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A method is developed for placing bounds on the electrical contact conductance
between contacting elastic bodies with rough surfaces. An analogy is ­ rst estab-
lished between contact conductance and the incremental sti¬ness in the mechanical
contact problem. Results from contact mechanics and the reciprocal theorem are
then used to bracket the mechanical load{displacement curve between those for two
related smooth contact problems. This enable bounds to be placed on the incremen-
tal sti¬ness and hence on the electrical conductance for the rough contact problem.
The method is illustrated by two simple examples, but its greatest potential proba-
bly lies in establishing the maximum e¬ect of neglected microscales of roughness in
a solution of the contact problem for bodies with multiscale or fractal roughness.

Keywords: electrical contact resistance; constriction resistance; fractals;
surface roughness; contact mechanics

1. Introduction

When two elastic bodies are pressed together, the roughness of the surfaces causes
the contact to be restricted to a set of microscopic `actual contact areas’. If we
now conduct an electric current between the bodies, the current is constricted to
®ow through the actual contact areas, causing an additional resistance known as
`constriction resistance’ or `electrical contact resistance’ (Holm 1958). Similar con-
siderations apply to the conduction of heat between contacting surfaces (Cooper et
al . 1969), though in this case some heat transfer will also occur at other parts of the
interface by gas conduction and radiation.

Electrical contact resistance is a problem of considerable technical importance,
with applications in resistance welding (Thornton et al . 1997), microelectronic
devices, electrical connectors (Bryant 1994) and carbon brushes (Yune & Bryant
1988). For a broad study of recent developments in the subject, see Slade (1999).
The study of electrical contact resistance was pioneered by Holm (1958) and Green-
wood (1966), who developed analytical expressions for the resistance due to individ-
ual or clustered circular contact areas. The size and spatial distribution of actual
contact areas depends on the detailed geometry of the contacting rough surfaces,
leading to a complex elastic or elastic/plastic contact problem. There is an exten-
sive body of literature on this subject using, for example, asperity model theories
(Greenwood & Williamson 1966), random process models (Nayak 1971) and fractal
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Figure 1. Initial gap between two bodies.

models (Majumdar & Bhushan 1991; Ciavarella et al . 2000). Earlier models typically
assumed that individual actual contact areas were su¯ ciently widely spaced to be
treated as resistances in parallel, or alternatively to be uniformly clustered within a
`nominal contact area’ that provided an additional constriction resistance. However,
advances in surface measurement show that roughness is a multiscale phenomenon,
suggesting that what appears as a single contact on one scale may be resolved as
a cluster of smaller contacts on the next smaller scale. This has been graphically
demonstrated by Borri-Brunetto et al . (1998), who used a numerical method with
progressively re­ ned discretization to solve an elastic contact problem for a surface
with fractal characteristics. An analytical investigation of this process for the Weier-
strass pro­ le (Ciavarella et al . 2000) suggests that the fractal limit of the actual
contact area comprises an in­ nite set of highly clustered point contacts. It is an
open question whether the theoretical contact resistance in this limit would even be
bounded.

In the present paper, we shall approach the problem rather di¬erently. Instead of
analysing the micromechanics of contact either statistically or deterministically, we
seek to impose bounds on the contact resistance in terms of macroscopic proper-
ties of the contact geometry and roughness parameters. We ­ rst establish an anal-
ogy between the electrical conduction problem and the elastic contact problem. We
demonstrate that the electrical conductance at any load is proportional to the incre-
mental sti¬ness in the elastic contact problem. We then use a theorem in contact
mechanics to place upper and lower bounds on the contact force required to produce
a given level of indentation of a rough surface. These bounds will be shown to be
quite close, particularly at high levels of load. It follows that quite good estimates can
be determined for the incremental sti¬ness and hence for the electrical conductance.

2. The elastic contact problem

Figure 1 shows two unloaded elastic bodies whose surfaces are de­ ned by the func-
tions g1(x; y), g2(x; y), respectively, relative to a plane datum surface. Although the
surfaces are not plane, we assume that surface slopes are su¯ ciently small for the
bodies to be represented by half-spaces in the elastic solution. The functions g1, g2

may be used to describe the shape of an indenter, as in the classical Hertzian theory,
or for a deterministic description of a rough surface.

