 for all $x \in \mathbb{R}$.

(ii)
$$f(x) = \begin{cases} a, & x = (-\infty, 0) \\ b, & x = 0 \\ c, & x \in (0, \infty) \end{cases}$$

(iii)
$$f(x) = \begin{cases} a, & x = 0 \\ b, & x \in (-\infty, 0) \\ c, & x \in (0, \infty) \end{cases}$$

(iv)
$$f(x) = \begin{cases} a, x \in (-\infty, 0] \\ b, x \in (0, \infty) \end{cases}$$

7. (Optional). Let X be a set. Let \mathcal{T}_1 and \mathcal{T}_2 be topologies on X. Show that the identity map

$$id_X: (X, \mathcal{T}_1) \to (X, \mathcal{T}_2)$$

 $id_X(x) = x$

is continuous with respect to the topologies \mathcal{T}_1 and \mathcal{T}_2 if and only if \mathcal{T}_1 is finer than \mathcal{T}_2 .