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1. (13 points) For each of the following statements: if the statement is always true, write
“True”. Otherwise, state a counterexample. No further justification needed.

Note: If the statement is not always true, you can receive partial credit for writing
“False” without a counterexample.

(a) Let X be a metric space, x ∈ X, and r > 0. Then any two points y, z in the ball
Br(x) must be distance at most 2r apart.

True. Hint: Use the triangle inequality.

(b) Let f : X → Y be a continuous function of metric spaces X and Y . If (an)n∈N is a
sequence in X that is Cauchy, then its image

(
f(an)

)
n∈N in Y is also Cauchy.

False. Let X = Y = (0,∞) with the Euclidean metric. Consider the continuous
function f : (0,∞) → (0,∞) given by f(x) = 1

x
. Then the sequence an = 1

n
is

Cauchy in X, but its image f(an) = n is not Cauchy.

(c) Let S be a finite subset of a topological space X. Then S has no accumulation
points.

False. Consider X = S = {0, 1} with the indiscrete topology. Then both 0 and 1
are accumulation points of S.

(d) Let (X, d) be a metric space. Then X is T1, T2 (Hausdorff), and regular.

True. See Worksheet #4 Problem 2(a), Homework #6 Problem 5, and Homework
#11 Problem 5(c).

(e) Let X and Y be two non-empty topological spaces with the discrete topology. Then
the product topology on X × Y is the discrete topology.

True. Hint: It is enough to verify that the singleton set {(x, y)} is open for each
point (x, y) ∈ X × Y . Observe that {(x, y)} = {x} × {y}, where {x} ⊆ X and
{y} ⊆ Y are open.

(f) Let X be any topological space, and let R have the standard topology. Then a
function f : X → R is continuous if and only if f−1((a, b)) is open for every open
interval (a, b) ⊆ R.

True. Hint: The open intervals {(a, b) | a, b ∈ R} form a basis for the standard
topology on R. The statement then follows from Worksheet #11 Problem 4.
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(g) Endow R and Q with the topologies induced by the Euclidean metric. Then the
only continuous maps f : R→ Q are constant maps.

True. Hint: Homework #10 Problem 2 implies that R is connected, and moreover
that the continuous image of a connected set is connected. By Homework #11
Problem 1(d), the maximal connected subsets of Q are single points {q}, so the
image of f must be a point.

(h) Let X be any topological space, and let R have the standard topology. Let f : X →
R be a continuous function, and let c ∈ R. Then the set {x ∈ X | f(x) ≤ c} is
closed in X.

True. Hint: This set is exactly f−1((−∞, c]). The preimage of a closed set under
a continuous function is closed.

(i) If A is a subspace of a space X such that Int(A) is connected, then A is connected.

False. Consider A = (0, 1) ∪ {2} as a subspace of X = R with the standard
topology. Then A is disconnected, but Int(A) = (0, 1) is connected.

(j) Consider R with the topology {(a,∞) | a ∈ R} ∪ {∅,R}. There is no (continuous)
path from 0 ∈ R to 1 ∈ R.

False. The function f : [0, 1]→ R given by f(t) = t defines a path from 0 to 1.

(k) Let X be a topological space. Then every connected component of X is both open
and closed.

False. For example, the connected components of Q are singleton sets {x} (Home-
work #11 Problem 1(d)), which are closed but not open.

(l) Let X be a topological space, and let A,B be a separation of X. Then A is a union
of connected components of X, as is B.

True. Hint: Worksheet #14 Problem 5 states that every connected subset of X
must be contained in either A or B.

(m) Let S be a compact subset of a metric space X. Then S is complete.

True. Hint: By Homework #11 Problem 4, the subset S is compact if and only if it
is sequentially compact. Worksheet #8 Problem 1 states that sequentially compact
spaces are complete.
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2. (4 points) Consider the following statement.

Let f : X → Y be a continuous function of topological spaces.

If X is , then so is f(X).

Circle all properties that truthfully fill in the blank. No justification needed.

metrizable T2 (Hausdorff) connected disconnected

path-connected discrete compact non-compact

(Here, by “X is discrete” we mean “X has the discrete topology”.)

3. (4 points) Consider the following topological spaces X and their subsets S. In each
case, compute the interior Int(S), the closure S, the boundary ∂S, and the set S ′ of
accumulation points of S. No justification necessary.

(a) Let X = {a, b, c, d} with the topology
{
∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, c, d}

}
.

Let S = {a, b, d}.

Int(S):
{a, b}

S:
{a, b, c, d}

∂S:
{c, d}

S ′:
{c, d}

(b) Let X = R with the topology T = {U | 0 ∈ U} ∪ {∅}. Let S = {0, 1}.

