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Abstract

The thermomechanical feedback process due to frictional heating in
sliding systems can cause thermoelastic instability (TEI), leading even-
tually to localization of load and high temperatures at the sliding in-
terface. TEI in caliper/disk brake systems is an intermittent contact
problem, since material points on the disk experience periods of con-
tact with the pad alternating with periods of non-contact. The stability
problem is here solved numerically by setting up a frame of reference sta-
tionary with respect to the pad and seeking a solution for the heat con-
duction and thermoelastic equations that varies exponentially in time.
The upwind scheme is introduced in the finite element formulation to
avoid possible numerical difficulties associated with the large convective
terms.

A series of brake dynamometer drag tests were made to investigate
experimentally the phenomenon of TEI in an automotive disk brake.
The temperature field on the rotor surface was measured with infrared



(IR) detectors and a high-speed data acquisition system. The Fast
Fourier Transform (FFT) method was used to determine the exponen-
tial growth rate for various hot spot numbers and critical speeds. Linear
extrapolation was then used to determine the speed for zero growth rate
— i.e. the critical speed. The results for critical speed and the number
of hot spots show good agreement with the numerical predictions.

1. Introduction

Automotive disk brakes are susceptible to a low frequency vibration
known as ‘judder’ or ‘roughness’, particularly during high speed engage-
ment (Kubota et al., 1998). Major improvements in noise reduction in
other areas of automotive design have reduced customer tolerance of
brake noise, resulting in a singificant volume of warranty claims asso-
ciated with brake judder (Steffen and Bruns, 1998, Lee and Dinwiddie,
1998).

Various mechanisms have been proposed to account for brake jud-
der, including rotor imbalance, non-uniform accumulation of frictional
transfer films, core shift and disk thickness variation, but considerable
evidence has now accumulated to show that it is associated with an un-
stable interaction between thermoelastic distortion and frictional heat-
ing known as Thermoelastic Instability or TEI (Jacobsson, 1999, Yi et
al., 2000). Temperature measurements of noisy brakes typically show
a non-uniform circumferential temperature variation (Kreitlow et al.,
1985; Thoms, 1988, Little et al., 1998) and examination of brake disks
after engagement reveals evidence of focal hot spots distributed approx-
imately evenly around the circumference (Anderson and Knapp, 1989).

The feedback mechanism responsible for TEI is illustrated by the flow
diagram of Figure 1. Frictional heating during braking causes thermoe-
lastic distortion, which in turn modifies the contact pressure distribution
p(z,y,t) and hence the distribution of frictional heating ¢(z,y,t). Cou-
pling between the mechanical and thermal problems is introduced by the
energy balance relation

Q(‘Tayat) = pr(x,y,t) ’ (1)

where f is the coefficient of friction and V is the sliding speed. It is
clear from Figure 1 that the product fV functions as the gain in the
feedback process and it follows that there will generally be a critical
speed V. above which any given sliding system will be unstable (Dow
and Burton, 1972). Above the critical speed, non-uniform perturbations
in the temperature field will grow, leading to a characteristic pattern of
hot spots or bands on the brake disk
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Figure 1.  The feedback process for TEIL

Ideally, we would like to be able to design the brake system so that
the operating conditions always lie below V .. However, V. is signifi-
cantly affected by the geometry of the system (Lee and Barber, 1993)
and hence it is generally necessary to use numerical methods (typically
the finite element method) to obtain appropriate design estimates. Two
broad categories of numerical solution have been attempted. In numer-
ical simulations, the system is discretized by the finite element method
and the nodal temperatures are evaluated after each of a succession of
small time increments using an updating algorithm (Zagrodzki, 1990).
In the alternative eigenvalue formulation, Burton’s method is general-
ized to determine the conditions under which a small perturbation in
the discretized temperature field can grow exponentially in time (Du et
al., 1997). In both methods, difficulties are encountered due to the rela-
tive motion of the brake components which introduces convective terms
into the governing equations for at least one body. Peclet numbers are
generally high, leading to the confinement of the thermal disturbance
in a thin layer of the pad material and necessitating a very fine local
mesh. Yi et al. (2000) showed that non-axisymmetric perturbations
on an otherwise axisymmetric brake or clutch system can be analyzed
by considering perturbations of Fourier form. In this case, analysis for
each Fourier number is restricted to the two-dimensional cross-sectional
plane, in which there is no convection. However, this method cannot be



used for typical caliper disk brakes, since the perturbations will generally
not then have Fourier form.

