Worksheet problems

No problems this week!

Assignment questions

- 1. (a) For each of the following, determine whether you can replace the symbol \square with \subseteq , \supseteq , =, or none of the above, for an arbitrary metric space X with subsets $A, B \subseteq X$. You only need to submit the final answer $(\subseteq, \supseteq, =,$ or "none of the above").
 - (i) $X \setminus \overline{A} \square \operatorname{Int}(X \setminus A)$

(iv) $\operatorname{Int}(A \cap B) \square \operatorname{Int}(A) \cap \operatorname{Int}(B)$

(ii) $X \setminus \operatorname{Int}(A) \square \overline{X \setminus A}$

- (v) $\overline{A \cup B} \square \overline{A} \cup \overline{B}$
- (iii) $\operatorname{Int}(A \cup B) \square \operatorname{Int}(A) \cup \operatorname{Int}(B)$
- (vi) $\overline{A \cap B} \square \overline{A} \cap \overline{B}$
- (b) Give a complete proof of your solution to part (a) (v).
- (c) Give a counterexample to each instance in part (a) where equality fails.
- (d) Prove or give a counterexample: If $A \subseteq X$, then $\partial A = \overline{A} \setminus A$.
- (e) Prove or give a counterexample: If $U \subseteq X$ is open, then $U = \operatorname{Int}(\overline{U})$.
- 2. Let X and Y be metric spaces. Let $X \times Y$ denote their product, viewed as a metric space with the product metric. Let $A \subseteq X$ and $B \subseteq Y$.
 - (a) Determine in general the relationship (\subseteq , \supseteq , =, or "none of the above") between $\overline{A} \times \overline{B}$ and $\overline{A \times B}$. Justify your result with proofs and/or counterexamples.
 - (b) Do the same for the relationship between $\operatorname{Int}(A) \times \operatorname{Int}(B)$ and $\operatorname{Int}(A \times B)$.
- 3. Let (X,d) be a metric space. Define the distance between nonempty subsets A,B in X by

$$D(A,B) = \inf_{\substack{a \in A \\ b \in B}} d(a,b).$$

- (a) Suppose that A and B are nonempty, sequentially compact subsets of X. Prove that the distance in realized, in the sense that there exists some $a_0 \in A$ and $b_0 \in B$ with $D(A, B) = d(a_0, b_0)$. Hint: Homework #5 Problem 2(b).
- (b) Show by example that the distance may not be realized for general nonempty subsets A and B, even if they are closed.
- 4. **Definition (Equivalent Metrics).** Let X be a set. Two metrics d_1 and d_2 on X are called *equivalent* (or *topologically equivalent*) if they satisfy the following relationship: A subset $U \subseteq X$ is open in the metric space (X, d_1) if and only if it is open in the metric space (X, d_2) .

(Later in the course, we will be able to describe this condition by saying that the two metrics induce the same topology on X).

(a) Prove that the metrics d_1 and d_2 are equivalent if and only if the identity functions

$$(X, d_1) \longrightarrow (X, d_2)$$
 $(X, d_2) \longrightarrow (X, d_1)$ $x \longmapsto x$

are both continuous.

- (b) Let X be a nonempty finite set. Show that all metrics on X are topologically equivalent.
- (c) Consider the natural numbers N. Show that (N, Euclidean) and (N, discrete) are topologically equivalent. Conclude that a bounded metric can be topologically equivalent to an unbounded metric.
- (d) Give an example of a set X and two metrics on X that are not topologically equivalent.
- (e) For a metric d on the set X, use the notation $B_r^d(x)$ to denote the open ball of radius r about a point x. Show that the metrics d_1 and d_2 are equivalent if and only if open balls "nest" in the following sense: for any point $x \in X$ and radius r > 0, there exists $r_1 > 0$ such that

$$B_{r_1}^{d_1}(x) \subseteq B_r^{d_2}(x)$$

and there exists $r_2 > 0$ such that

$$B_{r_2}^{d_2}(x) \subseteq B_r^{d_1}(x).$$

(f) Use your solution to Homework #1 Problem 2 to give an informal argument that the following metrics are \mathbb{R}^2 are all equivalent.

$$d_1((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$$

$$d_2((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$d_{\infty}((x_1, y_1), (x_2, y_2)) = \max(|x_1 - x_2|, |y_1 - y_2|)$$

(In fact, the analogous metrics on \mathbb{R}^n are all equivalent).