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Granular temperature as an energy dissipation
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There is theoretical and observational evidence that asteroids and comets are
conglomerations of particles ranging in size from dust grains to boulders. It is well
known that energy added to such systems is dissipated by friction, plasticity and
fracture. In addition to these physical phenomena, we find that energy can be dissipated
in the form of particle kinetic energy due to random velocity distributions. ‘Dissipation’
in this manner is measured by what is called a granular temperature owing to its
similarities with kinetic gas theory. This work has implications on our understanding of
the growth of asteroids and comets.
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1. Introduction

Observation of asteroid spins, asteroid densities, the break-up of comets and the
theory of planetesimal growth imply that a considerable number of asteroids and
comets are not cohesive masses of ice, rock and/or metal but instead a
conglomeration of particles that range in size from micrometre-sized dust to
kilometre-sized boulders (Richardson et al. 2002).

The purpose of this paper is to examine how these objects dissipate energy,
i.e. the energy dissipation of rotating, self-gravitating granular media. This
matter is relevant but not limited to the discussion of collisional coagulation
during growth in the early Solar System (Weidenschilling 1997), the evolution
of asteroids and comets spinning about non-principal axes of inertia (Burns &
Safronov 1973) and situations of accretion by the gravitational collapse of a
swarm of planetesimals (Tanga et al. 2004). Specifically, the aim is to
investigate the role of a granular temperature in the energy dissipation of such
systems. This is achieved by placing a pack of rigid, frictionless spheres in a
non-equilibrium energy state using a discrete element method (Munjiza 2004).
In the limit of many particles (with the properties just described), the results of
these experiments will converge to that expected of an incompressible, inviscid
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Figure 1. The coordinate system z; rotates with angular velocity w with respect to the inertial
reference frame X, The semi-axis lengths of the ellipsoid are a;>as> a3, which is spinning at
angular velocity — A with respect to the rotating reference frame z;.

fluid. Theoretical considerations of such fluids under centripetal, tidal and
gravitational forces are well developed—a class of which are the Maclaurin
spheroids.

2. Energy states of Maclaurin spheroids

Consider a self-gravitating ellipsoid, depicted in figure 1, with semi-axis lengths a4,
as and a3 (a1 > a> a3) that is rotating about its maximum principal axis of inertia
at non-dimensional angular velocity — A relative to a Cartesian coordinate system
that is rotating at non-dimensional angular velocity Q with respect to an inertial
reference frame (Chandrasekhar 1969, §53, eqns (235) and (247))

A w
A= NCTeT, Q= Nk (2.1)
where A and w are angular velocities; G is the universal gravitation constant; and
p is the ellipsoid density.
If the ellipsoid is an incompressible and inviscid fluid and its shape is restricted
to that of a spheroid (a;=as>a3), then for a given value of non-dimensional

angular momentum
L

GM3(a%a3)1/3

(where L is the angular momentum and M is the mass of the spheroid), there

exists an eccentricity
e=y/1 —(as/ @), (2.3)

such that the body is in equilibrium.

L

(2.2)
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Table 1. Examples of perturbed Maclaurin spheroids.

case ﬁ €equil €prtb q

1 0.0 0.0 0.80 2.24X1072
2 0.15144 0.20 0.0 3.77X107°
3 0.10846 0.40 0.0 7.28X1074
4 0.18037 0.60 0.0 5.33%x1073
5 0.29345 0.80 0.0 3.46X1072
6 0.31893 0.83 0.0 4.76 X102
7 0.39994 0.90 0.0 1.13%x107!
8 0.47480 0.94 0.0 2.20x1071
9 0.57123 0.97 0.0 4.55x1071

