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It is known that problems arise over existence and uniqueness of solution in quasi-
static contact problems involving large coefficients of Coulomb friction. This paper
considers the behaviour of an elastically supported mass with three translational
degrees of freedom that can make contact with a rigid Coulomb friction support. A
critical coefficient of friction is identified, above which the quasi-static solution can
be non-unique. A numerical solution of the corresponding dynamic problem shows
that the state realized then depends on the initial conditions.

Even below the critical coefficient of friction, the dynamic solution can deviate from
the quasi-static even for arbitrarily small loading rates. Typical dynamic responses
include limit-cycle oscillations in velocity, oscillations involving a brief period of zero
velocity (stick) and ‘stick—slip’ motion in which the mass spends significant periods
in a state of stick, interspersed with short rapid-slip periods. All these non-steady
motions involve non-rectilinear motion, even in cases where the time derivative of
the applied load is constant in direction.

A perturbation analysis is performed on the quasi-static frictional slip solution
and predicts instability for certain slip directions, depending on functions of the
off-diagonal stiffness components and the coefficient of friction. These results are
presented in dimensionless form in stability diagrams. It is also shown that quasi-
static slip that is stable when there is no damping can be destabilized if the damping
matrix has sufficiently large off-diagonal components.
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1. Introduction

If the loading rate in an elastic contact problem is sufficiently slow, it is usually
appropriate to use a quasi-static analysis in which mass is neglected and the system
is assumed to pass through a sequence of equilibrium states. If Coulomb friction
conditions are assumed in the contact region, i.e. if the tangential traction opposing
the instantaneous motion is proportional to the local normal pressure, the quasi-
static solution will depend on time, but only in a parametric sense describing the
history of the loading. In other words, the same sequence of equilibrium states could
be traversed at a different (not necessarily uniform) rate, without changing the quasi-
static solution.
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Difficulties are encountered with both existence and uniqueness proofs for the
general quasi-static elastic contact problem with Coulomb friction (Kikuchi & Oden
1988). Some of these difficulties can be resolved by using a non-local friction law that
smoothes the discontinuities inherent in the Coulomb law. However, the unique-
ness proof still requires that the coefficient of friction be sufficiently small (Oden
& Pires 1983). The question of non-uniqueness of problems with Coulomb friction
has been extensively studied by Klarbring (1984, 1990). In particular, he examined
the behaviour of a simple two-degree-of-freedom system involving an elastically sup-
ported rigid body that can slide on a rigid plane or separate from it under the
influence of applied forces. Klarbring showed that for sufficiently high coefficients of
friction, loading conditions exist under which three different quasi-static states are
possible: stick, slip in one direction and separation.

Cho & Barber (1998) developed a numerical simulation for Klarbring’s model
including dynamic effects, i.e. including the mass of the system and integrating the
resulting equations of motion. They showed that in cases where the quasi-static solu-
tion is non-unique, the dynamic solution selects one of two states (stick or separation)
depending on the history of the process, but the third state (slip) is never realized.
They then used an analytical perturbation method to show that quasi-static slip in
such conditions is always unstable in the sense that an infinitesimal perturbation
from the quasi-static trajectory will grow without limit until a state change occurs
either to stick or separation. Using these results, Cho & Barber (1998) were able to
develop a revised quasi-static algorithm that predicts a trajectory within a bounded
oscillation of the true dynamic behaviour. This revised algorithm predicts instanta-
neous jumps in position and state when the limiting friction condition is exceeded
in one direction. A scenario involving discontinuities in displacement was also pre-
dicted by Martins and co-workers (Martins & Oden 1987; Martins et al. 1992, 1994)
for the case where the mass is strictly zero, but damping is introduced into the sys-
tem and then allowed to approach zero. They note that existence and uniqueness
theorems can be established with arbitrary coefficient of friction if the requirement
of continuity of displacement is relaxed.

In two-dimensional contact problems, the direction of frictional slip must lie in the
plane, and hence, there are only two options: slip to the right or left. The contact
problem is therefore piecewise linear, since all the states are governed by linear
equations and nonlinearity is introduced only through the inequalities that trigger
changes of state. By contrast, in three-dimensional systems, the direction of slip is
a vector and the Coulomb friction requirement, that the frictional force opposes the
instantaneous direction of slip, results in a fully nonlinear governing equation for
slip states. This can introduce considerably more richness into the behaviour of the
system. In the present paper, we shall develop a dynamic simulation for the three-
dimensional equivalent of Klarbring’s model and demonstrate its relationship to the
simpler quasi-static formulation.

