Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Consider \mathbb{R} with the Euclidean metric. Which of the following maps $f:\mathbb{R}\to\mathbb{R}$ are homeomorphisms?
 - (a) f(x) = ax + b (b) $f(x) = x^2$
- (c) $f(x) = x^3$
- (d) $f(x) = \sin(x)$
- 2. Let $f: X \to Y$ be an **invertible** function of sets, and let $S \subseteq Y$. The notation $f^{-1}(S)$ could denote either the preimage of S under f, or the image of S under the inverse function f^{-1} . Show that these two sets are equal, so there is no ambiguity in using the notation $f^{-1}(S)$.
- 3. Let $f: X \to Y$ be an **invertible** function of sets.
 - (a) Show that, for subsets $B \subseteq Y$, there is equality $f(f^{-1}(B)) = B$.
 - (b) Show that, for subsets $A \subseteq X$, there is equality $f^{-1}(f(A)) = A$.

Worksheet problems

(Hand these questions in!)

• Worksheet #7 Problems 1, 2.

Assignment questions

No questions this week. Happy Fall Break!