The local gap between the bodies in the con­ guration shown is

g0(x; y) = g1(x; y) + g2(x; y): (2.1)

Proc. R. Soc. Lond. A (2003)



Bounds on electrical contact resistance 55

Suppose the bodies now experience a relative rigid-body approach w and are simulta-
neously deformed by surface tractions so as to produce normal surface displacements
u1

z(x; y; 0), u2
z(x; y; 0) in the positive z-direction, where superscripts 1 and 2 denote

bodies 1 and 2, respectively. It is clear from ­ gure 1 that a positive displacement
u1

z will tend to increase the gap, whereas u2
z and the rigid-body approach w tend to

decrease it. The gap function is therefore modi­ ed to

g(x; y) = g0(x; y) ¡ w + u1
z(x; y; 0) ¡ u2

z(x; y; 0): (2.2)

The normal contact pressure p(x; y) is a compressive traction equal on each surface,
and hence

p(x; y) = ¡ ¼ 1
zz(x; y; 0) = ¡ ¼ 2

zz(x; y; 0); (2.3)

where we employ the usual sign convention that tensile stresses are positive.
Actual contact can be de­ ned as the condition in which the gap is zero, and hence

the contact problem is de­ ned by the unilateral conditions

g(x; y) = 0 in A; (2.4)

p(x; y) = 0 in ·A; (2.5)

p(x; y) > 0 in A; (2.6)

g(x; y) > 0 in ·A; (2.7)

where A denotes the contact area and ·A the remainder of the interfacial plane. Also,
since the contact is assumed to be frictionless, we have

¼ 1
zx(x; y; 0) = ¼ 2

zx(x; y; 0) = ¼ 1
zy(x; y; 0) = ¼ 2

zy(x; y; 0) = 0 in A [ ·A: (2.8)

Boussinesq (1885) showed that the stress and displacement ­ elds in a half-space
can be written in terms of harmonic potential functions. In particular, if the half-
space is loaded by purely normal tractions, the solution involves a single harmonic
function ’. This representation is tabulated by Green & Zerna (1968) and as Solu-
tion F by Barber (1992). At the surface z = 0, the shear tractions are zero and the
normal traction and normal displacement are given by

¼ zz(x; y; 0) = ¡ @2’

@z2
(x; y; 0); (2.9)

uz(x; y; 0) = ¡
(1 ¡ ¸ )

·

@’

@z
; (2.10)

where · , ¸ are the modulus of rigidity and Poisson’s ratio, respectively.
Using this representation with separate harmonic functions ’1, ’2 for z > 0, z < 0,

respectively, we can satisfy the frictionless boundary condition (2.8). The condition of
continuity of normal tractions at the interface (2.3) can then be satis­ ed by imposing
the symmetry relation

’1(x; y; z) = ’2(x; y; ¡ z) ² ’(x; y; z); z > 0: (2.11)

Notice that this condition ensures that even z-derivatives of the two functions will
be equal at z = 0, but odd z-derivatives will be equal and opposite.

Substituting (2.11) into (2.2){(2.10) reduces the contact problem to a boundary-
value problem for the function ’(x; y; z) in the half-space z > 0, de­ ned by

r2’ = 0; (2.12)
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with
µ

(1 ¡ ¸ 1)

· 1
+

(1 ¡ ¸ 2)

· 2

¶
@’

@z
(x; y; 0) = g0(x; y) ¡ w in A; (2.13)

< g0(x; y) ¡ w in ·A (2.14)

and

@2’

@z2
(x; y; 0) = 0 in ·A; (2.15)

> 0 in A: (2.16)

The corresponding total force is then given by

F =

ZZ

A

p(x; y) dA =

ZZ

A

@2’

@z2
(x; y; 0) dA: (2.17)

This formulation demonstrates the well-known result that the contact problem for
two elastic half-spaces is equivalent to that of the indentation of a single half-space
of composite modulus,

1

M
²

(1 ¡ ¸ 1)

· 1
+

(1 ¡ ¸ 2)

· 2
; (2.18)

by a rigid indenter whose pro­ le is de­ ned by the function g0(x; y) of (2.1). We shall
make use of this equivalence to simplify some of the subsequent derivations.