2. The three-dimensional friction model

Figure 1 shows a mass M with three translational degrees of freedom, u1, us and us,
constrained to the domain us > 0 by a rigid plane surface. The mass is connected
to a generalized linear elastic support with stiffness and damping matrices K, B,
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Figure 1. Three-dimensional frictional model.

respectively, and is subjected to an externally applied force F'. If the mass makes
contact with the plane (us = 0), there will also be a reaction force R.
The equation of motion of the system can be written

Mii+ Biu+ Ku=F + R. (2.1)

It is convenient to express some of the governing equations in component form. Latin
indices will take the values 1, 2, 3 and Greek indices the values 1, 2, the summation
convention being implied in each case. In this notation, equation (2.1) takes the form

Muz + bijﬂj + k‘ijUj = Fi + Ri. (22)

(a) States of the system

We assume unilateral contact conditions between the mass and the plane, including
Coulomb friction with constant coefficient of friction f. Under these assumptions,
the system can, at any given time, be in any one of the three states: separation, stick,
or slip. Each of these states is governed by one or more equations and inequalities.

(i) Separation
Separation requires that the mass be above the plane, i.e.
ug = 0, (2.3)
in which case there is no reaction between the mass and the plane, i.e.
R=0. (2.4)

Notice that the state where R = 0 and usz = 0 is included as a limiting state of
separation.
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(ii) Stick
Stick is defined by the condition that the mass be in contact with the plane and
at rest, i.e.
ug = 0, (2.5)
u = 0. (2.6)
For stick to persist, we require that the normal reaction be compressive
R3 >0, (2.7)

and the Coulomb friction law demands that

\/R?+ R% < fRs. (2.8)
(iii) Slip
During slip, we again require
uz = 0, (29)
Rs > 0, (2.10)

and the Coulomb friction law demands that the resultant frictional force be of mag-
nitude fR3 and in a direction opposing the instantaneous direction of motion. This
in turn implies that

o fR3"L.La

/2 -2
uy + uj

3. The quasi-static solution

R, = (2.11)

If the external force F' is applied very slowly, we anticipate that the first two terms
in equations (2.1) and (2.2) will be negligible, and hence, that the trajectory of the
mass can be described by the simpler quasi-static equations

Ku=F+R, (3.1)

supplemented by the state equations (2.3)—(2.11). In this case, the mass passes
through a sequence of equilibrium states and time appears only as a parameter
defining the sequence of these states. We shall refer to this as the quasi-static solu-
tion.

The state equations can be used to determine the possible equilibrium states of
the system for a given applied force F. During separation, equations (2.4) and (3.1)
give Ku = F'. Solving for uz and using (2.3), we find that separation is possible only
if

d;F; >0, (3.2)
where

d; = eijrkj1kie, (3.3)

and e;j;, is the alternating tensor. The inequality (3.2) defines the region above the
plane in figure 2.
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Figure 2. Three-dimensional quasi-static solution.

During stick or slip, us = 0 and equation (3.1) can be solved for R to give
R=-F, (3.4)
where
Fy = F; — kigua. (3.5)
Substitution into (2.8) then shows that stick is possible only if

VER+ F} < —fF, (3.6)

which defines the region inside the cone in figure 2. The apex of the cone lies on the
plane d; F; = 0 for all uq,us.
Finally, the slip condition requires

VER+ F3 = —[F, (3.7)

corresponding to the surface of the cone in figure 2.
If the cone and the plane intersect only at the vertex as shown in figure 2, the
conditions for separation and stick are mutually exclusive. However, if f > f.., where

ds

fcr \/m?
an intersection can occur as shown in figure 3, giving rise to non-uniqueness of the
quasi-static solution for appropriate loading histories. Similar results are obtained
in two-dimensional problems for sufficiently large coefficients of friction and are dis-
cussed by Klarbring (1984) and Cho & Barber (1998).

For the present, we shall restrict attention to the case f < f.., for which the
quasi-static solution is generally expected to be unique.

(3.8)
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Figure 3. Three-dimensional quasi-static solution: non-unique case.

(a) Effect of loading history

Suppose the applied force F'(t) is prescribed as a function of time ¢ and we wish
to determine the corresponding displacement function w(t). We anticipate that w(t)
will depend on the history of loading as well as the instantaneous value F'(¢). In this
respect, frictional contact shares some of the features of elastic—plastic problems.

Some qualitative features of the dependence on loading can be deduced directly
from the above discussion. Suppose we cause a particle to move around in F'-space
to describe the loading history F'(¢). As long as the particle is inside the cone, stick
occurs and the cone does not move. If we attempt to move the particle through the
cone surface, slip occurs so as to keep the instantaneous point on the cone surface. The
only way the particle can escape the cone is through the vertex, where a transition
occurs to separation. Similarly, when the particle moves back from separation to
contact, this occurs through the vertex of the cone and will involve a transition to
either stick or slip depending on the direction of the local force trajectory.