These equilibrium configurations are known as the Maclaurin spheroids and
are stationary points of the specific potential energy W subject to the constraints
of constant mass and self-adjointness in the sense of Dedekind’s theorem
(Chandrasekhar 1969, §53, eqn (239) and §53.a)

ay,a2,0a3

1
min W =nGp [5 (a% + a%)(/l2 + Q%) —2a,a,4Q

* d
—2a1a2a3J “

) 2.4
0 \/(a%—l—u)(a%—f—u)(a%—l-u) (2.4)

st. ays =q
a1 a9az = const.
A=—-Q

For a given value of L, any perturbation in e away from equilibrium is
equivalent to an increase in potential energy. Indefinite oscillations of the form

a = ay = f(1); az = h(t), (2.5)

will result because the fluid is inviscid (zero energy dissipation). Oscillations of
this type are known as spheroidal oscillations, the stability of which depends on
the magnitude of the perturbation and whether the equilibrium configuration is a
minimum, maximum or a saddle point (with respect to energy). It has been
shown by these methods that small (infinitesimal) perturbations of the form of
equation (2.5) are stable for all values of L and that large (finite) perturbations of
the form of equation (2.5) are stable as long as ¢<1, where ¢ is the ratio of the
difference in energy of the perturbed and equilibrium state to the energy at
equilibrium (Chandrasekhar 1969; §53 eqn 285).

Table 1 shows examples of nine different non-equilibrium configurations
(characterized by eccentricity e,,) partnered with the respective equilibrium
configuration (characterized by eccentricity e.qu). Oscillations are stable for all
cases because the modes are spheroidal and will continue indefinitely because the
fluid is inviscid. To parallel the theoretical results using the discrete element method,
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Figure 2. Plot of (@) the sum of the individual particle kinetic energies as a function of time and
(b) the sum of the individual particle gravitational potential energy as a function of time.

a sufficient number of discrete elements would be needed so that collectively the
system behaves as a continuum. Instead, in this work, the nine different cases are
modelled using a system of N~ 1000 particles and observations are made how the
particle pack evolves from a state of non-minimal potential energy.

(a) Case 1

We start with case 1 because it is the least complicated (zero spin) and easiest
to visualize (the equilibrium shape is a sphere). This scenario is modelled using a
collection of rigid, smooth and spherical particles arranged in a simple cubic
structure. The only forces experienced by the particles are normal contact forces
and self-gravity. By self-gravity we mean that every particle exerts a
gravitational force on every other particle. We choose the radius of the spherical
particles to be 100 m with a density of 1000 kg m™?, from which it follows
that the ellipsoid with e, =0.8 containing the closest to N=1000 particles
whose centres are within or on its boundary has dimensions a; = a5 =1480 m and
a3 =888 m. The version of a discrete element method employed is that detailed in
the text by Munjiza (2004). .

The value of ¢ for this case is 0.022 and L = 0 (as shown in table 1), so that one
may expect indefinite oscillations (in time) about a sphere (the state of
equilibrium). This is because all the particles are symmetrically aligned and there
is no energy dissipation (e.g. friction, plastic deformation, fracture, etc.).
However, the results of numerical experiments performed in this work
demonstrate that this is not what happens; instead, the object collapses directly
to the state of minimum energy. The only explanation for this is that energy is
dissipated.

In figure 2, the sum of the kinetic energies and the gravitational potential
energies of the individual particles are shown. At first glance, it appears that
the plots of figure 2 are in conflict with the virial theorem because the system’s
kinetic energy does not approach one-half the absolute value of its potential
energy. But this is only to be expected for the special case of self-gravity in the
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Figure 3. Plot of (a) the granular temperature as a function of time and (b) the eccentricities as a

function of time (groy curve,y/1—(as/a;)?; blackcurve, /1 — (aQ/al)Q).

absence of all other forces. A more general form of the virial theorem,
applicable to these simulations owing to the presence of contact forces, only
requires that

Z%F:—%Z(Xm—l— Yy + Zz), (2.6)

where m is the particle mass; v is the particle speed; z, y and 2z denote the location
of each particle in a Cartesian coordinate system; X, Y and Z are the components
of the force acting on each particle resolved along the z, y and z directions, the
summations are over all particles; and the overbars represent the quantity
averaged over an infinite amount of time (Clausius 1870).

