Name: _____ Score (Out of 5 points):

1. (5 points) For each of the following functions $f: X \to Y$ of topological spaces: If the function is continuous, write "continuous". Otherwise, state an example of an open subset of Y whose preimage is not open, or a closed subset of Y whose preimage is not closed. **No further justification needed.**

Note: if the function is not continuous, you may receive partial credit for writing "not continuous" without writing a specific subset.

(a)
$$X = (\mathbb{R}, \text{ Euclidean}), Y = (\mathbb{R}, \text{ cofinite}),$$

$$f: X \longrightarrow Y$$

 $x \longmapsto \sin(x)$

(b)
$$X = (\mathbb{R}, \text{ cofinite}), Y = (\mathbb{R}, \text{ Euclidean}),$$

$$f: X \longrightarrow Y$$

 $x \longmapsto \sin(x)$

(c)
$$X = (\mathbb{R} \setminus \{0\}, \text{ indiscrete}), Y = (\mathbb{R}, \{U \mid 0 \in U\} \cup \{\varnothing\}),$$

$$f: X \longrightarrow Y$$
$$x \longmapsto x$$

$$\text{(d)} \ \ X = \Big(\{0,1\}, \Big\{\varnothing, \{1\}, \{0,1\}\Big\}\Big), \ Y = \Big(\{a,b,c\}, \Big\{\varnothing, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,b,c\}\Big\}\Big),$$

$$f: X \longrightarrow Y$$

$$0 \longmapsto a$$

$$1 \longmapsto c$$

(e)
$$X=([0,1],$$
 Euclidean), $Y=\Big(\{a,b,c\},\Big\{\varnothing,\{a\},\{a,b\},\{a,b,c\}\Big\}\Big),$
$$f:X\longrightarrow Y$$

$$x\longmapsto \left\{\begin{array}{ll} a,&x\in\left[0,\frac{1}{2}\right)\\ b,&x\in\left[\frac{1}{2},1\right)\\ c,&x=1 \end{array}\right.$$