3. The elastic/electrical analogy

Suppose that two elastic bodies are pressed together by a force F , establishing a
contact area A. If the contacting bodies are maintained at di¬erent electrical poten-
tials V1, V2, a current I will ®ow between them and there will be a contact resistance
Re associated with the constriction of the current through the contact area. If the
bodies can be modelled as half-spaces, there is a simple relation between this resis-
tance and the incremental elastic compliance of the contacting bodies. This relation
is implicit in the potential function formulation of x 2, but to the best of the author’s
knowledge, it has never been formally enunciated as a general result.

(a) A boundary-value problem

We ­ rst de­ ne a function Á(x; y; z) in the half-space z > 0 such that

r2Á = 0; (3.1)

with boundary conditions

Á = 1 in A; (3.2)

@Á

@z
= 0 in ·A; (3.3)

with
Á ! 0; z ! 1; (3.4)
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where A is an area (not necessarily connected) on the surface z = 0 and ·A is the
remainder of the surface z = 0.

This is a well-posed boundary-value problem for any given area A. From the solu-
tion, we also de­ ne the ° ux density q(x; y) at the surface as

q(x; y) = ¡ @Á

@z
(x; y; 0) (3.5)

and the total ®ux Q as

Q =

ZZ

A

q(x; y) dx dy: (3.6)

(b) The electrical problem

Suppose now that body 1 occupies the region z > 0 and has resistivity » 1, body 2
occupies z < 0 and has resistivity » 2 and the two bodies make contact over the area
A of the common interface. The electrical potential V (x; y; z) in each body must
then satisfy the equation

r2V = 0; (3.7)

with boundary conditions

V (x; y; 0 + ) = V (x; y; 0¡) in A; (3.8)

jz(x; y; 0 + ) = jz(x; y; 0¡) in A; (3.9)

jz(x; y; 0 + ) = jz(x; y; 0¡) = 0 in ·A; (3.10)

where the current density

jz = ¡ 1

» i

@V

@z
; i = 1; 2; (3.11)

and is de­ ned to be positive in the direction of the positive z-axis.
Also, distant from the contact interface we must have V (x; y; z) ! V1 as z ! 1

and V (x; y; z) ! V2 as z ! ¡ 1. Notice that the condition of voltage continuity
at the interface (3.8) implies that there is perfect electrical contact between the
bodies in the contact area and hence that any contaminant ­ lms on the surfaces are
su¯ ciently thin for their electrical resistance to be neglected.

It is easily veri­ ed that conditions (3.7){(3.11) are all satis­ ed by the potential

V (x; y; z) = V1 +
» 1(V2 ¡ V1)

( » 1 + » 2)
Á(x; y; z); z > 0; (3.12)

= V2 ¡ » 2(V2 ¡ V1)

( » 1 + » 2)
Á(x; y; ¡ z); z < 0; (3.13)

where Á is the solution of the boundary-value problem of x 3 a. It then follows that
the contact area A is an isopotential surface at potential

V (A) =
» 2V1 + » 1V2

( » 1 + » 2)
(3.14)

and that the total current transmitted between the two bodies is

I =

ZZ

A

jz(x; y; 0) dA =
(V2 ¡ V1)Q

( » 1 + » 2)
; (3.15)
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where Q is de­ ned by (3.6). The electrical contact resistance is therefore

Re =
(V2 ¡ V1)

I
=

( » 1 + » 2)

Q
: (3.16)

(c) The incremental elastic problem

Consider the case in which the two bodies of x 2 are pressed together by a force F ,
causing a relative approach w and establishing a contact area A. Suppose the force is
now increased by an in­ nitesimal increment ¯ F , producing an in­ nitesimal increase
¯ w (constant) in the relative approach. The incremental problem is therefore de­ ned
by the boundary-value problemy