(b) Rule for slip motion

When slip occurs, equation (2.11) must be used to determine the direction of the
resultant motion, and hence, the motion of the friction cone in F'-space.
The slip equation (3.7) can be satisfied by defining

E, = —fFsn,, (3.9)

where n is a unit vector in the plane (i.e. ng = 0).
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Suppose we now increase F' by a small increment AF', causing a displacement
increment defined by the components

Auy = Aué,, (3.10)

where £ is also a unit vector in the plane. The slip rule (2.11) and equation (3.4)
require that

Fo+ AE, = —f(F3 + AF3)E,, (3.11)
and we can differentiate (3.5) to obtain
AF; = AF; — kig Aug,. (3.12)
Substituting for AF;, Au, from (3.12) and (3.10) into (3.11), we obtain
AF, + fAF3E, — kapbau — fkspéslaldu = fF3(ng — &), (3.13)

constituting two equations for the two unknowns Awu, &. The left-hand side of this
equation tends uniformly to zero as AF — 0, if the quasi-static solution is continu-
ous, and hence, in this limit we must have n — & — 0. To the first order, n and &
are almost parallel unit vectors and we can write

Ex~n—e¢enxe;s), (3.14)

where € is a small angle that tends to zero as AF — 0 and e3 is the unit vector in
direction 3.

Substituting (3.14) into (3.13), and dropping second-order terms in €, we obtain
two equations for Awu, € that can be solved for Awu to give

AFana+fAF3

Au = .
" kaﬂnanﬁ + fk3ana

(3.15)

Thus, the algorithm for slip requires that the displacement uw be updated by the
increment (3.15) in direction n in response to the force increment AF.

The numerator in (3.15) is proportional to the projection of AF on the outward
normal from the friction cone. It will therefore be positive if F' is changed in such a
way as to try to pass outside the instantaneous surface of the cone. This is consistent
with the friction law (2.11) as long as the denominator in (3.15) is positive, i.e.

kagnang + fkzana > 0. (3.16)

The stiffness matrix K is positive definite, and this guarantees that the first term
in (3.16) is positive for all n, but the second term can be positive or negative and
circumstances can arise in which (3.16) is violated for certain directions n. In this
case, infinitesimal slip in response to an infinitesimal change in F' is inconsistent with
the slip rule. Since F' + AF is outside the stick cone and below the separation plane,
the conditions for stick and separation are also violated, and hence, the quasi-static
solution breaks down.

It is easily shown in such cases that there exists a range of values of u + Au
consistent with the new value of F', but these positions are not in an infinitesimal
neighbourhood of w and are non-unique. Thus, we conclude that the quasi-static
solution loses continuity and an indeterminate instantaneous jump in w4 must occur.
Generally the new state will be expected to be within the stick cone rather than on
the boundary, so that motion will occur in a stick—slip mode, but the parameters of
this discontinuous motion cannot be determined from the quasi-static algorithm.
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It is also interesting to note that, when (3.16) is violated, a force increment to a
new position inside the cone (for which the numerator of (3.16) is negative) will be
consistent with the slip assumption, so that for such directions of loading both stick
and slip can occur.

4. Dynamic solution

When the quasi-static solution predicts anomalous or paradoxical results, further
insight can be obtained by returning to a full dynamic solution of the problem,
using equations (2.1) and (2.2). Unfortunately, this generally necessitates a numerical
solution.

(a) Numerical algorithm

The dynamic equations of motion and the state equations were integrated in time
using an elementary explicit algorithm, similar to that described by Cho & Barber
(1998). We suppose that the position w(t) and velocity 4(t) are both known at time
t and that the state of the system is also known at this time.

We assume that the state persists through the next time increment At, and hence,
we can use the state equations (2.3)—(2.11) to determine the reaction force R. The
acceleration during this time increment can then be approximated as

Mi = F(t) + R(t) — Bu(t) — Ku(t), (4.1)
from equation (2.1).
The position and velocity at the end of the time increment is then updated as
u(t + At) = u(t) + u(t)At, (4.2)
u(t + At) = u(t) + a(t)At. (4.3)
During slip periods, numerical stability is enhanced by defining the velocity vector,

1, in terms of a scalar arc velocity, §, and an instantaneous direction, £. In this case,
the update equation (4.3) takes the form

s(t+ At) = s(t) + & - u(t)At, (4.4)
éle-+ a0 =€) + (5 noa (45)

where

n=e3x§¢ (4.6)
is the in-plane unit normal to the trajectory.

Numerical experiments show that significant changes in slip direction can occur
just before the mass comes to rest (and hence, changes state to ‘stick’). Also, circum-
stances can arise in which the mass makes an almost 180° change in direction. This
is the three-dimensional equivalent of the two-dimensional change from forward to
backward slip. However, in three dimensions, the mass will not usually come to rest
even instantaneously. Instead, the trajectory will approximate a very narrow ellipse,
the arc velocity will fall to a small value near the maximum displacement point and
in this region there will be rapid changes in slip direction.

In both these cases, significant errors can arise in the use of equation (4.5) because
the update in & is insufficiently small. To avoid such errors, the dynamic algorithm
adjusts the time increment in order to ensure that no more than 0.001 rad change in
slip direction occurs during any one time increment.
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(b) State changes

State changes are indicated when violations are detected in the inequalities (2.3),
(2.8) and (2.10). When the stick inequality (2.8) is violated, slip is assumed in the
direction n as defined in equation (3.9). When the contact inequality (2.10) is violated
during slip, this indicates a transition to separation.