The potential energy of figure 2 is not dissipated in the traditional sense
because the total energy, which is the sum of the potential energy and the kinetic
energy, is constant. But what does happen is that the gravitational potential
energy is converted into kinetic energy. This is not different than what happens
for an inviscid, incompressible fluid continuum, but what is different is the form
of the kinetic energy. It is ‘chaotic’ as evident from the small amplitude of its
oscillations. An alternative measure of this type of kinetic energy is

N
dom 022
Tyran = =53 (2.7)
which is simply the kinetic energy in terms of the thermal speed ¢’ averaged over
all particles. For granular media, this is referred to as the granular temperature
(e.g. Campbell 1990) because it is analogous to the temperature definition for a
monatomic ideal gas

1
Tkin = %mcﬂj (28)
where £ is the Boltzmann constant (Bird 1994). In figure 3, the system’s
granular temperature and the eccentricities both as a function of time are
shown. Eccentricities were derived from the principal moments of inertia. It
is clear from figure 2 that the system of particles has reached some state
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Table 2. Equilibrium eccentricities for discrete and continuum models.

continuum discrete

1—(as/a))? 1—(az/a;)’ \/1 —(az/a;)? \/1 —(az/a)’ Tyran (MJ)

Q
4
173}
@

1 0.0 0.0 0.1730 0.2411 23.5
2 0.0 0.20 0.1687 0.2629 20.5
3 0.0 0.40 0.1715 0.4287 19.3
4 0.0 0.60 0.1944 0.6323 18.9
5 0.0 0.80 0.3788 0.8327 21.5
6 0.0 0.83 0.9306 0.9972 87.6
7 0.0 0.90 0.7134 0.9795 94.5
8 0.0 0.94 0.7543 0.9659 91.8
9 0.0 0.97 0.4961 0.9452 86.7

of minimum energy, but from figure 3b it is not clear if this state is the global
minimum energy because the shape is not perfectly spherical. The value of

1—(ay/ay)* averaged over frames 200-5500 (assumed to be steady state) is

0.1730 and that of /1 — (a3/a;)*=0.2411; in absolute terms, these correspond to
as/a;=0.985 and a3/ a;=0.971, which is remarkably close to spherical, given the
fact that the system comprises only 1000 spheres.

(b) Cases 2-9

The time-averaged, steady-state eccentricities and the system granular
temperature for the remaining cases are shown in table 2.' An eccentricity of
0.31 corresponds to a 5% deviation from a sphere (ay/a;=0.95) and that of 0.44
to a 10% deviation from a sphere (ay/a;=0.90). By these criteria, we conclude
that the discrete results start to significantly deviate from the continuum theory
for case 6 (L>0.29345).

This observation agrees well with the concept of granular temperature.
A result stemming from kinetic gas theory is that the distribution of particle

speeds is Maxwellian
2/ mN3/2 v*m
P(v) = \/;(k—T) Y eXp( 2kT> (29)

(Bird 1994) with a mean g and a variance ¢” of

p=o 2 EL o KT 3778 (2.10)
™ m m i

(Hoel 1984); hence, high temperatures imply high particle velocities. These
arguments are not directly applicable to the experiments at hand because kinetic
gas theory assumes that the potential energy of the particle is negligible (Garrod
1995). However, the distribution of particle speeds at a particular instant of time
is shown in figure 4 for cases 2 and 6 after steady state has been reached. The

I Steady state was determined by visual inspection of energy versus time plots and the granular
temperature was calculated in a reference frame rotating with the principal axes of inertia.
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Figure 4. Normalized frequency distribution of particle speeds at particular instances of time after
steady state has been reached in cases 2 and 6 (histograms) overlay with Maxwellian distributions
fit by equating the mean and area of the discrete data.

distributions are Maxwellian and show the same trend with temperature as that
expected in an ideal gas.A more general form of Maxwell’s distribution is

2 2 —v%/2a?
P(v) = c\/;”ei3 (2.11)

a
(Weisstein 2006), which can be fitted to the discrete data by equating the mean of the
velocities and area under the curve; for case 2, a=0.0572, ¢=0.0152 and for case 6,
=0.1033, c=0.0152. The histogram bin size is equal to 0.0159 and was calculated by
applying the Freedman-Diaconis rule (Izenman 1991) to data from case 6.

