Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Let (X, \mathcal{T}) be a topological space. Show that any subset $A = \{x\} \subseteq X$ of a single element is connected.
- 2. Let $X = \{a, b, c, d\}$ with the topology

$$\mathcal{T} = \{\emptyset, \{a\}, \{a,b\}, \{c\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}, \{a,b,c,d\}\}.$$

Is X connected?

- 3. (a) Show that, for $a, b \in \mathbb{R}$, the subsets \emptyset , $\{a\}$, (a, b), (a, b], [a, b), [a, b], (a, ∞) , $[a, \infty)$, (∞, b) , $(\infty, b]$, and \mathbb{R} of \mathbb{R} are all intervals in the sense of Problem 5.
 - (b) Show that every interval must have one of these forms.
- 4. Give an example of a subset A of \mathbb{R} (with the standard topology) such that A is not connected, but \overline{A} is connected. (Compare to Assignment Problem 2).
- 5. Let X be a disconnected topological space. Let $f: X \to Y$ be a continuous function from X to a topological space Y. Show by example that f(X) may be disconnected, or may be connected. Contrast with Worksheet #17 Problem 3.

Worksheet problems

(Hand these questions in!)

• Worksheet #16 Problems 2.

Assignment questions

(Hand these questions in!)

1. Let (X, \mathcal{T}_X) be a topological space, and endow the product $X \times X$ with the product topology $\mathcal{T}_{X \times X}$. The set

$$\Delta = \{ (x, x) \mid x \in X \} \subseteq X \times X$$

is called the diagonal of $X \times X$. Prove that X is Hausdorff if and only if the diagonal Δ is a closed subset of $X \times X$.

2. Let (X, \mathcal{T}_X) be a topological space, and let $A \subseteq X$ be a connected subset. Let B be any subset such that $A \subseteq B \subseteq \overline{A}$. Prove that B is connected.

Remark: This shows in particular that if A is connected, then so is \overline{A} .

- 3. **Definition (Connected components of a topological space).** Let (X, \mathcal{T}_X) be a topological space. A subset $C \subseteq X$ is called a *connected component* of X if
 - (i) C is connected;
 - (ii) if C is contained in a connected subset A, then C = A.

That is, the connected components are the 'maximal' connected subsets of X.

- (a) Show that any connected component of X is closed. (Hint: Problem 2).
- (b) Let $x \in X$. Show that the following set is a connected component of X:

$$\bigcup_{\substack{A \text{ is a connected set,} \\ x \in A}} A.$$

- (c) Show that the connected components form a partition of X. In other words, show that every point of X is contained in one, and only one, connected component. Remark: This implies that the binary relation " $x \sim y$ if $x, y \in X$ are contained in a connected subset of X" is an equivalence relation on a space X.
- (d) Determine—with proof—the connected components of \mathbb{Q} (with the Euclidean metric).
- (e) Deduce from the example of $\mathbb Q$ that connected components need not be open.
- (f) Suppose that X has the property that every point has a connected neighbourhood. Show that the connected components of X are open.
- 4. In this problem, we will prove the following result:

Theorem (Connectivity of product spaces). Let X and Y be nonempty topological spaces. Then the product space $X \times Y$ (with the product topology) is connected if and only if both X and Y are connected.

Hint: See Worksheet #17, Lemma 1.9.

- (a) Suppose that $X \times Y$ is nonempty and connected in the product topology $\mathcal{T}_{X \times Y}$. Prove that X and Y are connected.
- (b) Suppose that (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are nonempty, connected spaces, and suppose that $(a, b) \in X \times Y$. Prove that $(X \times \{b\}) \cup (\{a\} \times Y)$ is a connected subset of the product $X \times Y$ with the product topology $\mathcal{T}_{X \times Y}$.
- (c) Suppose that (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are nonempty, connected spaces. Prove that $X \times Y$ is connected in the product topology $\mathcal{T}_{X \times Y}$.
- 5. (a) Consider $\{0,1\}$ as a topological space with the discrete topology. Show that a topological space (X,\mathcal{T}) is disconnected if and only if there is a continuous **surjective** function $X \to \{0,1\}$.
 - (b) You may cite the Intermediate Value Theorem from real analysis without proof:

Intermediate Value Theorem. If $f:[a,b]\to\mathbb{R}$ is continuous and d lies between f(a) and f(b) (i.e. either $f(a)\leq d\leq f(b)$ or $f(b)\leq d\leq f(a)$), then there exists $c\in [a,b]$ such that f(c)=d.

Define a subset $A \subseteq \mathbb{R}$ to be an *interval* if whenever $x, y \in A$ with x < y, and x < z < y for some $z \in \mathbb{R}$, then $z \in A$. Prove that any interval of \mathbb{R} is connected.

(c) Prove that any subset of \mathbb{R} that is not an interval is disconnected.

These last two results together prove:

Theorem (Connected subsets of \mathbb{R}). A subset of \mathbb{R} is a connected if and only if it is an interval.