In the present paper, we shall extend Yi’s method to fully non-axisymmetric
systems, which will necessitate appropriate discretization of equations
with convective terms at high Peclet number. We shall compare the
predictions with a set of experiments on commercial disk brakes using
infrared (IR) temperature measurement to determine in each case criti-
cal speed and dominant mode shapes.

2. The automotive disk brake

Figure 2 shows the main features of a typical automotive disk brake.
Two brake pads make contact with the two plane surfaces of the rotating
disk, the surface facing out from the vehicle being known as the outboard
surface and the other as the inboard surface. Most disks contain air vents
at the mid-plane for cooling purposes, but it should be remarked that the
practical heat transfer coeflicients are not sufficient to enable significant
cooling to occur during the brake engagement. The principal function of
the cooling vents is to accelerate cooling of the disk in the usually longer
periods of time between engagements. The disk is connected to the axle
by a hat section and the precise way in which this is connected to the
disk can have a significant effect on thermoelastic distortion. The brake
pads are pressed against the disk surfaces by hydraulic pressure through
a caliper mechanism, designed to equalize the forces on the inboard
and outboard sides. However, this equalization is usually achieved by
a sliding mechanism and this may lock due to frictional effects during
loading, preventing the system from responding to changes in pad loads
during a single engagement. This can have a significant effect on the
stability of modes involving small numbers of hot spots.

3. Finite element determination of critical speed

For the disc brake system, we use a cylindrical polar coordinate system
r, ¢, z, fixed with respect to the caliper and brake pads. The eigenvalue
solution is then obtained by postulating the existence of a perturbation
in the temperature field of the form

T(r,¢,2,t) = §R{ebt®(r, o, z)ebt} (2)

involving exponential growth with time ¢. If this form is substituted
into the various governing equations and boundary conditions of the
processes described in Figure 1, the exponential factor will cancel, leav-
ing a homogeneous problem defined in the spatial domain 7, ¢, z, with
the possibly complex growth rate b as a parameter. The finite element
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Figure 2. A typical automotive disk brake.

method is then used to discretize these equations, leading to a linear
eigenvalue problem for b. The system is unstable if there exists any
eigenvalue b with positive real part, since any slightly perturbed initial
condition could be expressed as an eigenfunction expansion.

3.1. The heat conduction problem

The temperature perturbation in must satisfy the heat conduction

equation 5 5
T T

where Kjg, pg, cg are the thermal conductivity, density and specific heat
respectively of material 3 and wg is the angular velocity of body 3 in
the given frame of reference. If we denote the rotor as # = 1 and the
pad/caliper assembly as 3 = 2, then w; will be the rotational speed of
the rotor and w9 will be zero.

Substituting (2) into (3), cancelling the common exponential factor
and discretizing the resulting equation be the finite element method
leads to the matrix equation

(K+C+bH)®+Q=0, (4)

where @, @ are the vectors of nodal temperatures and nodal heat sources
respectively,
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and N (r, ¢, z), W(r,$,z) are vectors of shape and weight functions re-
spectively.

The nodal heat sources Q are non-zero only at the contact interface,
where they result from frictional heating. For the disc brake geometry,
the sliding speed V varies with radius r, being given by V = wr. The
discrete form of equation (1) is therefore

Q=fVeP, (6)

where P is the nodal contact force normal to contact interface which is
defined only at the N, contact nodes, V' is the diagonal N, x N, matrix
defined by

Vii = wridji , (7)

® is an N, X N matrix defined by

oo[1].

and I is the identity matrix of order N, X N,.

