Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Let X and Y be topological spaces. Let $X \times Y$ be their product (with the product topology) and $\pi_X : X \times Y \to X$ the projection map. Prove that π_X is an open map.
- 2. Let (X, \mathcal{T}) be a topological space. Show that any subset $A = \{x\} \subseteq X$ of a single element is connected.
- 3. Let $X = \{a, b, c, d\}$ with the topology

$$\mathcal{T} = \{\emptyset, \{a\}, \{a,b\}, \{c\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}, \{a,b,c,d\}\}.$$

Is X connected?

- 4. (a) Show that, for $a, b \in \mathbb{R}$, the subsets \emptyset , $\{a\}$, (a, b), (a, b], [a, b), [a, b], (a, ∞) , $[a, \infty)$, (∞, b) , $(\infty, b]$, and \mathbb{R} of \mathbb{R} are all intervals in the sense of Problem a.
 - (b) Show that every interval must have one of these forms.
- 5. Give an example of a subset A of \mathbb{R} (with the standard topology) such that A is not connected, but \overline{A} is connected. (Compare to Assignment Problem 3)
- 6. Let X be a disconnected topological space. Let $f: X \to Y$ be a continuous function from X to a topological space Y. Show by example that f(X) may be disconnected, or may be connected.

Worksheet problems

(Hand these questions in!)

- Worksheet #14 Problems 1, 3.
- Worksheet #15 Problems 3(a), 4.

Assignment questions

(Hand these questions in!)

- 1. Let A be a subset of a topological space (X, \mathcal{T}) . Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of points in A that converge to a point $a_{\infty} \in X$. Prove that $a_{\infty} \in \overline{A}$.
- 2. Consider $\{0,1\}$ as a topological space with the discrete topology. Show that a topological space (X,\mathcal{T}) is disconnected if and only if there is a continuous **surjective** function $X \to \{0,1\}$.
- 3. Let (X, \mathcal{T}_X) be a topological space, and let $A \subseteq X$ be a connected subset. Let B be any subset such that $A \subseteq B \subseteq \overline{A}$. Prove that B is connected. Remark: This shows in particular that if A is connected, then so is \overline{A} .
- 4. In this problem, we will prove the following result:

Theorem (Connectivity of product spaces). Let X and Y be nonempty topological spaces. Then the product space $X \times Y$ (with the product topology) is connected if and only if both X and Y are connected.

Hint: See Worksheet #15, Lemma 1.7.

- (a) Suppose that $X \times Y$ is nonempty and connected in the product topology $\mathcal{T}_{X \times Y}$. Prove that X and Y are connected.
- (b) Suppose that (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are nonempty, connected spaces, and suppose that $(a, b) \in X \times Y$. Prove that $(X \times \{b\}) \cup (\{a\} \times Y)$ is a connected subset of the product $X \times Y$ with the product topology $\mathcal{T}_{X \times Y}$.
- (c) Suppose that (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are nonempty, connected spaces. Prove that $X \times Y$ is connected in the product topology $\mathcal{T}_{X \times Y}$.
- 5. (a) Recall the Intermediate Value Theorem from real analysis (which you may use without proof).

Intermediate Value Theorem. If $f:[a,b] \to \mathbb{R}$ is continuous and d lies between f(a) and f(b) (i.e. either $f(a) \le d \le f(b)$ or $f(b) \le d \le f(a)$), then there exists $c \in [a,b]$ such that f(c)=d.

Define a subset $A \subseteq \mathbb{R}$ to be an *interval* if whenever $x, y \in A$ with x < y, and x < z < y for some $z \in \mathbb{R}$, then $z \in A$. Prove that any interval of \mathbb{R} is connected. *Hint:* Problem 2.

(b) Prove that any subset of \mathbb{R} that is not an interval is disconnected.

These last two results together prove:

Theorem (Connected subsets of \mathbb{R}). A subset of \mathbb{R} is a connected if and only if it is an interval.

6. (a) Prove the following result. Hint: See Worksheet #15 Problem 4.

Theorem (Generalized Intermediate Value Theorem). Let (X, \mathcal{T}_X) be a connected topological space, and let $f: X \to \mathbb{R}$ be a continuous function (where the topology on \mathbb{R} is induced by the Euclidean metric). If $x, y \in X$ and c lies between f(x) and f(y), then there exists $z \in X$ such that f(z) = c.

(b) Prove that any continuous function $f:[0,1] \to [0,1]$ has a fixed point. (In other words, show that there is some $x \in [0,1]$ so that f(x) = x).

Hint: Consider the function

$$g: [0,1] \to \mathbb{R}$$
$$g(x) = f(x) - x.$$