Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Let X be a topological space, and let $x \in X$. Show that the constant sequence $a_n = x$ converges to x. Could it also converge to other points of X?
- 2. Let $X = \{a, b, c, d\}$ with the topology $\mathcal{T} = \{\emptyset, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}, X\}$.
 - (a) Which elements of X are limits of the constant sequence $x_n = d$? The constant sequence $x_n = a$? The constant sequence $x_n = b$?
 - (b) Give an example of a sequence in X that does not converge.
- 3. Let $X = \{0, 1\}$. Find a topology on X for which the following sequence converges: $0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots$ Can you find more than one topology?
- 4. Suppose that (X, \mathcal{T}) is a topological space, and that $(a_n)_{n \in \mathbb{N}}$ is a sequence in X that converges to $a_\infty \in X$. Prove that any subsequence of $(a_n)_{n \in \mathbb{N}}$ converges to $a_\infty \in X$.
- 5. Let X be a topological space with the indiscrete topology. Prove that any sequence of points in X converges to every point in X.
- 6. Let X, Y, Z be sets and let $f: X \to Y$ and $g: Y \to Z$ be functions.
 - (a) Show that if f and g are both surjective, then $g \circ f$ is surjective.
 - (b) Show that if f and g are both injective, then $g \circ f$ is injective.
 - (c) Show by example that, if we only assume one of f and g is surjective, then $g \circ f$ need not be surjective.
 - (d) Show by example that, if we only assume one of f and g is injective, then $g \circ f$ need not be injective.
- 7. Determine which of the following subsets of of \mathbb{R}^2 can be expressed as the Cartesian product of two subsets of \mathbb{R} .
 - $\text{(a)} \ \ \{(x,y) \mid x \in \mathbb{Q}\} \\ \text{(c)} \ \ \{(x,y) \mid x > y\} \\ \text{(e)} \ \ \{(x,y) \mid x^2 + y^2 < 1\} \\ \text{(g)} \ \ \{(x,y) \mid x = 3\} \\ \text{(height of } x = 1\} \\ \text{(height of } x = 1) \\ \text{(height of } x = 1\} \\ \text{(height of } x = 1) \\ \text{(height of } x = 1)$
 - (b) $\{(x,y) \mid x,y \in \mathbb{Q}\}$ (d) $\{(x,y) \mid 0 < y \le 1\}$ (f) $\{(x,y) \mid x^2 + y^2 = 1\}$ (h) $\{(x,y) \mid x + y = 3\}$
- 8. (a) For which values of r is the square $(-r,r) \times (-r,r) \subseteq \mathbb{R}^2$ contained in the unit ball $\{(x,y) \mid x^2 + y^2 < 1\}$?
 - (b) For which values of r is the r-ball $\{(x,y) \mid x^2 + y^2 < r^2\}$ contained in the square $(-1,1) \times (-1,1) \subseteq \mathbb{R}^2$?

Worksheet problems

(Hand these questions in!)

- Worksheet #13 Problems 2.
- Worksheet #14 Problems 2.

Assignment questions

(Hand these questions in!)

- 1. Let (X, \mathcal{T}) be a topological space, and let \mathcal{B} be a basis for \mathcal{T} . For a subset $A \subseteq X$, prove that $\overline{A} = \{x \in X \mid \text{any basis element } B \in \mathcal{B} \text{ containing } x \text{ must contain a point of } A\}.$
- 2. For each of the following sequences: find the set of all limits, or determine that the sequence does not converge. No justification needed.
 - Let $X = \{a, b, c, d\}$ have the topology $\{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c, d\}\}$.

(i) $a, b, a, b, a, b, a, b, \cdots$ (ii) $c, c, c, c, c, c, c, c, c, \ldots$

• Let \mathbb{R} have the topology $\mathcal{T} = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}.$

(iii) $0, 0, 0, 0, 0, 0, \cdots$ (iv) $(n)_{n \in \mathbb{N}}$

 $(\mathbf{v}) (-n)_{n \in \mathbb{N}}$

• Let \mathbb{R} have the topology $\mathcal{T} = \{\emptyset\} \cup \{U \subseteq \mathbb{R} \mid 0 \in U\}.$

(vi) $0, 0, 0, 0, 0, 0, \cdots$

(vii) 1, 1, 1, 1, 1, $1, \cdots$

- 3. Let $f: X \to Y$ be a continuous map of topological spaces. If X is Hausdorff, does it follow that f(X) (viewed as a subspace of Y with the subspace topology) must be Hausdorff? Give a proof, or find a counterexample.
- 4. (a) Suppose that (X, \mathcal{T}_X) is a topological space, and that (Y, \mathcal{T}_Y) is a **Hausdorff** topological space. Let $f: X \to Y$ and $g: X \to Y$ be continuous functions. Suppose that $A \subseteq X$ is a subset such that

$$f(a) = g(a)$$
 for all $a \in A$.

Prove that

$$f(x) = g(x)$$
 for all $x \in \overline{A}$.

This says that the values of a continuous function on \overline{A} are completely determined by its values on A.

- (b) Suppose you have a function of topological spaces $f: \mathbb{R} \to Y$, where \mathbb{R} has the standard topology and Y is Hausdorff. In a sentence, explain why the previous problem implies that a continuous function f is completely determined by its values on \mathbb{Q} .
- 5. **Definition (path).** Let X be a topological space, and let $I = [0, 1] \subseteq \mathbb{R}$ be the unit interval with the standard topology. A path in X is a continuous function $\gamma: I \to X$. For points $x, y \in X$, we say that a path γ is a path from x to y if $\gamma(0) = x$ and $\gamma(1) = y$.

Note that the path γ does not need to be injective. For example, the constant path $\gamma(t) = x$ is a path from x to x.

For these problems—as always—you may assume any standard results about which functions between Euclidean spaces, with the standard topology, are continuous.

(a) Given points $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ in \mathbb{R}^n , construct a path from x to y.

- (b) Let x, y be points in the space \mathbb{R} with the cofinite topology. Construct (with justification) a path from x to y.
- (c) Let $X = \{a, b, c, d\}$ be a topological space with the topology

$$\mathcal{T} = \Big\{ \varnothing, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\} \Big\}.$$

Construct (with justification) a path in X from a to d.

- 6. Let X be a topological space.
 - (a) Let $x, y \in X$ and suppose that there exists a path from x to y. Show that there exists a path from y to x.
 - (b) Let $x, y, z \in X$. Show that, if there exists a path from x to y, and a path from y to z, then there exists a path from x to z.

Hint: The Pasting Lemma from Homework #7 Assignment Problem 6.

- (c) Let X be a topological space. We introduce some nonstandard notation that we will use in this question only: For $x, y \in X$, write $x \sim y$ if there exists a path from x to y. Deduce that the binary relation \sim is:
 - (i) Reflexive: $x \sim x$ for all $x \in X$.
 - (ii) Symmetric: $x \sim y$ if and only if $y \sim x$ for all $x, y \in X$.
 - (iii) Transitive: For any $x, y, z \in X$, if $x \sim y$ and $y \sim z$, then $x \sim z$.
- (d) A binary relation \sim on a set X that is reflexive, symmetric, and transitive is called an equivalence relation. Prove that, given a set X with an equivalence relation \sim , the equivalence classes

$$[x] = \{ y \in X \mid x \sim y \}$$

define a partition of X: this means that every element of X is contained in one and only one equivalence class. It implies that X is a union of its equivalence classes, and any two equivalence classes are either equal or disjoint.

In the case that X is a topological space and the relation $x \sim y$ is "existence of a path from x to y", the equivalence classes are called the *path components* of X.