3.2. Upwind finite element scheme

Numerical solutions of the convective-diffusion equation tend to ex-
hibit unacceptable oscillations when the Peclet number characterizing
the convective term is sufficiently large (Christie et al. 1976). This is
almost always the case for brake problems, where typical Peclet num-
bers are of the order of 105. Galerkin-type finite element formulations
result in expressions similar to those of central difference, which become
unstable when the element Peclet number

Vh
Pee] = 7 > 2 ) (9)

where h is the element dimension and k is the thermal diffusivity.

Christie et al. (1976) and Heinrich et al. (1977) showed that this
difficulty could be avoided by using linear shape functions N;, but special
weighting functions of the form

3az(z — h)

W; = Wi(z,a) = N; £ % ,

(10)



where z (0 < z < h) is a local coordinate, This reduces to the Galerkin
form when the upwind factor « is zero, whereas a = 1 gives a fully
upwind scheme. Corresponding weighting functions for two and three-
dimensional problems can be obtained in the same way. For example,
for a bilinear quadrilateral element we obtain
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where £ € (—1,1) and n € (—1,1) are dimensionless local coordinates in
and perpendicular to the convective direction respectively. The resulting
shape and weighting functions are compared in Figure 3 for a = 1.

(a) Linear weighting function (b) Upwind weighting function

Figure 3. Comparison of the shape function and the upwind weighting function for
a bilinear quadrilateral element.

3.3. The thermoelastic contact problem

To complete the feedback loop in Figure 1, we need to solve a ther-
moelastic contact problem to determine the contact pressure distribution
p(z,y,t) due to a given instantaneous temperature field T'(z,y, z,t). As
long as full contact is maintained, this is a problem in linear thermoe-
lasticity which in discrete form corresponds to a matrix equation of the
form

P = A0, (12)

where A is an N x N, matrix relating the vector of N nodal temperatures
® to the vector of N, nodal normal forces at the contact nodal pairs. Yi



et al. (2000) describe various methods of determining the matrix A, but
the most efficient is to develop a custom finite element description of the
thermoelastic contact problem. Details of this process are omitted here
in the interests of brevity.

3.4. The eigenvalue equation

Eliminating @ and P between equations (4,5,10), we obtain
(K+C+ fV®A)+bH|® =0, (13)

which is a generalized linear eigenvalue equation for the exponential
growth rate b. The matrices are not symmetric and the eigenvalues are
generally found to be complex. Instability is indicated if at least one
eigenvalue has positive real part. The corresponding eigenfunction ®
then defines the form of termperature perturbation that will develop.

The factor w in equation (11) shows that the eigenvalues and eigen-
functions will depend on rotational speed. The critical speed wc, can be
determined by iteration until the the dominant eigenvalue has zero real
part. In practice it is found that the growth rate varies approximately
linearly with speed above the critical speed, so a good estimate is ob-
tained by making a single linear extrapolation through growth rates for
two super-critical speeds.

4. Experimental investigation

The evolution of hot spots in a caliper disc brake during drag braking
was monitored using an array of fiber optic cables connected to single
point, two colour, infrared (IR) detectors. The detectors were housed
in liquid nitrogen cooled dewars to maintain a constant temperature.
Five sensors were arranged along a radial line on each of the inboard
and outboard sides of the rotor. During braking, each sensor sweeps
the entire circumferential distribution of temperature at a given radius
with every revolution, permitting a time history of the complete surface
temperature distribution to be reconstituted from the recorded data.

The use of two colour detectors reduces the sensitivity of the system
to emissivity, but does not completely eliminate it. The system was
therefore calibrated against a set of thermocouples embedded 0.5 mm
below each surface of the disk. The rotor was subjected to 200 burnish
stops and several long drags to condition the surface. It was then heated
to 600°C by dragging at low speed and calibration readings were taken
during subsequent cooldown at 30 rmp with the brakes released and no
external cooling air. During this period, the surface of the rotor was
assumed to be the same temperature as the thermocouples due to the



high conductivity of the cast iron and the slow rate of cooling. A ninth
order poynomial was used to fit the data for each IR detector, a typical
calibration curve being shown in Figure 4.
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Figure 4.  Calibration curve for one of the IR sensors.

