Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Consider the sequence of real numbers $1, 2, 3, 4, 5, \ldots$ Which of the following are subsequences?
 - (a) $1, 1, 2, 2, 3, 3, 4, 4, 5, 5, \dots$

(c) $2, 4, 6, 8, 10, 12, \dots$

(b) $1, 1, 1, 1, 1, 1, 1, \dots$

- (d) $1, 3, 2, 4, 5, 7, 6, 8, 9, 11, \dots$
- 2. Let (X,d) be a metric space, and let $(a_n)_{n\in\mathbb{N}}$ be a sequence of points in X. Recall that we proved that, if $\lim_{n\to\infty} a_n = a_\infty$, then any subsequence of $(a_n)_{n\in\mathbb{N}}$ also converges to a_∞ .
 - (a) Suppose that $(a_n)_{n\in\mathbb{N}}$ has a subsequence that does not converge. Prove that $(a_n)_{n\in\mathbb{N}}$ does not converge.
 - (b) Suppose that $(a_n)_{n\in\mathbb{N}}$ has a subsequence converging to $a\in X$, and a different subsequence converging to $b\in X$, with $a\neq b$. Prove that $(a_n)_{n\in\mathbb{N}}$ does not converge.
- 3. Let (X,d) be a metric space, and let $(a_n)_{n\in\mathbb{N}}$ be a sequence of points in X. Show that, if $\{a_n \mid n \in \mathbb{N}\}$ is a finite set, then $(a_n)_{n\in\mathbb{N}}$ must have a subsequence that is constant (and, in particular, convergent).
- 4. Let (X,d) be a metric space, and let $(a_n)_{n\in\mathbb{N}}$ be a sequence of points in X. Suppose that the set $\{a_n \mid n \in \mathbb{N}\}$ is unbounded. Explain why $(a_n)_{n\in\mathbb{N}}$ cannot converge.
- 5. Find examples of sequences $(a_n)_{n\in\mathbb{N}}$ of real numbers with the following properties.
 - (a) $\{a_n \mid n \in \mathbb{N}\}\$ is unbounded, but $(a_n)_{n \in \mathbb{N}}$ has a convergent subsequence
 - (b) $(a_n)_{n\in\mathbb{N}}$ has no convergent subsequences
 - (c) $(a_n)_{n\in\mathbb{N}}$ is not an increasing sequence, but it has an increasing subsequence
 - (d) $(a_n)_{n\in\mathbb{N}}$ has four subsequences that each converge to a distinct limit point
- 6. We defined bounded as follows.

Definition (Bounded subset.) Let (X,d) be a metric space. A subset $S \subseteq X$ is called *bounded* if there is some $x_0 \in X$ and some $R \in \mathbb{R}$ with R > 0 such that $S \subseteq B_R(x_0)$.

Show this is equivalent to the following definition.

Definition (Bounded subset.) Let (X,d) be a metric space, and $S \subseteq X$ a subset. Then S is bounded, for **every** $x \in S$, there is some $R_x > 0$ such that $S \subseteq B_{R_x}(x)$.

- 7. (a) Negate the definition of bounded to state what it means for a subset S of a metric space to be unbounded.
 - (b) Is \emptyset a bounded set?
 - (c) Show that any **finite** subset of a metric space is bounded.
- 8. Let (X,d) be a metric space and let $S \subseteq X$ be a bounded set. Show that any subset of S is bounded.

- 9. Let (X, d_X) and (Y, d_Y) be bounded metric spaces. Show that $(X \times Y, d_{X \times Y})$ is bounded. What if we only assumed X is bounded?
- 10. Give examples of subsets of \mathbb{R} (with the Euclidean metric) that satisfy the following.

(a) open, and bounded

(c) open, and unbounded

(b) closed, and bounded

- (d) closed, and unbounded
- 11. Write down a bounded sequence in \mathbb{R} . Can you identify a convergent subsequence?
- 12. Give an example of a metric space (X, d) and a continuous function $f: X \to \mathbb{R}$ such that f has a finite supremum on X, but f does not achieve its supremum at any point $x \in X$.

Worksheet problems

(Hand these questions in!)

• Worksheet #6, Problem 2, 3(a), 3(b), 4.

Assignment questions

(Hand these questions in!)