@’

@z
= ¡ M¯ w in A; (3.17)

@2’

@z2
= 0 in ·A; (3.18)

from (2.13){(2.16), with

¯ F =

ZZ

A

@2’

@z2
(x; y; 0) dA: (3.19)

The boundary conditions (3.17), (3.18) can be satis­ ed by choosing

@’

@z
(x; y; z) = ¡ (M¯ w)Á(x; y; z); (3.20)

where Á is the solution of the boundary-value problem of x 3 a. We then have

¯ F = ¡ M¯ w

Z

A

@Á

@z
(x; y; 0) dA = MQ¯ w; (3.21)

from (3.19) and (3.6). Thus the incremental sti¬ness is

dF

dw
= M Q: (3.22)

(d ) Relation between conductance and incremental sti® ness

Eliminating Q between (3.22) and (3.16), we obtain

C ² 1

Re
=

1

M ( » 1 + » 2)

dF

dw
; (3.23)

showing that contact conductance C is linearly proportional to the incremental sti¬-
ness.

4. Bounds on the elastic contact problem

Suppose that the nominally plane rough surface of an elastic half-space is described
by the function z = f(x; y) and that the half-space occupies the region z > f(x; y),

y There will, in general, also be an increase ±A in the contact area, but the incremental loading
in ±A will have only second-order e®ects compared with the rest of the solution as long as ±A is also
in¯nitesimal. This will always be the case if A is a continuous function of F .
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Figure 2. Description of the rough surface.

as shown in ­ gure 2. Since this is a deterministic description, there must be a highest
point ± 1 and a lowest point ± 2, de­ ned by

± 1 = min(f(x; y)); ± 2 = max(f (x; y)): (4.1)

We next consider two limiting elastic contact problems in which a smooth rigid
indenter is pressed into the smooth elastic half-spaces z > ± 1 and z > ± 2, respectively.
These problems are clearly identical except for a rigid-body displacement. Suppose
that the required contact force F can be written

F = F (w); (4.2)

where w is the rigid-body displacement of the indenter measured from the point of
­ rst contact. If the indenter is ®at, the contact area will be independent of w and
F (w) will be a linear function. For all other cases, the contact area is a non-decreasing
function of w (Barber 1974), and consequently the incremental sti¬ness dF=dw is
also a non-decreasing function of w. The expression (4.2) can be extended to cover
the case of non-contact by de­ ning the function F (w) such that F = 0 for w < 0.

If the lowest point on the indenter is brought down to the level ± , the indentation
depth for the half-space z > ± 1 will be w1 = ± ¡ ± 1 and the corresponding contact
force will be

F1( ± ) = F ( ± ¡ ± 1); (4.3)

whereas for the half-space z > ± 2 we have w2 = ± ¡ ± 2 and

F2( ± ) = F ( ± ¡ ± 2): (4.4)

Since ± 2 > ± 1, the monotonicity of F (w) implies that F1( ± ) > F2( ± ) for all ± , as we
should expect from simple physical considerations.

In the same way, it is reasonable to expect that the force F ( ± ) required to press the
indenter to the same depth ± in the rough half-space would be intermediate between
these extremes, i.e. F1( ± ) > F ( ± ) > F2( ± ). The basis for this expectation is that the
force of indentation can only increase if the depth of penetration at any given point
either increases or stays the same. However, the result is not self evident, since, for a
su¯ ciently rough surface, there will be regions of separation (non-contact) that are
included in the contact area for both of the bounding smooth contact problems.
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To develop a rigorous proof, we ­ rst restate the frictionless unilateral contact
problem (2.4){(2.7) as

u(x; y) = U(x; y) in A; (4.5)

u(x; y) > U(x; y) in ·A; (4.6)

p(x; y) = 0 in ·A; (4.7)

p(x; y) > 0 in A; (4.8)

where u(x; y) = uz(x; y; 0) is the inward normal surface displacement of the half-space
and U(x; y) is a function describing the shape of the indenter and its indentation.
The required theorem can then be stated as follows.