When the separation inequality (2.3) is violated, a transition can occur to either
stick or slip depending on the approach velocity (t). Inelastic impact conditions are
assumed, so that w3(t + At) is set to zero. This implies the occurrence of a normal
impulse —M4ug3(t). If a transition occurs to slip, there will also be a proportional
tangential impulse and the resulting tangential velocities will be

U (t + At) = ta(t)(1 = f cot(p)), (4.7)
where ¢ is the angle of incidence defined by
u(t) - e
cos(p) = _\(11)(t)|3' (4.8)

If fcot(p) > 1, equation (4.7) indicates that the limiting frictional impulse is more
than sufficient to bring the mass to rest, and hence, a transition to stick occurs. These
rules can be given a geometrical interpretation. If the mass approaches the plane with
a trajectory that, if extended below the surface, would pass inside a ‘friction cone’
of angle arctan(f), there will be a transition to stick. If the trajectory passes outside
this cone, the transition will slip in the direction of the projection of the impact
velocity on the plane, but with reduced velocity as defined by equation (4.7).

When the arc velocity § changes sign during a time increment, this indicates a
transition to stick, unless the updated position u would involve a violation of (2.8), in
which case a 180° reversal of slip direction is produced by setting £ = —€ and § = —3s.
However, the transition from slip to stick can also be associated with rapid changes
in slip direction as explained above. During this process, the update equation (4.5)
will become numerically unstable as § — 0. We therefore adopt a threshold value of
$ below which the transition to stick is assumed to take place.

(¢) Results

The dynamic algorithm was first used to investigate the behaviour of the system
under unidirectional monotonically increasing loads. If we postulate the existence of
rectilinear quasi-static slip in a given direction 6 at constant normal reaction Rgs,
the friction forces will not change with time and an incremental application of the
equilibrium equation (3.1) will define a unique direction for the required increment of
applied force. For most loading directions, the trajectory predicted by the dynamic
algorithm oscillates about that predicted by the quasi-static solution, with the ampli-
tude of the oscillation depending upon the initial conditions used. The inclusion of
any amount of damping in the system causes the amplitude of this oscillation to
decay with time, so that the trajectory approaches the quasi-static solution.

(i) Stick—slip motion

If the intended direction of quasi-static slip requires incremental loading that vio-
lates condition (3.16), the dynamic algorithm predicts a stick—slip motion that follows
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Figure 4. Stick—slip motion. (a) Trajectory and velocity. (b) Precursors.

the quasi-static trajectory only in the averaged sense that the deviation in instanta-
neous position is bounded in time. Figure 4a shows the variation of arc velocity with

time, and the corresponding trajectory for such a case, with § = tan—!(&y/¢1) = 130°,
f=0.9 and

1 1 -1
K=|1 2 -2/, B=o. (4.9)
-1 -2 3

The mass executes a stick—slip motion, with reproducible amplitude, period and
slip trajectory. Notice that the slip trajectory is a scalloped shape rather than
a straight line. Indeed, we can prove that this must always be the case, since if
straight line stick—slip motion were possible, it would also be describable in the two-
dimensional problem of Cho & Barber (1998) and they showed that this was not
a possibility. Thus, the stick—slip mechanism is intimately connected with the non-
linear nature of the three-dimensional Coulomb law. Most previous explanations of
experimentally observed stick—slip motion depend on the coefficient of friction being
a decreasing function of sliding speed (Bell & Burdekin 1969; Armstrong-Helouvry
1991; Ibrahim 1994), but we emphasize that in the present analysis, stick—slip motion
is obtained with a constant coefficient.
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Figure 4b shows the arc velocity at the beginning of the slip event in more detail.
Notice how the motion starts as an oscillation with the minimum speed return-
ing almost to zero several times, until eventually a major slip event occurs. One is
reminded of the precursor waves preceding earthquake events (Okamoto 1984).

The simulation results also show that stick—slip tends to occur at high normal
contact force and slow sliding speed. Adams (1995) reported a similar trend in insta-
bilities associated with the destabilization of frictional interface waves.

(ii) Oscillatory behaviour

Stick—slip motion is always obtained when the direction of slip is such that the
inequality (3.16) is violated, but for some other directions of monotonic loading,
steady oscillatory behaviour can be obtained. Usually, the arc velocity oscillates
between a maximum value and a value very close to zero, as shown in figure 5a.
Under certain circumstances there can be a period of stick at this point, but there are
important differences from the stick—slip motion illustrated in figure 4. The trajectory
during the oscillatory state deviates very slightly from the quasi-static, but this
deviation is too small to be detectable in figure 5a. If a sufficient amount of isotropic
damping (b;; = bd;;) is included, the oscillation is suppressed, leading to the stable
response of figure 5b.

