1 Simplicial Group Actions

These notes follow Bredon "Compact transformation groups" Chapter 3.1.

Definition I. Let X be an (abstract) simplicial complex and G a group. An action of G on X is called a *simplicial group action* if each element $g \in G$ acts by a simplicial map $g: X \to X$.

Our goal is to make sense of the quotient of a simplicial group action.

Exercise 1. (Bonus) Let X be an abstract simplicial complex with a simplicial action by a group G. Show that the action of G induces an action of G on the barycentric subdivision of $\operatorname{sd}(X)$ of X, and that these actions coincide on the geometric realizations under the natural homeomorphism $|X| \cong |\operatorname{sd}(X)|$.

Definition II. Let X be an abstract simplicial complex with vertex set V(X) and simplices S(X). Suppose X admits a simplicial action by a group G. Define the quotient to be the abstract simplicial complex X/G defined as follows. A vertex $v^* \in V(X/G)$ is a G-orbit of a vertices in V(X)/G. A collection of vertices $\{v_0^*, \dots, v_p^*\}$ span a simplex in S(X/G) if at least one choice of representatives $\{v_0, \dots, v_p\}$ of the orbits span a simplex in S(X). The simplex $\{v_0, \dots, v_p\}$ of X is called a simplex S(X).

Exercise 2. (Bonus) Let X be an abstract simplicial complex with a simplicial action by a group G. Verify that the abstract simplicial structure defined on X/G is in fact a valid abstract simplicial structure.

There is a natural simplicial map

$$X \longrightarrow X/G$$
$$v \longmapsto v^*$$

that gives rise to a simplicial map $|X| \to |X/G|$. This map is G-equivariant with respect to the trivial G-action on |X/G|, therefore the map factors through the orbit space |X|/G via continuous maps

$$|X|$$

$$\downarrow$$

$$|X|/G \longrightarrow |X/G|$$

For a simplex $\{v_0, \dots, v_p\}$ of X, and a point $(\sum_{i=0}^p t_i v_i)$ in the simplex, consider the G-orbit of this point in |X|/G. The map $|X|/G \to |X/G|$ is defined as follows.

$$|X|/G \longrightarrow |X/G|$$

$$G \cdot \left(\sum_{i=0}^{p} t_i v_i\right) \longmapsto \sum_{i=0}^{p} t_i (G \cdot v_i) = \sum_{i=0}^{p} t_i v_i^*$$

Exercise 3. (Bonus)

- (a) Verify that the map $X \to X/G$ is simplicial, and G-equivariant with respect to the trivial action of G on X/G.
- (b) Verify that the induced map $|X| \to |X/G|$ factors through |X|/G, and the factorization has the formula claimed.

Unfortunately, in general, this map $|X|/G \to |X/G|$ need not be a homeomorphism, or a homotopy equivalence, as we see in the following exercise.

Exercise 4. Consider the simplicial set R with vertices $V(R) = \{n\}_{n \in \mathbb{Z}}$, and simplices S(R) consisting of the vertices and all edges of the form $\{n, n+1\}$. We can identify its geometric realization with the simplicial structure on the real line \mathbb{R} that has a vertex at each integer point.

(a) Consider the group $G = \mathbb{Z}$; for notational clarity we denote its elements g_m for $m \in \mathbb{Z}$. Consider the action of \mathbb{Z} on R by

$$g_m: V(R) \longrightarrow V(R)$$

 $g_m \cdot n \longmapsto m+n$

Verify that these are well-defined simplicial maps, and describe the action on the geometric realization |R|.

- (b) Describe the simplicial complex R/G. Describe the spaces |R/G| and |R|/G, and the map $|R|/G \to |R/G|$.
- (c) Now consider the barycentric subdivision of sd(R) of R, with the induced action of G. Is sd(R)/G isomorphic to R/G? Again compare the spaces |sd(R)/G| and |sd(R)|/G.
- (d) Barycentrically subdivide a second time. Compare $|\operatorname{sd}^2(R)/G|$ and $|\operatorname{sd}^2(R)|/G$.

Definition III. Let X be an abstract simplicial complex with a simplicial action of a group G. The action is called *regular* if the group G and all of its subgroups $H \subseteq G$ satisfy the following Condition (\mathcal{R}) :

 (\mathcal{R}) Suppose h_0, h_1, \ldots, h_p are elements of H. Suppose that (v_0, v_1, \ldots, v_p) and $(h_0 \cdot v_0, h_1 \cdot v_1, \ldots, h_p \cdot v_p)$ are (p+1)-tuples of (not necessarily distinct) vertices of X such that $\{v_0, v_1, \ldots, v_p\}$ and $\{h_0 \cdot v_0, h_1 \cdot v_1, \ldots, h_p \cdot v_p\}$ are simplices of X. Then there exists some $h \in H$ such that $h \cdot v_i = h_i \cdot v_i$ for all i.

In this case, we call *X* a regular *G*-complex.

Theorem IV. Let X is a G-complex and $H \subseteq G$ a subgroup, and X/H the quotient complex. Then |X|/H has a natural simplicial structure, such that the map $|X|/H \to |X/H|$ is a simplicial isomorphism.

Exercise 5. This exercise will establish Theorem IV.

- (a) Suppose that X is a regular G-complex, and let $\sigma = \{v_0^*, \dots, v_p^*\}$ be a simplex of X/G. Show that the set of simplices of X over σ form a G-orbit of p-simplices.
- (b) Verify that the map $|X|/G \rightarrow |X/G|$ is one-to-one and onto.
- (c) **(Bonus)** Verify that the topology on |X|/G agrees with the weak topology on |X/G|.

We will prove that, if a group G acts simplicially on an abstract simplicial complex X, then the induced action of G of the two-fold barycentric subdivision $\operatorname{sd}^2(X)$ of X is a regular action. To prove this, we introduce a weaker Condition (S) on a group action,

(S) For any $g \in G$ and simplex σ of X, the element g fixes the intersection $\sigma \cap (g \cdot \sigma)$ pointwise.

Equivalently,

(S') For any $g \in G$, if vertices v and $g \cdot v$ are contained in the same simplex, then $v = (g \cdot v)$.

Exercise 6. (a) Verify that Condition (\mathcal{R}) implies Condition (\mathcal{S}') .

(b) Verify that Conditions (S) and (S') are equivalent.

Theorem V. Let X be an abstract simplicial complex, and G a group.

- If G acts simplicially on X, then the induced action of G on the barycentric subdivision sd(X) of X satisfies Condition (S).
- If G acts on X by a simplicial action satisfying Condition (S), then the induced action of G on the barycentric subdivision sd(X) of X satisfies Condition (R).

In particular, if G acts simplicially on X, then the induced action of G on the twice-iterated barycentric subdivision $\operatorname{sd}^2(X)$ of X is a regular group action in the sense of Defintion III.

Exercise 7. Prove Theorem V.

Exercise 8. (Bonus) Suppose that a simplicial action of G on X satisfies Condition (\mathcal{S}). Show that $|X^G| \cong |X|^G$. Here X^G denotes the subcomplex of simplices fixed pointwise by G, and $|X|^G$ the subspace of |X| fixed pointwise by the induced action of G.