Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Let $X = \{a, b, c, d\}$ with the topology $\mathcal{T} = \{\emptyset, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}, X\}$.
 - (a) Which elements of X are limits of the constant sequence $x_n = d$? The constant sequence $x_n = a$? The constant sequence $x_n = b$?
 - (b) Give an example of a sequence in X that does not converge.
- 2. Let $X = \{0, 1\}$. Find a topology on X for which the following sequence converges: $0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1$
- 3. Suppose that (X, \mathcal{T}) is a topological space, and that $(a_n)_{n \in \mathbb{N}}$ is a sequence in X that converges to $a_\infty \in X$. Prove that any subsequence of $(a_n)_{n \in \mathbb{N}}$ converges to $a_\infty \in X$.
- 4. Let X be a topological space with the indiscrete topology. Prove that any sequence of points in X converges to every point in X.

Worksheet problems

(Hand these questions in!)

- Worksheet #12 Problem 4.
- Worksheet #13 Problems 2, 3.

Assignment questions

(Hand these questions in!)

1. Prove the following result.

Lemma (The pasting lemma). Let (X, \mathcal{T}_X) be a topological space, and suppose $X = A \cup B$ for two **closed** subsets $A, B \subseteq X$. Let (Y, \mathcal{T}_Y) be a topological space and $f: X \to Y$ a function. If $f|_A$ and $f|_B$ are continuous (with respect to the subspace topologies on A and B), then f is continuous.

2. **Definition (path).** Let X be a topological space, and let $I = [0, 1] \subseteq \mathbb{R}$ be the unit interval with the standard topology. A *path* in X is a continuous function $\gamma : I \to X$. For points $x, y \in X$, we say that a path γ is a *path from* x *to* y if $\gamma(0) = x$ and $\gamma(1) = y$.

Note that the path γ does not need to be injective. For example, the constant path $\gamma(t) = x$ is a path from x to x.

For these problems—as always—you may assume any standard results about which functions between Euclidean spaces, with the standard topology, are continuous.

- (a) Given points $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$ in \mathbb{R}^n , construct a path from x to y.
- (b) Let x, y be points in the space \mathbb{R} with the cofinite topology. Construct (with justification) a path from x to y.

(c) Let $X = \{a, b, c, d\}$ be a topological space with the topology

$$\mathcal{T} = \Big\{ \varnothing, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\} \Big\}.$$

Construct (with justification) a path in X from a to d.

- 3. Let X be a topological space.
 - (a) Let $x, y \in X$ and suppose that there exists a path from x to y. Show that there exists a path from y to x.
 - (b) Let $x, y, z \in X$. Show that, if there exists a path from x to y, and a path from y to z, then there exists a path from x to z. Hint: Assignment Problem 1.

Remark: Although we will not formally define this term, we remark that this problem shows that, for a topological space X, the condition "there exists a path from x to y" defines an equivalence relation on the points of X.

4. (a) Suppose that (X, \mathcal{T}_X) is a topological space, and that (Y, \mathcal{T}_Y) is a **Hausdorff** topological space. Let $f: X \to Y$ and $g: X \to Y$ be continuous functions. Suppose that $A \subseteq X$ is a subset such that

$$f(a) = g(a)$$
 for all $a \in A$.

Prove that

$$f(x) = g(x)$$
 for all $x \in \overline{A}$.

This says that the values of a continuous function on \overline{A} are completely determined by its values on A.

- (b) Suppose you have a function of topological spaces $f: \mathbb{R} \to Y$, where \mathbb{R} has the standard topology and Y is Hausdorff. In a sentence, explain why the previous problem implies that a continuous function f is completely determined by its values on \mathbb{Q} .
- 5. Let $f: X \to Y$ be a continuous map of topological spaces. If X is Hausdorff, does it follow that f(X) (viewed as a subspace of Y with the subspace topology) must be Hausdorff? Give a proof, or find a counterexample.
- 6. For each of the following sequences: find the set of all limits, or determine that the sequence does not converge. No justification needed.
 - Let $X = \{a, b, c, d\}$ have the topology $\{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c, d\}\}$.
 - (i) $a, b, a, b, a, b, a, b, \cdots$
- (ii) $c, c, c, c, c, c, c, c, c, \ldots$
- Let \mathbb{R} have the topology $\mathcal{T} = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}.$
 - (iii) 0, 0, 0, 0, 0, 0, \cdots (iv) $(n)_{n \in \mathbb{N}}$

 $(\mathbf{v}) (-n)_{n \in \mathbb{N}}$

• Let \mathbb{R} have the topology $\mathcal{T} = \{\emptyset\} \cup \{U \subseteq \mathbb{R} \mid 0 \in U\}.$

(vi)
$$0, 0, 0, 0, 0, 0, \cdots$$

(vii)
$$1, 1, 1, 1, 1, 1, \cdots$$