Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Determine which of the following subsets of of \mathbb{R}^2 can be expressed as the Cartesian product of two subsets of \mathbb{R} .
 - (a) $\{(x,y) \mid x \in \mathbb{Q}\}$
- (c) $\{(x,y) \mid x > y\}$ (e) $\{(x,y) \mid x^2 + y^2 < 1\}$ (g) $\{(x,y) \mid x = 3\}$
- (b) $\{(x,y) \mid x,y \in \mathbb{Q}\}$
- (d) $\{(x,y) \mid 0 < y \le 1\}$ (f) $\{(x,y) \mid x^2 + y^2 = 1\}$ (h) $\{(x,y) \mid x + y = 3\}$
- 2. (a) For which values of r is the square $(-r,r) \times (-r,r) \subseteq \mathbb{R}^2$ contained in the unit ball $\{(x,y) \mid x^2 + y^2 < 1\}$?
 - (b) For which values of r is the r-ball $\{(x,y) \mid x^2 + y^2 < r^2\}$ contained in the square $(-1,1) \times$ $(-1,1) \subset \mathbb{R}^2$?
- 3. Consider the real numbers \mathbb{R} with the Euclidean metric. Find examples of subsets A of \mathbb{R} with the following properties.
 - (a) $Int(A) = \emptyset$
 - (b) $Int(A) = \mathbb{R}$
 - (c) Int(A) = A
 - (d) Int(A) is strictly contained in A.
 - (e) $\overline{A} = \emptyset$
 - (f) $\overline{A} = \mathbb{R}$
 - (g) $\overline{A} = A$
 - (h) A is strictly contained in \overline{A} .
 - (i) $\partial(A) = \emptyset$
 - (j) A has a nonempty boundary, and A contains its boundary ∂A .
 - (k) A has a nonempty boundary, and A contains no points in its boundary
 - (1) A has a nonempty boundary, and A contains some but not all of the points in its boundary.
 - (m) A has a nonempty boundary, and $A = \partial A$.
 - (n) A is a **proper** subset of ∂A .
 - (o) $\partial(A) = \mathbb{R}$

Worksheet problems

(Hand these questions in!)

• Worksheet # 5 Problem 2

Assignment questions

(Hand these questions in!)

1. Consider the following definition.

Definition (Boundary of a set A.) Let (X, d) be a metric space, and let $A \subseteq X$. Then the boundary of A, denoted ∂A , is the set $\overline{A} \setminus \operatorname{Int}(A)$.

Let (X, d) be a metric space, and let $A \subseteq X$.

- (a) Prove that $Int(A) = \overline{A} \setminus \partial A$.
- (b) Prove that $\partial A = \overline{A} \cap (\overline{X \setminus A})$.
- (c) Conclude from part (b) that ∂A is closed.
- (d) Additionally conclude from part (b) that $\partial A = \partial (X \setminus A)$.
- (e) Prove the following characterization of points in the boundary:

Theorem (An equivalent definition of ∂A). Let (X,d) be a metric space, and let $A \subseteq X$. Then $x \in \partial A$ if and only if every ball $B_r(x)$ about x contains at least one point of A, and at least one point of $X \setminus A$.

- (f) Deduce that we can classify every point of X in one of three mutually exclusive categories:
 - (i) interior points of A;
 - (ii) interior points of $X \setminus A$;
 - (iii) points in the (common) boundary of A and $X \setminus A$.
- 2. Consider the real numbers \mathbb{R} with the Euclidean metric. For each of the following subsets $A \subseteq \mathbb{R}$, find (with brief justification) the interior Int(A), closure \overline{A} , boundary ∂A , and set of accumulation points A' of A.
 - (a) A is the whole real number line \mathbb{R}
 - (b) A is the half-open interval (0,1].
 - (c) A is the integers \mathbb{Z} .
 - (d) A is the set $\{\frac{1}{n} \mid n \in \mathbb{N}\}$.
 - (e) A is the set of rational numbers \mathbb{Q} .
- 3. **Definition (Dense subset).** Let (X, d) be a metric space and $A \subseteq X$ a subset. Then A is called *dense* in X if it satisfies the following equivalent conditions.
 - (i) $\overline{A} = X$.
 - (ii) Every point of X is either contained in A, or is an accumulation point of A.
 - (iii) For any x in X, there is a sequence of points in A converging to x.
 - (iv) The complement $X \setminus A$ contains no nonempty open subsets of X.
 - (v) A intersects every nonempty open subset U of X (this means $U \cap A \neq \emptyset$).
 - (a) Prove that the conditions are, in fact, equivalent.
 - (b) Let $f: X \to Y$ be a continuous function of metric spaces. If $A \subseteq X$ is a dense subset, show that its image f(A) is dense in f(X).

- (c) Show by example that the preimage of a dense set of Y under a continuous map need not be dense. Hint: Do Problem 4 first.
- 4. **Definition (The discrete metric).** Given a set X, the discrete metric on X is the metric $d: X \times X \to \mathbb{R}$ defined by

$$d(x, x') = \begin{cases} 0, & x = x' \\ 1, & x \neq x' \end{cases}$$
 for all $x, x' \in X$.

We verified on Worksheet #1 that d is in fact a metric. Let (X, d) be a metric space with the discrete metric.

- (a) Show that every subset of X is both open and closed.
- (b) Let (Y, d_Y) be any metric space. Prove that **every** function $f: X \to Y$ is continuous.
- (c) Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of points in X. Give necessary and sufficient conditions (with proof) for this sequence to be convergent.
- (d) Show that for every subset A of X, $\operatorname{Int}(A) = A = \overline{A}$ and $\partial A = \emptyset$.
- (e) Show that every subset A of X has no accumulation points.
- (f) What subsets of X are dense in X?