If the imposed loading is a linear function of time, the quasi-static solution involves
constant velocity and hence satisfies the dynamic equations of motion, since the accel-
eration term is zero. Thus, by choosing appropriate initial conditions for velocity we
can predispose the dynamic solution to follow the quasi-static prediction. In figure 6
we show the results of such a simulation. The system deviates rapidly from the quasi-
static solution, suggesting that the latter is unstable to small perturbations. This was
verified numerically at short periods of time by examining the dynamic response to
small differences from the required quasi-static initial conditions. Deviation from the
quasi-static solution was found to be proportional to the initial perturbation and to
have the form of an exponentially growing oscillation. This suggests that additional
insight into the process might be obtained by performing a perturbation analysis on
the quasi-static solution. We develop such an analysis in the next section.

5. Perturbation analysis

We consider a loading scenario in which the quasi-static solution consists of steady
slip with

Uq = VEql, (5.1)

where V is a constant sliding velocity and the in-plane vector £ defines the sliding
direction. We also choose conditions such that the quasi-static normal reaction Rg =
N is a constant.

The governing equations during slip can be obtained from equations (2.2) and
(2.9) as

Rs,,
Miio + baptip + kapup = Fo — 4{7.2% 2 (5.2)
uy +up
bsptip + kspug = I3 + R, (5.3)

Proc. R. Soc. Lond. A (1999)



850 H. Cho and J. R. Barber

in-plane trajectory in-plane trajectory
0 0 T T T
5
u u
2 10 2_10
15
1 _20 1 1
-10 -10 O
Uy U
0.2
0.2
S S 01
0.1
0 100 200 300 400 0 100 200 300 400
t t

Figure 5. Oscillatory slip with zero initial velocity. (a) No damping. (b) b = 0.05.

and (5.1) will be a solution of these equations provided that

Fa = baﬁfﬁv + kaﬂgﬁVt + foou (54)
F3 = b3glgV + k3gégVt — N. (5.5)

We now define an in-plane perturbation, Vw, on this solution, normalized with
respect to V', so that

Uy = VEut + Vw,. (5.6)

Substituting this expression into (5.2)—(5.5) and eliminating Fy, F» and F5 between
the resulting equations, we obtain
IN . flbspiiog + kspwg + N/V)(Ea + tha) (5.7)

« . . . . * *
|4 V14 2(&1 + Eotio) + bF + 3

We notice from this equation that the normalized perturbation w depends on
the quasi-static sliding speed V' and normal force N only through the combination
N/V. Tt follows that the stability of quasi-static slip and the form of the nonlinear
deviations from the quasi-static solution resulting in cases of instability depend on

M, + bag’tbg + ]Cagwg =
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in-plane trgjectory
15 ‘ ‘

10

0.1 1

0 200 ¢ 400 600

Figure 6. Oscillatory slip with quasi-static initial velocity.

speed and normal force only through this ratio. This behaviour is confirmed by
numerical studies using the algorithm of §4a.

If we now restrict attention to small perturbations, so that w < 1, we can linearize
the nonlinear term in equation (5.7) obtaining the homogeneous governing equation

We + Cagti}g + SapwWp = 0, (58)
where
baﬁ f fN
af = 5 T ab 71& ’ .
Cap = 7 T qSabss + 1 7les (5.9)
kq

Saf = ﬁﬁ + %ﬁaksﬁa (5.10)
lag = Nanp (5.11)

and 7 is defined by equation (4.6).

(a) Routh—Hurwitz criteria

To determine the stability of the system, we first cast equation (5.8) in the first-
order state variable form

q = Ag, (5.12)
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where g = (w1, ws, 11, 2)" and

0 0 1 0
A= 0 00l (5.13)
—S11 —S12 —Ci1 —C12
—S821 —S22 —C21 —C22
The Hurwitz polynomial is then defined as the determinant of the matrix (A —A),
i.e.

D)) = M4 @\ 4 aoA? + ag) + aq, (5.14)
where

a1 = c11 + €22, (5.15)

G2 = C11C22 — C12C21 + S11 + S22, (5.16)

a3 = C11822 + C22511 — C12521 — C21512, (5~17)

a4 = 511522 — S12521- (5~18)

a; >0, (519)

ajas —asz > 0, (520)

(araz — az)az — aay > 0, (5.21)
as > 0. (5.22)

(b) Undamped case

In the interests of simplicity, we first restrict attention to the case without damp-
ing, bag = 0. Denoting the slip direction by 6, such that & = cosf, & = sinf,
equations (5.9) and (5.10) take the form

N N N
11 = f— sin? 6, Clo = Cy = —f— sinfcosf, cog = f— cos2 0, (5.23)

MV MV MV
_ ko ks _ ko Rao
S11 = M +fﬁ Cohe, S12 = M + fﬁ COSH,
(5.24)
S —@Jrf@sinﬁ S —@Jrf@sine
21 — M M ) 22 — M M .

