Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Let (X, \mathcal{T}) be a topological space.
 - (a) Let (X, \mathcal{T}) be a topological space. Explain why the condition that X is compact is stronger than the assumption that X has a finite open cover.
 - (b) Show that every topological space has a finite open cover. *Hint:* What is the first axiom of a topology?
- 2. Let X be a topological space.
 - (a) Verify that, if X is T_1 , then any subspace of X is T_1 .
 - (b) Verify that, if X is Hausdorff, then any subspace of X is Hausdorff.
- 3. (a) Prove that any set X with the indiscrete topology \mathcal{T} is connected.
 - (b) Let X be a set with at least two elements, endowed with the discrete topology. Prove that X is disconnected.
- 4. Determine the connected components of \mathbb{R} with the following topologies.
 - (a) the topology induced by the Euclidean metric
 - (b) the discrete topology
 - (c) the indiscrete topology
 - (d) the cofinite topology
- 5. Give an example of a subsets $A \subseteq B$ of \mathbb{R} such that ...
 - (a) A is compact, and B is noncompact
 - (b) B is compact, and A is noncompact
- 6. Suppose that A and B are compact. Show that $A \cup B$ is compact.
- 7. Let (X, \mathcal{T}) be a topological space, and $A \subseteq X$ a subset. Prove that the two following definitions of compactness are equivalent.
 - The subset A is compact if it is a compact topological space with respect to the subspace topology \mathcal{T}_A .
 - The subset A is *compact* if it satisfies the following property: for any collection of open subsets $\{U_i\}_{i\in I}$ of X such that $A\subseteq \bigcup_{i\in I}U_i$, there is a finite subscollection U_1,U_2,\ldots,U_n such that $A\subseteq \bigcup_{i=1}^n U_i$.

Worksheet problems

(Hand these questions in!)

• Worksheet #17 Problems 1, 2(a).

Assignment questions

(Hand these questions in!)

- 1. Let X be an infinite Hausdorff topological space. Prove that X has an infinite discrete subspace A, i.e., an infinite subset A whose subspace topology is the discrete topology on A.
- 2. Let X be a topological space with the following property: for every $x \in X$, there exists a continuous function $f_x : X \to (\mathbb{R}, \text{ Euclidean})$ such that $f_x^{-1}(\{0\}) = \{x\}$. Prove that X is Hausdorff.
- 3. (a) Prove the following result. Hint: See Worksheet #17 Theorems 1.6 and 1.10.

Theorem (Generalized Intermediate Value Theorem). Let (X, \mathcal{T}_X) be a connected topological space, and let $f: X \to \mathbb{R}$ be a continuous function (where the topology on \mathbb{R} is induced by the Euclidean metric). If $x, y \in X$ and c lies between f(x) and f(y), then there exists $z \in X$ such that f(z) = c.

(b) Prove that any continuous function $f:[0,1] \to [0,1]$ has a fixed point, that is, an element $x \in [0,1]$ so that f(x) = x. Hint: Consider the function

$$g: [0,1] \to \mathbb{R}$$
$$g(x) = f(x) - x.$$

- 4. Suppose that (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are path-connected topological spaces. Show that the product $X \times Y$ with the product topology $\mathcal{T}_{X \times Y}$ is path-connected.
- 5. Suppose that $\{A_i\}_{i\in I}$ is a collection of path-connected subsets of a topological space (X, \mathcal{T}) . Show that, if the intersection $\bigcap_{i\in I} A_i$ is nonempty, then the union $\bigcup_{i\in I} A_i$ is path-connected.
- 6. For each of the topological spaces X and subsets $A \subseteq X$ given below, state the following. State the interior Int(A), closure \overline{A} , boundary ∂A , and set of accumulation points A' of A. State whether A is T_1 , Hausdorff, connected, path-connected, and/or compact. No justification needed.
 - (a) Let $X = \{a, b, c, d\}$ with the topology $\mathcal{T} = \{\emptyset, \{a\}, \{a, b\}, \{c\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}\}, A = \{a\}.$
 - (b) X and \mathcal{T} as above, $A = \{b, d\}$.
 - (c) $X = \mathbb{R}$ with the Euclidean topology, $A = (0, 1) \cup \{2\}$.
 - (d) $X = \mathbb{R}$ with the cofinite topology, $A = (0, 1) \cup \{2\}$.
 - (e) $X = \mathbb{R}$ with the topology $\{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}, A = \{-1, 1\}.$
 - (f) X as above, $A = (-\infty, 0)$.
 - (g) X as above, $A = (0, \infty)$.
 - (h) $X = \mathbb{R}$ with the topology $\{U \mid 0 \in U\} \cup \{\emptyset\}, A = \mathbb{N}$.