The IR system was set to take temperature readings at a frequency of
2000 Hz, which corresponds to one reading every 4.2 degrees of rotation
at the highest rotational speed used (1400 rpm). This was considered
to give adequate resolution of the spatial distribution of temperature for
typical hot spot patterns.

Figure 5 shows a typical instantaneous temperature distribution. The
temperature field is clearly periodic, so it is convenient to separate com-
ponents of different wavenumber in the digital data using Fast Fourier
Transformation (FFT). The amplitude of a typical Fourier mode is plot-
ted logarithmically against time in Figure 6. This particular component
only begins to rise out of the noise level after about 60 s of sliding. There
is then an approximately linear portion of the curve, corresponding to
exponential growth, after which the growth levels off, probably because
contact between the pad and the rotor becomes localized in hot spots,
resulting in a strong non-linearity (Zagrodzki et al., 2001). An expo-
nential growth rate was estimated for each Fourier mode by fitting a
straight line to the logarithmic plot in the growth phase, as shown in
Figure 6.



Figure 5. Typical instantaneous temperature field due to TEIL.
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Figure 6. Logarithmic plot of average amplitude against time for the mode n = 7.
The slope of the straight line fit corresponds to a growth rate R(b) = 0.0368 s~'.

4.1. Test procedure

Whenever a new set of hardware was installed, it was subjected to
a program of 200 burnish stops to condition the pad/rotor interface.



Temperature measurements were then made during a sequence of drag
braking (constant speed) tests in order of increasing sliding speed. Since
the probability of TEI increases with speed, this procedure eliminates
the possibility that TEI at a higher speed would precondition the rotor
at a particular wavenumber resulting in false indications of TEI at lower
speeds. A typical test sequence is shown in Table 1.

Table 1. Typical test sequence.

Sections Type Speed (rpm) Torque (ft-1b.)
1 200 Burnish stops
2~4 3 Drag tests 416 187.5
5 20 Burnish stops
6~8 3 Drag tests 555 140.6
9 20 Burnish stops
10~12 3 Drag tests 694 112.5
13 20 Burnish stops
14~16 3 Drag tests 833 93.75

Notice that the friction torque was controlled so as to maintain the
same rate of power dissipation (and hence heat generation) in each test.
This ensures that the evolution of the mean temperature of the brake
system is approximately the same for each test and reduces the impact of
temperature dependent material properties on the stability behaviour.
The tests were repeated on different sets of hardware to ensure repeata-
bility.

5. Results and discussion

For all the brake systems tested, hot spots were clearly identifiable
when the sliding speed was sufficiently high. The number of hot spots
developed was quite reproducible for a given brake design and the final
pattern usually involved a number of equal spaced focal hot spots located
approximately midway between the inner and outer radii of the rotor.
However, the scenario of hot spot development showed some variability.
In some cases, hot spots started near the outer edge and progressed
inwards, whilst in others they started near the inner edge and progressed
outwards. This movement was believed to be the result of pad wear and
warpage during the long drag. Although there was no fixed location



where the hot spots would start, there was a tendency to develop a
hot band near the outer radius of the rotor, probably as a result of the
higher local sliding speed. This band then frequently started to exhibit
variations which would develop into hot spots.

Results from each drag test were used to obtain exponential growth
rates of all Fourier modes following the procedure illustrated in Figure
6. The critical speed for each mode was then estimated by linear extrap-
olation through the results for the speeds with identifiable exponential
growth.

5.1. Comparison of experimental results and
theoretical predictions
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Figure 7. Dimensions of the brake system (in mm).

The dimensions of the basic brake design tested are shown in Figure 7.
The rotor contains 37 vents (not shown in Figure 7) of thickness 12 mm.
The vent:vane ratio is 4:1 and hence the vents occupy 80% of the total
circumference of the rotor at the mid-plane. For the standard brake, the
pad arc length ¢, = 66°, but tests were also conducted on brakes with
reduced arc lengths of 53° and 40°. Other design modifications tested
included the reduction of the total rotor thickness d, (by machining a
standard rotor) from 28 mm to 21 mm and of the pad friction material
thickness dp from 10 mm to 5 mm.

