Name: _____ Score (Out of 8 points):

1. (a) (3 points) Let X be a set. State the definition of a *metric* on X.

A metric on X is a function

$$d: X \times X \longrightarrow \mathbb{R}$$

satisfying the following conditions.

- (M1) (Positivity). $d(x,y) \ge 0$ for all $x,y \in X$, and d(x,y) = 0 if and only if x = y.
- (M2) (Symmetry). d(x,y) = d(y,x) for all $x, y \in X$.
- (M3) (Triangle inequality). $d(x,y) + d(y,z) \ge d(x,z)$ for all $x,y,z \in X$.
- (b) (3 points) Define a function

$$d_{\infty}: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$$

as follows. For points $\overline{x} = (x_1, \dots, x_n)$ and $\overline{y} = (y_1, \dots, y_n)$ in \mathbb{R}^n , let

$$d_{\infty}(\overline{x}, \overline{y}) = \max_{i=1,\dots,n} |x_i - y_i|.$$

Prove that d_{∞} satisfies the triangle inequality.

Let $\overline{x} = (x_1, \dots, x_n)$, $\overline{y} = (y_1, \dots, y_n)$, and $\overline{z} = (z_1, \dots, z_n)$ be points in \mathbb{R}^n . Our goal is to show that

$$d(\overline{x}, \overline{z}) \le d(\overline{x}, \overline{y}) + d(\overline{y}, \overline{z}).$$

Observe that, for any fixed $j \in \{1, 2, ..., n\}$,

$$|x_j - y_j| \le \max_{i=1,\dots,n} |x_i - y_i| = d(\overline{x}, \overline{y}).$$

Moreover, from our proof that the Euclidean metric on \mathbb{R} satisfies the triangle inequality, we know that

$$|a-c| \le |a-b| + |b-c|$$
 for all $a, b, c \in \mathbb{R}$.

Hence, for any fixed j, we find

$$|x_j - z_j| \le |x_j - y_j| + |y_j - z_j|$$

$$\le d(\overline{x}, \overline{y}) + d(\overline{y}, \overline{z}).$$

Since $|x_j - z_j| \le d(\overline{x}, \overline{y}) + d(\overline{y}, \overline{z})$ for every $j \in \{1, 2, \dots, n\}$, it follows that

$$d(\overline{x}, \overline{z}) = \max_{i=1,\dots,n} |x_i - z_i|$$

$$\leq d(\overline{x}, \overline{y}) + d(\overline{y}, \overline{z})$$

which concludes the proof.

(c) (2 points) In fact, d_{∞} defines a metric on \mathbb{R}^n . Draw and shade the open ball $B_2(0,0)$ of radius 2 about the origin (0,0) in the metric space $(\mathbb{R}^2, d_{\infty})$.

By definition, this ball is all points $(x, y) \in \mathbb{R}^2$ with

$$2 > d((x,y),(0,0)) = \max(|x-0|,|y-0|) = \max(|x|,|y|).$$

The "boundary" of the ball, the points that satisfy

$$2 = d((x, y), (0, 0)) = \max(|x - 0|, |y - 0|) = \max(|x|, |y|),$$

will be points of the form (2,y) or (-2,y) with $-2 \le y \le 2$, or (x,2) or (x,-2) with $-2 \le x \le 2$.

