1 The interior and the closure of a set

Definition 1.1. (Interior of a set.) Let (X,d) be a metric space, and $A \subseteq X$ a subset. Then the *interior of A*, denoted Int(A) or \mathring{A} , is defined to be the set

$$Int(A) = \{a \in A \mid a \text{ is an interior point of } A\}.$$

Note that $Int(A) \subseteq A$. We will see in the exercises that Int(A) is an open set, and it is in a sense the "largest" open subset of A.

Definition 1.2. (Closure of a set.) Let (X,d) be a metric space, and $A \subseteq X$ a subset. Then the closure of A, denoted \overline{A} , is defined to be the set

$$\overline{A} = \{x \in X \mid \text{ for every } r > 0 \text{ the ball } B_r(x) \text{ contains a point of } A\}.$$

We will see that \overline{A} is a closed set, and that in a sense it is the "smallest" closed set containing A.

Verify that \overline{A} consists of two (mutually exclusive) classes of points:

- (i) elements of A,
- (ii) elements of $X \setminus A$ that are accumulation points of A.

Example 1.3. What is the closure of the open set $(0,1) \subseteq \mathbb{R}$?

In-class Exercises

1. (a) Prove the following theorem.

Theorem 1.4. (Equivalent definition of interior point.) For a subset V of a metric space X, a point $x \in V$ is an interior point of V if and only if there exists an open neighbourhood U of x that is contained in V.

(b) Prove the following theorem.

Theorem 1.5. (Equivalent definition of closure.) For a subset A of a metric space X, the closure of A is equal to the set

 $\overline{A} = \{x \in X \mid every \ open \ neighbourhood \ U \ of \ x \ contains \ a \ point \ of \ A\}.$

2. Prove the following theorem.

Theorem 1.6. Let (X,d) be a metric space, and $A \subseteq X$ a subset.

(i) $Int(A) \subseteq A$

- (v) Int(A) is open in X
- (ii) A is open if and only if A = Int(A)
- (iii) If $A \subseteq B$ then $Int(A) \subseteq Int(B)$
- (iv) Int(Int(A)) = Int(A)

(vi) Int(A) is the largest open subset of A in the following sense: If $U \subseteq A$ is any open subset of A, then $U \subseteq Int(A)$

3. Prove the following theorem.

Theorem 1.7. Let (X,d) be a metric space, and $A \subseteq X$ a subset.

- (i) $A \subseteq \overline{A}$
- (ii) If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$
- (iii) A is closed if and only if $A = \overline{A}$
- $(iv) \ \overline{\overline{A}} = \overline{A}$

- (v) \overline{A} is closed in X
- (vi) \overline{A} is the smallest closed set containing A, in the following sense: If $A \subseteq C$ for some closed set C, then $\overline{A} \subseteq C$
- 4. (Optional). Let A be a subset of a metric space (X,d). Explore the relationships between the sets

$$\operatorname{Int}(X \setminus A)$$
 $X \setminus \operatorname{Int}(A)$ $\overline{X \setminus A}$ $X \setminus \overline{A}$

Determine which of these sets are necessarily equal or necessarily subsets of one another. Give counterexamples to show where equality or containment fails.

- 5. (Optional). Let A_i , $i \in I$, be a collection of subsets of a metric space (X, d). For each of the following statements, either prove the statement, or construct a counterexample.
 - (a) Int $\left(\bigcup_{i\in I} A_i\right) \subseteq \bigcup_{i\in I} \operatorname{Int}(A_i)$
- (c) Int $\left(\bigcap A_i\right) \subseteq \bigcap \operatorname{Int}(A_i)$
- (b) $\operatorname{Int}\left(\bigcup_{i\in I}A_i\right)\supseteq\bigcup_{i\in I}\operatorname{Int}A_i$ (d) $\operatorname{Int}\left(\bigcap_{i\in I}A_i\right)\supseteq\bigcap_{i\in I}\operatorname{Int}(A_i)$

- (e) $\overline{\bigcup_{i \in I} A_i} \subseteq \bigcup_{i \in I} \overline{A_i}$ (f) $\overline{\bigcup_{i \in I} A_i} \supseteq \bigcup_{i \in I} \overline{A_i}$ (g) $\overline{\bigcap_{i \in I} A_i} \subseteq \bigcap_{i \in I} \overline{A_i}$ (h) $\overline{\bigcap_{i \in I} A_i} \supseteq \bigcap_{i \in I} \overline{A_i}$
- 6. (Optional). Prove the following equivalent definition of continuity.

Theorem (An equivalent definition of continuity). Let (X, d_X) and (Y, d_Y) be metric spaces. Then a map $f: X \to Y$ is continuous if and only if

$$f(\overline{A}) \subseteq \overline{f(A)}$$
 for every subset $A \subseteq X$.