Int(S):
{0, 1}

S: R ∂S:
R\{0,1}

S ′:
R\{0}
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4. (4 points) For each of the following sequences: state the set of all limits, or, if the se-
quence has no limits, write “Does not converge”. No justification necessary.

(a) Let X = {a, b, c, d} have the topology {∅, {a}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}}.

(i) a, b, a, b, a, b, a, b, · · · limits: {b, c, d}

(ii) c, d, c, d, c, d, c, d, · · · Does not converge.

(b) Let R have the cofinite topology.

(ii) 1, 1
2
, 1

3
, 1

4
, 1

5
, 1

6
, 1

7
, 1

8
, · · · limits: R

(iii) 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, · · · limits: {0}

5. (6 points) Circle all terms that apply. No justification necessary.

(a) The subspace (0, 1) ⊆ R with the standard topology is . . .

compact connected T1 T2 (Hausdorff)

(b) The subspace {0} ∪
{

1
n
| n ∈ N

}
of R with the standard topology is . . .

compact connected T1 T2 (Hausdorff)

(c) The topology T = {(a,∞) | a ∈ R} ∪ {R} ∪ {∅} on R is . . .

compact connected T1 T2 (Hausdorff)

(d) The topology T = {U | 0 /∈ U} ∪ {R} on R is . . .

compact connected T1 T2 (Hausdorff)

Page 4 of 7 Please go on to the next page . . .



Math 490 Final Exam 18 December 2019

6. (2 points) For each of the following maps f , circle all properties that apply.

(a)
f : (R, Euclidean)→ (R, cofinite)

f(x) = x continuous open

(b)

Let T = {(a,∞) | a ∈ R} ∪ {R} ∪ {∅}.
f : (R, T )→ (R, T )

f(x) = x + 1 continuous open

7. (3 points) Let X1 be a topological space with basis B1, and let X2 be a topological space
with basis B2. Show that the set

B = { B1 ×B2 | B1 ∈ B1, B2 ∈ B2 }

is a basis for the product topology TX1×X2 .

Solution. To verify that B is a basis for the topology on X1×X2, by the basis criterion
(Worksheet #11 Problem 1), it suffices to check (i) that the elements of B are open, and
(ii) that for every open set W ⊆ X1 ×X2, and every point (x1, x2) ∈ W , there is some
basis element B ∈ B with (x1, x2) ∈ B ⊆ W .

The topology on X1 ×X2 is defined by a basis of open sets V1 × V2 where V1 ⊆ X1 and
V2 ⊆ X2 are open sets. Since any basis elements B1 ∈ B1 and B2 ∈ B2 are open by
definition of a basis, B1 ×B2 is an open subset of X1 ×X2.

Now, let W be any open subset of X1 ×X2, and let (x1, x2) ∈ W . By definition of the
product topology, there must be a pair of open subsets V1 ⊆ X1 and V2 ⊆ X2 such that
(x1, x2) ∈ V1 × V2 ⊆ W . This means x1 ∈ V1 and x2 ∈ V2. Since B1 and B2 are bases for
X1 and X2, respectively, the basis criterion implies that there are basis elements B1 ∈ B1
and B2 ∈ B2 satisfying x1 ∈ B1 ⊆ V1 and x2 ∈ B2 ⊆ V2.

But then (x1, x2) ∈ B1×B2 ⊆ V1×V2 ⊆ W , and we conclude by the basis criterion that
B is a basis, as claimed.
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8. (4 points) Show that a topological space X is Hausdorff if and only if, for each x ∈ X,⋂
U a neighbourhood of x

U = {x}.

Solution. Since x ∈ U ⊆ U for all neighbourhoods U of x, it follows that⋂
U a neighbourhood of x

U ⊇ {x}

for any topological space X and point x ∈ X. Hence, our goal is to show that⋂
U a neighbourhood of x

U ⊆ {x}

if and only if X is Hausdorff.

First suppose that X is Hausdorff. This means, for any x, y ∈ X with y 6= x, there are
disjoint neighbourhoods Ux of x and Uy of y. But, since y has a neighbourhood that
does not intersect Ux, we can conclude that y /∈ Ux. Hence for all y 6= x,

y /∈
⋂

U a neighbourhood of x

U.

We conclude that, if X is Hausdorff, then for any x ∈ X,⋂
U a neighbourhood of x

U ⊆ {x}.

Next suppose that ⋂
U a neighbourhood of x

U ⊆ {x}

for all x ∈ X, and consider any pair of distinct points x, y ∈ X. By assumption,
there must be some neighbourhood Ux of x so that y /∈ Ux. This means that there is
some neighbourhood Uy of y that does not intersect Ux. Thus x and y have disjoint
neighbourhoods Ux and Uy, and we conclude that X is Hausdorff as desired.
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