
Math 490 Homework #13 Friday 6 December 2024

Warm-up questions

(These warm-up questions are optional, and won’t be graded.)

1. Let (X, T ) be a topological space.

(a) Let (X, T ) be a topological space. Explain why the condition thatX is compact is stronger
than the assumption that X has a finite open cover.

(b) Show that every topological space has a finite open cover.
Hint: What is the first axiom of a topology?

2. Let (X, T ) be a topological space, and A ⊆ X a subset. Prove that the two following definitions
of compactness are equivalent.

• The subset A is compact if it is a compact topological space with respect to the subspace
topology TA.

• The subset A is compact if it satisfies the following property: for any collection of open
subsets {Ui}i∈I of X such that A ⊆

⋃
i∈I Ui, there is a finite subscollection U1, U2, . . . , Un

such that A ⊆
⋃n

i=1 Ui.

3. Give an example of a subsets A ⊆ B of R such that . . .

(a) A is compact, and B is noncompact

(b) B is compact, and A is noncompact

4. Determine the connected components of R with the following topologies.

(a) the topology induced by the Euclidean metric

(b) the discrete topology

(c) the indiscrete topology

(d) the cofinite topology

Worksheet problems

(Hand these questions in!)

• Worksheet 16, Problems 1, 2.

• Worksheet 17, Problems 2, 3, 4.

Assignment questions

(Hand these questions in!)

1. Definition (Connected components of a topological space). Let (X, TX) be
a topological space. A subset C ⊆ X is called a connected component of X if

(i) C is connected;

(ii) if C is contained in a connected subset A, then C = A.

Page 1



Math 490 Homework #13 Friday 6 December 2024

In other words, the connected components are the ‘maximal’ connected subsets of
X.

(a) Show that any connected component of X is closed. Hint: Homework #12 Problem 3.

(b) Let x ∈ X. Show that the set ⋃
A is a connected set,

x∈A

A

is a connected component of X.

(c) Show that (as a set) X is the disjoint union of its connected components. In other words,
show that every point of X is contained in one, and only one, connected component.

(d) Determine the connected components of Q (with the Euclidean metric).
(Remember to rigorously justify your answer!)

(e) Deduce from the example of Q that connected components need not be open.

(f) Suppose that X has the property that every point has a connected neighbourhood. Show
that the connected components of X are open.

2. In this problem we will prove the theorem,

Theorem (Products of compact spaces). Let X and Y be nonempty topological
spaces. Then X × Y is compact with respect to the product topology if and only if
both X and Y are compact.

Let X and Y be nonempty compact topological spaces. Let U be any open cover of X × Y
(with the product topology).
For this exercise, we will call a subset A ⊆ X good if A×Y is covered by a finite sub-collection
of open sets in U . Our goal is to show that X is good.

(a) Suppose that A1, . . . , Ar is a finite collection of good subsets of X. Show that their union
is good.

(b) Fix x ∈ X. For each y ∈ Y , explain why it is possible to find open sets Uy ∈ X and
Vy ∈ Y so that (x, y) ∈ Uy × Vy and Uy × Vy is contained in some open set in U .

(c) Explain why there is a finite list of points y1, . . . , yn ∈ Y so that the sets {Vy1 , . . . , Vyn}
cover Y .

(d) Define
Ux = Uy1 ∩ Uy2 ∩ · · · ∩ Uyn .

Show that Ux is a good set, and is an open subset of X containing x. This shows that
every element x ∈ X is contained in a good open set Ux.

(e) Consider the collection of open subsets {Ux | x ∈ X} of X. Use the fact that X is compact
to conclude that X is good.

(f) Now, let X and Y be two nonempty topological spaces. Suppose that their Cartesian
product X ×Y is compact with respect to the product topology. Prove that X and Y are
compact. Hint: Consider the projection maps πX , πY .

3. Prove the following result. This theorem is a major reason we care about compactness!
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Theorem (Generalized Extreme Value Theorem). Let X be a nonempty
compact topological space, and let f : X → R be a continuous function (where R has
the standard topology). Then sup(f(X)) < ∞, and there exists some z ∈ X such
that f(z) = sup(f(X)). That is, f achieves its supremum on X.

Hint : See Worksheet #17 Problems 2, 4(a), 4(b), and Homework #5 Problem 2(a).

4. (a) Let (X, d) be a metric space. Suppose that (an)n∈N is a sequence in X that contains no
convergent subsequence. Prove that, for every x ∈ X, there is some ϵx > 0 such that
Bϵx(x) contains only finitely many points of the sequence.

(b) Prove that any compact metric space is sequentially compact.

Combined with Homework #5 Problem 4, this exercise proves:

Theorem (Compactness vs sequential compactness in metric spaces). Let
(X, d) be a metric space. Then X is compact if and only if X is sequentially compact.

(Neither direction of this theorem holds, however, for arbitrary topological spaces!)

Combined with Worksheet #6 Problem 4, this exercise proves:

Theorem (Compactness in Rn). Endow Rn with the Euclidean metric. A
subspace S ⊆ Rn is compact if and only if it is closed and bounded.
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