Substituting these results into (5.15)—(5.18) and then into the inequalities (5.19)—

(5.22), we obtain the stability criteria
fN
0 5.25
>0, ( )

N
AV (ko2 cos? 0 + kqq sin? 0 — 2kq5 sin 0 cos 6) >0, (5.26)

[%(kQQ — kH) sm(2«9) + ]{712 COS(20)]
X [3 (koo — k11) sin(26) + ky2 cos(20) + f (ks cos 6 — kg1 sind)] > 0, (5.27)

f2N2
M4V2

1 .
W[k‘llkgz — k%Q + f(kglkgz — k32k21) COS@ =+ f(kggkll — kglk‘lg) Sin 0] > 0. (528)
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The unperturbed quasi-static state must have a positive normal reaction N and speed
V and hence (5.25) is always satisfied. Also, (5.26) is satisfied for all § by virtue of
the requirement that the stiffness matrix be positive definite.

Condition (5.28) can be written in the form

ds3 > f(dy cos@ + dysinb), (5.29)
using the notation (3.3). This will be satisfied for all 8 if

ds > fr/d? + d2, (5.30)

and this is satisfied if f < f., from (3.8), since d3 > 0 for positive-definite K.
It follows that (5.27) is the only condition placing a substantive restriction on the
stability of quasi-static slip for f < fe,.

(¢) Effect of slip direction

To investigate the effect of slip direction and friction coefficient on stability, we
first define the stiffness parameters

b= /Gl — k)2 + kY, F=L(kntke),  ka= Ky k. (5.31)

Notice that k, k define the centre and the radius, respectively, of the in-plane Mohr’s
circle of stiffness and k3 is the magnitude of the coupling vector k3,. All three
quantities are invariant under rotation of coordinate axes in the plane and always
positive.

Using this notation, condition (5.27) can be written in the form

]{;A‘Z[l% c0s(20 — ¢1) + fks cos(0 — )]k cos(20 — ¢1) > 0, (5.32)

where
tan ¢ = w, tan ¢ = —:z;. (5.33)

Cancelling the positive factor f2N 22 /M*V? and defining the new angles
Y ="0- 3¢, b3 = 301 — b2, (5.34)
we can write (5.32) in the simpler form

[cos(2¢) + f cos(¢ + ¢3)] cos(2) > 0, (5.35)

where
f = fks/k. (5.36)

It follows that the existence of unstable directions of quasi-static slip depends only
on the two parameters f and ¢3, provided that f < f.., which in the present notation
can be written

~ ~ p2 —1
f<fa= NrESEs Tk (5.37)
where
p=k/k (5.38)
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Figure 7. Stability diagram for f < fcj (grey denotes unstable; white stable). (a) f = 0.3.
() f=1.0.(c) f=1.8

Positive definiteness of the stiffness matrix K demands that p > 1.

The critical coefficient of friction depends on the angle ¢3 between the directions
of maximum in-plane coupling and out-of-plane coupling in stiffness. However, it is
clear from (5.37) that

fcr gp—lzf:rv (539)

for all ¢3 and hence if the stronger condition f < fc*r is satisfied, (5.35) will determine
the stability boundary for all ¥, ¢3.

Figure 7 shows the stability chart for the undamped system derived from (5.35)
for three different values of f. When f < 1, the system is stable for most directions
of slip, with small regions of instability adjacent to the values i = %W, %W, %77, %77,
as shown in figure 7a. These directions correspond to the principal directions of
the in-plane stiffness terms. The unstable regions get larger as f is increased, but
the character of the chart changes when f =1, as shown in figure 7b. For f > 1,
up to half of all sliding directions can be unstable depending on the value of ¢3,
the most unstable behaviour being obtained close to the values ¢3 = %ﬂ', %7‘(‘, 277, %77,
as shown in figure 7c. These values correspond to the case where the out-of-plane
coupling vector, k3, is aligned with one of the principal directions of the in-plane
stiffness terms. These results have been confirmed for various particular cases, using
the numerical solution of §4.

Large values of f are of course obtained when the coefficient of friction is large, but
they can also be obtained for more modest coefficients if & is small, implying that the
in-plane stiffness matrix is almost isotropic. This appears to imply the paradoxical

conclusion that there will be extensive instability when the in-plane stiffness matrix is
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exactly isotropic. However, as k is reduced towards zero, the exponential growth rates
in unstable regions obtained from the perturbation analysis approach the imaginary
axis from the right half-plane and hence predict extremely slow growth of initial
perturbations. In the limit of isotropy, the corresponding quasi-static solution will
be neutrally stable and any initial oscillation will tend to persist during slip.

(d) The case f > f*
(i) Non-uniqueness

If f > f, there will be some values of ¢3 (and hence some regions of the chart in
figure 7) for which the quasi-static solution is non-unique. These regions are defined
by the converse of (5.28), which, in the notation of equations (5.31) and (5.34), takes

the form

p? — 1+ flpsin(y + ¢3) — cos(1h — ¢3)] > 0. (5.40)

When this condition is violated, the Routh—Hurwitz criteria show that quasi-static
slip will be unstable in addition to being non-unique. In fact, numerical trials in these
regions show that a transition rapidly occurs to one of the other two states—stick
or separation—as in the simpler two-dimensional problem of Cho & Barber (1998).