Theoretical predictions of the critical speed were obtained using the
finite element method of section 3. In order to model the vents, 74
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Figure 8.  Finite element discretization of the brake system.

elements were used around the circumference of the disk, resulting in the
model of Figure 8, which contains about 3000 eight node solid elements.
Some approximation is involved in this representation of the vents, since
in reality the vent boundaries move in the given frame of reference.
However, numerical studies show that the temperature perturbation is
largely concentrated near the rotor surface, so the resulting error is not
expected to be large. An alternative strategy would be to estimate
the properties of an ‘equivalent homogeneous material’ to replace the
vent /vane region. The material properties used in the numerical solution
are given in Table 2 and the coefficient of friction was taken as f = 0.4,
based on experimental measurements. The pad modulus was obtained
by ultrasonic measurements through the thickness direction, since this
mode of deformation dominates the pad deformation.

Table 2. Material properties.

E v e K k
GPa x10"%deg K™! W/m deg K mm?/s
Rotor 112.4 0.25 13.25 57.0 17.2
Pad 2.03 0.35 30.0 0.93 0.52
Backing plate 200 0.3 12.0 42.0 11.9

Figure 9 compares experimental estimates of the critical speed for
each wavenumber with theoretical predictions for a brake with pad arc
angle ¢, = 66°, pad thickness d, = 10 mm and rotor thickness d, = 21
mm. The dominant mode for this brake involves 7 hot spots, for which
the estimated experimental critical speed is Vi, = 348 rpm. The finite
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Figure 9.  Comparison of experimental estimates and finite element predictions of
critical speeds for various wavenumbers.

element method also predicts 7 hot spots, with a critical speed of V =
316 rpm.

Similar comparisons were performed for brakes with other values of
the parameters ¢,,dp,d, and the results are summarised in Table 3.
In all cases the predicted number of hot spots n* is within +1 of the
experimentally observed value and the maximum error in the predicted
critical speed is 27%, which represents an exceptional level of agreement
for such a complex problem.

The experimental results show that reducing the pad arc angle ¢,
from 66° to 53° has comparitively little effect on the critical speed, but
that a further reduction to 40° increases it by a factor of 2.4. This
increase is associated with an increase in the number of hot spots from 7
to 10, which is close to the minimum number that ensures that at least
one hot spot is located in the contact zone at all times (Lee and Barber,
1993).

Reducing the pad thickness d, reduces the critical speed significantly.
This is attributable to the increased stiffness associated with the thinner
layer of compliant friction material. It suggests that brakes are more
likely to exhibit judder when the brake pads are significantly worn.

These effects are clearly identified by the finite element analysis. Other
investigations, not reported here, have shown that the FEA correctly



Table 3. Comparison of experimental results (Ver) and theoretical predictions (Ver)
of critical speed.

b dp dr |4 n b Ver Ve n* Error
mm mm mm  rpm st rpm  rpm
66 10 21 555 7 0.022 348 316 7 9.2%
66 10 21 694 7 0.037
53 5 28 555 7 0.057 233 274 8 17.9%
53 5 28 694 7 0.067
53 10 28 555 6 0.007 342 435 7 27.1%
53 10 28 694 6 0.012
66 10 28 555 6 0.016 324 281 7 13.3%
66 10 28 694 6 0.026
40 10 28 833 10 —0.001 833 726 10 12.7%
40 10 28 971 10 0.043

also identifies the effect of changes in the geometry of the hat section on
susceptibility to judder.

6. Conclusions

We have shown that a finite element implementation of the eigenvalue
method gives generally excellent predictions of the critical speed for TEI
for a caliper disc brake and also successfully identifies the effect of minor
design changes on the critical speed. The analysis of one brake design
by this method takes about 5 hours CPU time on a workstation. By
contrast, no results have been reported for direct numerical simulation
of a brake system with anything like the present level of geometric detail.
We conclude that the eigenvalue method is the best numerical tool for
TEI brake design presently available.
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