Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Let (X, \mathcal{T}) be a topological space.
 - (a) Show that \mathcal{T} is a basis for \mathcal{T} .
 - (b) Suppose that \mathcal{B} is a basis for \mathcal{T} . Show that any collection of open sets in X containing \mathcal{B} is also a basis for \mathcal{T} .
- 2. Verify that the set of open intervals $(a, b) \subseteq \mathbb{R}$ is a basis for \mathbb{R} (with the Euclidean topology).
- 3. Consider the real numbers \mathbb{R} with the Euclidean metric. Find examples of subsets A of \mathbb{R} with the following properties. Can you find more than one?
 - (a) $Int(A) = \emptyset$
 - (b) $Int(A) = \mathbb{R}$
 - (c) Int(A) = A
 - (d) $Int(A) \neq A$
 - (e) $\overline{A} = \emptyset$
 - (f) $\overline{A} = \mathbb{R}$
 - (g) $\overline{A} = A$
 - (h) $A \neq \overline{A}$
 - (i) $\partial A = \emptyset$

- (j) A has a nonempty boundary, and A contains its boundary ∂A .
- (k) A has a nonempty boundary, and A contains no points in its boundary
- (l) A has a nonempty boundary, and A contains some but not all of the points in its boundary.
- (m) $A = \partial A \neq \emptyset$.
- (n) A is a **proper** subset of ∂A .
- (o) $\partial A = \mathbb{R}$

Worksheet problems

(Hand these questions in!)

• Worksheet # 12 Problem 1.

Assignment questions

(Hand these questions in!)

- 1. For each of the following topological spaces X and subsets $A \subseteq X$, find (with brief justification) the interior Int(A), closure \overline{A} , boundary ∂A , and set of accumulation points A' of A.
 - (a) $X = \mathbb{R}$ with the Euclidean metric, and A is the set $\{\frac{1}{n} \mid n \in \mathbb{N}\}$.
 - (b) $X = \mathbb{R}$ with the Euclidean metric, and A is the set of rational numbers \mathbb{Q} .
 - (c) $X = \{a, b, c, d\}$ with the topology $\mathcal{T} = \{\emptyset, \{a\}, \{a, b\}, \{c\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}\}$, and $A = \{a, b\}$.
 - (d) $X = \{a, b, c, d\}$ with the topology $\mathcal{T} = \{\emptyset, \{a\}, \{a, b\}, \{c\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}\},$ and $A = \{a, c, d\}.$
 - (e) $X = (\mathbb{R}, \text{ cofinite}), \text{ and } A = \{0\}.$

- (f) $X = (\mathbb{R}, \text{ cofinite}), \text{ and } A = \mathbb{N}.$
- 2. Prove Worksheet #12 Theorem 1.8. *Note:* You may, but do not have to, prove the results in the order they are listed in the theorem statement.
- 3. Prove Worksheet #12 Theorem 1.9.
- 4. Let A, B be subsets of a topological space X.
 - (a) Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (b) Show by example that $\overline{A \cap B}$ need not equal $\overline{A} \cap \overline{B}$.
 - (c) Show that $\partial(\operatorname{Int}(A)) \subseteq \partial A$, but show by example that these sets need not be equal.
 - (d) Show that $\partial(\overline{A}) \subseteq \partial A$, but show by example that these sets need not be equal.
- 5. We proved (by Homework #2 Problem 5) that if A is a subset of a **metric** space X, and x is an accumulation point of A, then every neighbourhood of x contains infinitely many points of A. Is the same statement true for subsets of any topological space? Give a proof, or state a counterexample.
- 6. Prove the following. We will use this result for our study of paths in topological spaces.

Lemma (The pasting lemma). Let (X, \mathcal{T}_X) be a topological space, and suppose $X = A \cup B$ for two **closed** subsets $A, B \subseteq X$. Let (Y, \mathcal{T}_Y) be a topological space and $f: X \to Y$ a function. If $f|_A$ and $f|_B$ are continuous with respect to the subspace topologies on A and B respectively, then f is continuous.