Condition (5.40) depends on p as well as f. Figure 8 shows the stability chart
obtained for f = 1.8 and various values of p. Non-uniqueness occurs in the approx-

imately elliptical shaded regions centred on the points (1, ¢3) = (2, 37), (Ix, I7)
in figure 8. These regions decrease in size as p increases and vanish when p = f + 1,
which corresponds to the limiting condition f = f2, from (5.39).

(ii) Stick—slip

We also recall that continuous slip in direction # is possible only if condition (3.16)
is satisfied, which in the present notation takes the form

p+sin(2¢) + fsin(yp + ¢3) > 0. (5.41)

If this condition is not satisfied, attempts to force slip in direction 1 will result in
stick—slip motion as shown in figure 4. o o

Notice that (5.41), like (5.40), is satisfied for all (¢, ¢3) if f < f2., while for f > fZ,
there will be ranges of these parameters for which stick—slip motion occurs. These
regions are bounded by the dashed curves in figure 8. Like the shaded multiple
solution regions defined in §5d (i) above, they are centred on the points (i, ¢3) =
(37, 37), (im, Z7), but they are not coextensive with the multiple-solution regions.
In particular, there exist ranges of parameters for which the quasi-static solution
is unique for all slip directions %, but for which some of these directions involve
stick—slip motion.

In summary, this analysis shows that both stick—slip motion and non-uniqueness
can be eliminated by choosing the system parameters so that p > f + 1, but for all
values of the parameters there will be some directions of steady quasi-static slip that
are unstable and that will tend to generate oscillatory behaviour. These unstable
ranges can be minimized by reducing the value of f, but they can only be eliminated

by making the out-of-plane coupling term k3 identically zero.
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Figure 8. Stability diagram for f = 1.8 > f (grey denotes unstable; white stable).
(a) p=1.1. (b) p=1.8. (c) p=2.5.

(e) Effect of damping

All the above results relate to the undamped case. Introduction of damping to the
system introduces six new parameters and greatly complicates the analysis. However,
certain general features of the results can be identified.

We first note that the addition of damping terms affects only the coeflicients ¢, in
equation (5.9) and hence has no effect on the fourth Routh—Hurwitz criterion (5.18),
(5.22) and (5.28), nor does it affect the stick—slip criterion (3.16). It follows that the
extent of the unstable regions bounded by the quasi-elliptical and dashed curves in
figure 8 are unaffected by damping, and also that damping is not an effective way of
preventing stick—slip motion.

In general, we would expect the addition of damping to reduce the domain of
instability defined by the remaining stability criteria and this is indeed the case for
isotropic damping defined by b;; = bd;;, where b is a positive constant. In this case, it
can once again be demonstrated that conditions (5.19) and (5.20) are unconditionally
satisfied, while (5.21) can be cast in the form

Q(b*, N) + N2[cos(2th) + f cos(p + ¢3)] cos(2¢) > 0, (5.42)
where
Qb N) = [Ap + 2f sin() + ¢3)](0*)* + [8p + 25in 2¢) + 5f sin(¢) + ¢3)| N (b*)3
+ [5p + 3sin 20 + Af sin(tp + ¢3)|N2(6*)?
+ [p 4 sin 2 f sin(y) 4 ¢3)|N3b*
+ [f? sin® (¢ + ¢3) + 4f cos(vp — ¢3) + 4 (ND* + (b%)?), (5.43)
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Figure 9. Stability diagram with isotropic damping (f =18,p=22 N= 4.0).
(a) b* = 0.0. (b) b* = 0.01. (c) b* = 0.05.
and
b ~ N
b* = — N = / (5.44)

VM VVik

It can be shown that (2 is a monotonically increasing function of b* for physically
meaningful values of the other parameters and it follows that the addition of isotropic
damping always shrinks the domain of instability associated with this criterion.

This effect is illustrated in figure 9, which shows the unstable domains for f = 1.8,
p = 2.2, N = 4.0 and various values of b*. Notice how the multiple solution and stick—
slip domains remain unchanged, but the remaining unstable domains, governed by
criterion (5.21) shrink with increasing isotropic damping.

The function N=202(b*, N) is unbounded at N — 0 and N — oo and exhibits
a minimum between these extremes for non-zero b*. For a given value of isotropic
damping, it follows that the domains of instability due to criterion (5.21) first grow
and then shrink with increasing normal load.

If the damping is not isotropic, it is easily demonstrated by counter-example that
damping does not necessarily exert a stabilizing influence on the system. For example,
the first Routh-Hurwitz criterion (5.19) then takes the form

2% + fb3cos(0 — ¢s) + N > 0, (5.45)

7 % * * * * * b*
b* = 5 (bjy + b3a), b3 = bi7 + b53, tan ¢4 = _bilv (5.46)
32

and there will be some sliding directions 8 for which this criterion is violated if
fbs > 20" + N. (5.47)

where
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Figure 10. Destabilization by damping. (a) No damping. (b) b11 = b2z = 0.01, b1z = 0, bs1 = 0,
bs2 = —0.05, bss = 0.3.

Similar considerations apply to criteria (5.20) and (5.21) and all are associated
with critical levels of the coupling term b3.