- 1. Let $f: X \to Y$ be a continuous function of metric spaces. For each of the following statements, either prove the statement, or state a counterexample. You may state the counterexample without proof.
 - (a) If $U \subseteq X$ is open, then $f(U) \subseteq Y$ is open.
 - (b) If $C \subseteq X$ is closed, then $f(C) \subseteq Y$ is closed.
 - (c) If $C \subseteq X$ is sequentially compact, then $f(C) \subseteq Y$ is sequentially compact. Hint: This result could be useful on for the next two assignment problems!
 - (d) If $D \subseteq Y$ is sequentially compact, then $f^{-1}(D)$ is sequentially compact.
 - (e) If $B \subseteq X$ is bounded, then $f(B) \subseteq Y$ is bounded.
 - (f) If $D \subseteq Y$ is bounded, then $f^{-1}(D) \subseteq X$ is bounded.

Hint: Below are some continuous functions that are useful sources of counterexamples. Subsets of \mathbb{R} have the Euclidean metric unless otherwise noted.

$$(\mathbb{R}, \text{discrete metric}) \longrightarrow (\mathbb{R}, \text{Euclidean}) \qquad \mathbb{R} \longrightarrow (-1, 1)$$

$$x \longmapsto x \qquad \qquad x \longmapsto \frac{\arctan(x)}{\pi/2}$$

$$(0, \infty) \longrightarrow (0, \infty) \qquad \qquad \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{1}{x} \qquad \qquad x \longmapsto 0$$

- 2. (a) Suppose that B is a nonempty closed and bounded subset of \mathbb{R} . Explain why the Least Upper Bound Property of \mathbb{R} implies that the supremum of B exists, and show that B contains its supremum.
 - (b) Prove the following theorem. This theorem is one of the important reasons we care about sequential compactness!

Theorem (Extreme value theorem for metric spaces). Let (X, d) be a metric space and C a nonempty, sequentially compact subset of X. Let $f: X \to \mathbb{R}$ be a continuous function. Then there is a point $c \in C$ so that

$$f(c) = \sup_{x \in C} f(x).$$

In other words, the restriction $f|_C$ achieves its supremum.

3. Let X and Y be (nonempty) metric spaces. Let $X \times Y$ be their Cartesian product endowed with the product metric. Let $S \subseteq X$ be a subset, viewed as a metric space itself under the restriction of the metric on X.

For each of the following statements: prove the statement, or give a counterexample. You may state the counterexample without proof.

- (a) If X is a finite set, then X is sequentially compact.
- (b) If X and Y are sequentially compact, then so is $X \times Y$.
- (c) If $X \times Y$ is sequentially compact, then so are X and Y.
- (d) If X is sequentially compact, then so is S.
- (e) If $A, B \subseteq X$ are sequentially compact, then so is $A \cup B$.
- (f) If some family of subsets $A_i \subseteq X$, $(i \in I)$, are all sequentially compact, then so is $\bigcup_{i \in I} A_i$.
- (g) If $A, B \subseteq X$ are sequentially compact, then so is $A \cap B$.
- 4. (a) **Definition (Open cover).** A collection $\{U_i\}_{i\in I}$ of open subsets of a metric space X is an *open cover* of X if $X = \bigcup_{i\in I} U_i$. In other words, every point in X lies in some set U_i .

Suppose that (X, d) is a sequentially compact metric space. Let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open cover of X. Prove that (associated to the open cover \mathcal{U}) there exists a real number $\delta > 0$ with the following property: for every $x \in X$, there is some associated index $i_x \in I$ such that $B_{\delta}(x) \subseteq U_{i_x}$.

- (b) **Definition** (ϵ -nets of a metric space). Let (X, d) be a metric space. A subset $A \subseteq X$ is called an ϵ -net if $\{B_{\epsilon}(a) \mid a \in A\}$ is an open cover of X. Suppose that (X, d) is a sequentially compact metric space, and $\epsilon > 0$. Prove that X has
- a finite ϵ -net. (c) Let (X, d) be a sequentially compact metric space, and let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open cover

(c) Let (X, d) be a sequentially compact metric space, and let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open cover of X. Show that there exists some finite collection $U_{i_1}, \ldots, U_{i_n} \in \mathcal{U}$ so that $\{U_{i_1}, \ldots, U_{i_n}\}$ covers X, i.e., so that $X = U_{i_1} \cup \cdots \cup U_{i_n}$.

We will return to these results later in the course when we study *compactness*.