1 Subspaces of topological spaces

Definition 1.1. (Subspace topology.) Let (X, \mathcal{T}_X) be a topological space, and let $S \subseteq X$ be any subset. Then S inherits the structure of a topological space, defined by the topology

$$\mathcal{T}_S = \{ U \cap S \mid U \in \mathcal{T}_X \}.$$

The topology \mathcal{T}_S on S is called the *subspace topology*.

Example 1.2. Describe the subspace topology on the following subsets of \mathbb{R} , with the topology induced by the Euclidean metric (we call this the "standard topology").

(a)
$$S = \{0, 1, 2\}$$

(b)
$$S = [0, 1)$$

In-class Exercises

- 1. Verify that the subspace topology is, in fact, a topology.
- 2. Let (X, \mathcal{T}_X) be a topological space, and let $S \subseteq X$ be any subset. Let ι_S be the inclusion map

$$\iota_S: S \to X$$

$$\iota_S(s) = s$$

Verify that the subspace topology on S is precisely the set $\{\iota_S^{-1}(U) \mid U \subseteq X \text{ is open}\}.$

Remark: We haven't defined these terms, but we can summarize this result by the slogan "the subspace topology on S is the coarsest topology that makes the inclusion maps ι_S continuous".

- 3. Let (X, \mathcal{T}_X) be a topological space and let $S \subseteq X$ be a subset endowed with the subspace topology \mathcal{T}_S . Show that a set $C \subseteq S$ is closed in S if and only if there is some set $D \subseteq X$ that is closed in X with $C = D \cap S$.
- 4. (Optional). Let (X, \mathcal{T}_X) be a topological space, and let $Z \subseteq Y \subseteq X$ be subsets. Show that the subspace topology on Z as a subspace of X coincides with the subspace topology on Z as a subspace of Y (with the subspace topology as a subset of X). Conclude that there is no ambiguity in how to topologize the subset Z to refer to its "subspace topology" we do not need to specify whether Y or X is the ambient space.

- 5. (Optional). Let (X, d) be a metric space, and let \mathcal{T}_d^X be the topology induced by the metric. Let $S \subseteq X$ be a subset. We now have two methods of constructing a topology on S: we can restrict the metric from X to S, and take the topology \mathcal{T}_d^S induced by the metric. We can also take the subspace topology \mathcal{T}_S defined by \mathcal{T}_d^X . Show that these two topologies on S are equal, so there is no ambiguity in how to topologize a subset of a metric space.
- 6. (Optional). Let (X, d) be a metric space with the metric topology \mathcal{T}_d . Show that the subspace topology on any finite subset of X is the discrete topology.
- 7. (Optional). Consider \mathbb{R} with the standard topology (that is, the topology induced by the Euclidean metric). For each of a the following statements, construct a nonempty subset S of \mathbb{R} with that satisfies the description, or prove that none exists.
 - (a) S is an infinite, closed subset of \mathbb{R} , and the subspace topology on S is discrete.
 - (b) S is not a closed subset of \mathbb{R} , and the subspace topology on S is discrete.
 - (c) S has the indiscrete topology.
 - (d) The subspace topology on S consists of exactly 2 open subsets.
 - (e) The subspace topology on S consists of exactly 3 open subsets.
- 8. (Optional). Let $X = \{a, b, c, d\}$. Consider the following topologies on X.
 - $\mathcal{T}_1 = \{\emptyset, \{b, c\}, \{a, d\}, \{a, b, c, d\}\}$
 - $\mathcal{T}_2 = \{\emptyset, \{a\}, \{a,b\}, \{a,b,c\}, \{a,b,c,d\}\}$
 - $\mathcal{T}_3 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}\}$
 - $\mathcal{T}_4 = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{c\}, \{a,c\}, \{b,c\}, \{a,b,c\}, \{a,b,d\}, \{a,b,c,d\}\}$
 - $\mathcal{T}_5 = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{c\}, \{a,c\}, \{b,c\}, \{a,b,c\}, \{a,b,c,d\}\}$
 - $\mathcal{T}_6 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c, d\}\}$

For each of these topologies ...,

- (a) Find the subspace topology on each of the subsets $\{a,b\}$, $\{b,c\}$, $\{c,d\}$, $\{a,b,c\}$, and $\{b,c,d\}$.
- (b) Identify all subspaces with the discrete topology.
- (c) Identify all subspaces with the indiscrete topology.
- 9. (Optional). Let (X, \mathcal{T}) be a topological space, and $S \subseteq X$ a subset endowed with the subspace topology.
 - (a) Suppose X has the discrete topology. Must S have the discrete topology?
 - (b) Suppose X has the indiscrete topology. Must S have the indiscrete topology?
 - (c) Suppose X is metrizable. Is S metrizable?
 - (d) A space has the T_1 property if every singleton subset $\{x\}$ is closed. If X is T_1 , then must S be T_1 ?

Remark: A property is called *hereditary* if, whenever a topological space has the property, all of its subspaces necessarily have the property.