This conclusion is confirmed by the simulation results. For example, figure 10 shows
the transient response of the system with (a) zero damping and (b) b1; = bay = 0.01,
bia = 0, b31 = 0, b3y = —0.05, b33 = 0.3 for the case where 6§ = 90, N = 0.5,
V =100, f = 0.9, ui(0) = 0.0, uz(0) = 10.1. N = 0.0426, p = 1.3416, f = 1.8,
1 = 0.8154, ¢3 = 3.8371.

6. More general loading trajectories

The quasi-static solution is a rigorous analytical solution of the full dynamic equa-
tions if and only if the load increases linearly with time and hence F' is a constant.
For all other cases, the quasi-static solution is generally expected to approximate
the dynamic behaviour if the loading rate is sufficiently small and there are no rapid
changes of direction in F'(t).
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Figure 11. Stability on circular path.

Similar considerations apply to the stability analysis of §5. Thus, for a loading
scenario in which F' varies slowly, we anticipate that unstable perturbations on the
quasi-static response will grow whenever the instantaneous loading direction is pre-
dicted to be unstable by conditions (5.19)—(5.22). However, the extent of such distur-
bances may be limited if the period of time spent in the unstable range is restricted.

Figure 11 shows a typical case in which forces are applied so as to cause the
mass to execute a uniform circular motion (u; = 10cos#, us = 10siné, 6 = 0.001¢,
N =0.2, f =0.9) at a slow constant speed V' = 0.01. The mass follows the quasi-
static trajectory closely except in the sectors AB, CD, EF, where conditions (5.19)—
(5.22) indicate instability. In the sector CD, stick—slip motion is generated and there
is visible deviation from the intended circular trajectory, as shown in figure 11la.
In AB and EF, oscillatory motion develops as in the example of figure 6. In these
sectors, the deviation from the circular trajectory is too small to be seen in figure 11a,
but the instantaneous arc velocity $ deviates significantly from the intended uniform
quasi-static value V', as shown in figure 11b.

Figure 12 shows a scenario in which the mass is required to execute a sudden
change of direction through a small radius of curvature a. The system parameters
are similar to those used for the previous example and the forces are chosen to define
a quasi-static motion at constant speed V, starting with an extended straight-line
segment at # = 90° and ending with a straight-line segment at 8 = 180°. Both these
line segments correspond to stable directions for this system, but the transition radius
carries the mass briefly through directions for which quasi-static slip is unstable.

Figure 12 shows the resulting trajectory and arc velocity for three different values
of the quasi-static velocity V. For high velocities (e.g. V = 1.0, figure 12a), there is
significant deviation from the intended trajectory, including a brief period of separa-
tion (ug > 0). However, these excursions are associated with dynamic (inertia) effects
and decrease as the speed is reduced to V = 0.1 as shown in figure 12b, though the
variation in arc velocity is still significant in this case. Further reduction in velocity
to V = 0.01 (figure 12¢) causes the deviations to increase once again, this time due
to instability of the quasi-static solution while the system executes the transition
radius. The slower the speed V, the longer the system resides in the range of unsta-
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Figure 12. Quick turning through unstable region (N = 1.0, f = 0.9, a = 1.0).
(a) V=1.0. (b) V=0.1. (¢) V =0.01.

ble slip directions, thus permitting stick—slip or oscillatory behaviour to develop.
We conclude that undesirable excursions are liable to occur at both high and low
quasi-static velocities, the optimum condition being obtained at intermediate values
of V.

These results are clearly of concern for the control of positioning mechanisms
involving Coulomb friction supports, particularly in view of the observation from
figure 7 that some sliding directions are unstable even at relatively low values of f.

7. Conclusions

This investigation has shown that elastic systems involving three-dimensional
Coulomb friction support can exhibit considerably more complex behaviour than
corresponding two-dimensional systems. A critical coefficient of friction can be iden-
tified, above which the quasi-static solution is non-unique, but even below this value,
some sliding directions are generally unstable, providing only that there is some cou-
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pling between displacements in the sliding plane and spring forces normal to that
plane. The parameter f determining the extent of these unstable ranges can be sub-
stantial even for low coefficients of friction if the in-plane stiffness matrix is close to
isotropic. Off-diagonal terms in the damping matrix can also destabilize the system
in some cases.

A numerical solution for the dynamic behaviour of the system shows that various
kinds of unstable response are possible, including limit-cycle oscillations in velocity,
oscillations involving a brief period of zero velocity (stick) and ‘stick-slip’ motion in
which the mass spends significant periods in a state of stick, interspersed with short
rapid slip periods. All these non-steady motions involve non-rectilinear motion, even
in cases where the time derivative of the applied load is constant in direction. It
should be emphasized that stick—slip motion in this system can be produced with
a constant coefficient of friction, in contrast to most previous models of this phe-
nomenon that involve a coefficient that varies with speed or a distinction between
static and dynamic coefficient.

These results are of concern for the control of positioning mechanisms involving
Coulomb friction support.
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