The data presented in figure 4 suggest that as the granular temperature rises, so
does the probability that a particle will near or exceed its escape velocity. As this
probability increases, the ellipsoid’s ‘goodness of fit’ decreases because the particle
velocities are large enough to launch them into orbit about the main pack. From
this, we conclude that the discrete results start to deviate from the continuum
results starting at case 6 because the granular temperature has reached a level
where an ellipsoid is no longer a good fit to the shape of the main pack of particles.
This is demonstrated in figure 5, which shows the particle locations at a specific
instant of time as viewed along the axis of rotation (an ‘overhead’ view). At this
point, it is appropriate to contrast the results of this work with that of Richardson
et al. (2005). In the latter, a discrete element method was used to perform a series of
numerical experiments with inelastic behaviour? for comparison with the equilibria

2Normal coefficient of restitution <1.
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Figure 5. An ‘overhead’ view of the particle locations at a particular instant of time for case 6.

of incompressible, inviscid fluids. It was found that the presence of energy
dissipation allowed a range of equilibrium shapes for a given level of the angular
momentum. Configurations not initially in equilibrium were found to collapse to a
lower energy state; sometimes retaining 100% of the mass and other times losing
mass (as in figure 5). The concept of granular temperature provides an explanation
of these observations.

3. Conclusions

We have shown using a discrete element method that the energy of a pack of self-
gravitating and rotating rigid, smooth and spherical particles may be ‘dissipated’
by a rise in granular temperature.

Of course, real particles of the Solar System are not so idealized. Friction,
fracture and plasticity are all present, which dissipate energy as heat. A more
realistic picture of the process by which a granular system attains an energy
minimum is as follows: potential energy is converted to ‘random’ or ‘chaotic’
particle motions, the kinetic energy of which is measured by a granular
temperature. The granular temperature decreases as a function of time because
the number of particle collisions increases, and during each collision kinetic
energy is dissipated as heat. Hence, energy stored by a rise in granular
temperature is only an interim state before dissipation by heat. The time scale on
which a granular temperature is important is usually short, except for the case
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when there is a continuous input of energy that is greater than or equal to the
amount of energy dissipated as heat (e.g. Campbell 1990). This view of the Solar
System could help clarify the interpretation of experimental and observational
data and provide insights into currently unsolved problems.

An example of such exists when considering the growth process of the early
Solar System. Approximately 4.6 billion years ago, all masses were in the form of
dust and gas that orbited the Sun in a large cloud called the solar nebula. The
growth of kilometre-sized planetesimals from submicrometre-sized dust grains
occurred by the collisions of successively more massive particles. Growth in this
manner is known as a process of accretion (Weidenschilling 2000). Accretion of
1 cm—1 km bodies is not completely understood because relative impact velocities
are too large for particles to ‘stick’ by atomic forces (e.g. van der Waals,
hydrogen bonding, etc.) and are also larger than particle escape velocities.
Mechanical interlocking of particles, ice coatings and magnetic and coulombic
forces are hypothesized to enable growth in this regime (Weidenschilling 1997).
However, a simpler explanation is that the impact energy is dissipated by an
increase in granular temperature—yielding sufficiently low post-collisional
velocities to allow capture by the growing body’s gravity field.

The authors would like to thank Prof. Pete Washabaugh of the University of Michigan for his
thoughts and insight.
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