1 Bases for topological spaces

Definition 1.1. (Basis of a topology.) Let (X, \mathcal{T}) be a topological space. We say that a collection \mathcal{B} of subsets of X is a *basis* for the topology \mathcal{T} if

- $\mathcal{B} \subseteq \mathcal{T}$, that is, every basis element is open, and
- every element of \mathcal{T} can be expressed as a union of elements of \mathcal{B} .

We say that the basis \mathcal{B} generates the topology \mathcal{T} .

Remark 1.2. By convention, we say that the empty set \emptyset is the union of an empty collection of open sets. So a basis \mathcal{B} does not need to include \emptyset .

Example 1.3. Let X be a set.

1. Find a basis for the discrete topology on X.

2. Find a basis for the indiscrete topology on X.

Example 1.4. The topology of a metric space (X, d) is defined by its basis

$$\mathcal{B} = \{ B_r(x_0) \mid x_0 \in X, r \in \mathbb{R}, r > 0 \}.$$

In-class Exercises

- 1. (The basis criteria). Let (X, \mathcal{T}) be a topological space. Show that a collection \mathcal{B} of subsets of X is a basis for \mathcal{T} if and only if it satisfies the following two conditions:
 - (i) Every basis element is an **open** set, that is, $\mathcal{B} \subseteq \mathcal{T}$.
 - (ii) For every open set $U \in \mathcal{T}$, and every $x \in U$, there exists some element $B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq U$.
- 2. Let (X, d_X) and (Y, d_Y) be metric spaces, and give $X \times Y$ the product metric $d_{X \times Y}$. Conclude from our "basis criteria" that

$$\mathcal{B} = \{ U \times V \mid U \subseteq X \text{ is open, } V \subseteq Y \text{ is open } \}$$

forms a basis for the topology induced by $d_{X\times Y}$.

3. (Optional). Let X be a metric space. Show that the following collection of open subsets is a basis for X:

$$\left\{B_{\frac{1}{n}}(x) \mid x \in X, \ n \in \mathbb{N} \right\}.$$

- 4. (Optional).
 - (a) Consider the topology on \mathbb{R}^n induced by the Euclidean metric. Prove that the following set is a basis for \mathbb{R}^n .

$$\mathcal{B} = \{ B_{\epsilon}(x) \mid \epsilon > 0, \epsilon \text{ is rational}; x \in \mathbb{R}^n, \text{ all coordinates } x_i \text{ of } x \text{ are rational.} \}$$

- (b) Show that \mathbb{R}^n has uncountably many open sets, but that the basis \mathcal{B} is countable.
- 5. (Optional). Let (X, d) be a metric space, and \mathcal{B} a basis for the topology \mathcal{T}_d induced by d. Let $S \subseteq X$ be a subset, and $s \in S$. Show that s is an interior point of S if and only if there is some element $B \in \mathcal{B}$ such that $s \in B$ and $B \subseteq S$.
- 6. (Optional) (Bases of closed subsets). Let X be a topological space. Let \mathcal{C} be a collection of closed subsets. Prove that the following conditions are equivalent.
 - (i) The set $\mathcal{B} = \{U \subseteq X \mid X \setminus U \subseteq C\}$ is a basis for the topology on X.
 - (ii) Every closed subset of X can be expressed as an intersection of elements of \mathcal{C} .
 - (iii) For each closed set A in X and each $x \notin A$ there exists an element of C containing A and not containing x.
 - (iv) The collection C satisfies $\bigcap_{C \in C} C = \emptyset$, and for each $C_1, C_2 \in C$ the union $C_1 \cup C_2$ can be expressed as the intersection of elements of C.

A collection of closed subsets C satisfying these equivalent conditions is called a basis for the closed sets of X.

- 7. (Optional). Definition (Subbases). Let X be a set, and let S be a collection of subsets of X whose union is equal to X. Then the topology generated by the subbasis S is the collection of all arbitrary unions of all finite intersections of elements in S. Remark: In contrast to a basis, we are permitted to take finite intersections of sets in a subbasis.
 - (a) Show that the set \mathcal{T} generated by a subbasis \mathcal{S} really is a topology, and is moreover the coarsest topology containing \mathcal{S} .
 - (b) Verify that $S = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{(-\infty, a) \mid a \in \mathbb{R}\}$ is a subbasis for the standard topology on \mathbb{R} .
 - (c) Prove the following proposition.

Proposition. Let $f: X \to Y$ be a function of topological spaces, and let \mathcal{S} be a subbasis for Y. Then f is continuous if and only if $f^{-1}(U)$ is open for every subbasis element $U \subseteq \mathcal{S}$.