Theorem 4.1. If two distinct frictionless contact problems are de¯ned for the
same half-space, in which the respective indentation functions U1(x; y); U2(x; y) sat-
isfy the inequality U1(x; y) > U2(x; y) for all x, y, then the corresponding total forces
satisfy the inequality F1 > F2.

Proof . Suppose we start with the solution of the contact problem de­ ned by the
function U (x; y) and examine the e¬ect of increasing U by a small increment ¯ U (x; y)
in an in­ nitesimally small region ¢A that is part of the original contact area A, this
function being kept constant in all other regions. We consider this process in two
steps. During step 1, u(x; y) is increased in ¢A to restore the contact condition, but
the rest of the area A is forced to remain in contact. This may induce tensile tractions
in some other region ¢A0, which we shall release in step 2. Further applications of
step 2 may be required until the inequality constraints are satis­ ed at all points.
We shall show that the total force cannot decrease at either step and hence that the
­ nal force exceeds or is equal to the original force. Incremental application of this
procedure to all regions ¢A establishes the theorem.

Step 1. During step 1, the incremental process involves the application of a contact
pressure p1(x; y) in ¢A, while the remainder of the area A ¡ ¢A experiences zero
normal displacement. This problem is de­ ned by the boundary conditions

u1(x; y) = ¯ U(x; y) in ¢A; (4.9)

= 0 in A ¡ ¢A; (4.10)

p1(x; y) = 0 in ·A: (4.11)

We also de­ ne an auxiliary problem through the boundary conditions

u2(x; y) = 1 in A; (4.12)

p2(x; y) = 0 in ·A: (4.13)

Applying Betti’s reciprocal theorem to these two problems, we obtain the relation
ZZ

A + ·A

p1(x; y)u2(x; y) dx dy =

ZZ

A + ·A

p2(x; y)u1(x; y) dx dy: (4.14)

Substituting for p1, u1, p2, u2 from (4.9){(4.13), we obtain

¯ F ²
ZZ

A

p1(x; y) dx dy =

ZZ

¢ A

p2(x; y) ¯ U (x; y) dx dy; (4.15)

where ¯ F is the total indentation force in the incremental problem.
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Figure 3. Typical functions F1( ± ), F2( ± ). The load{displacement relation F ( ± ) for
the rough surface must lie between these two curves.

Now, in a frictionless indentation problem for the half-space, the maximum normal
surface displacement must occur in an area of positive contact pressure (Barber
1974), and in the auxiliary problem the only loaded area is A, throughout which
u2 = 1. It follows that all points in A are points of maximum u2 and hence that
p2(x; y) > 0 for all points in A. We also have ¯ U (x; y) > 0 ex hypothesi, and hence
the integrand on the right-hand side of (4.15) is positive for all x, y, from which

¯ F > 0: (4.16)

In other words, the indentation force F must increase during step 1.

Step 2. During step 2, we release the tensile traction in some small area ¢A0,
keeping the rest of the contact area A unchanged. The superposed traction in ¢A0

during this step is therefore compressive, and the incremental problem is identical
with step 1, except that ¢A0 replaces ¢A and the incremental force is prescribed in
¢A0 instead of the incremental displacement. The above argument therefore carries
over to this step, showing that the indentation force cannot decrease during step 2
and hence establishing the theorem. ¥

5. Bounds on the contact conductance

Figure 3 shows a plot of typical functions F1( ± ), F2( ± ) from (4.3) and (4.4). Both
these expressions are derived from the same function F (w), and hence the two curves
must have the same shape. They are merely separated by a constant distance,

s = ± 1 ¡ ± 2; (5.1)

along the ± -axis. Notice also that the derivative dF=d ± must be a non-decreasing
function of ± , so the curves will be concave upwards except in the limiting case of a
®at indenter, for which they will be parallel straight lines.

The theorem of x 4 shows that the function F ( ± ) de­ ning the load{displacement
relation for the indentation of the rough elastic half-space must lie between the two
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Figure 4. Construction for determining bounds on the incremental sti® ness.

curves in ­ gure 3. It must also be concave upwards. Contact will start as soon as
± > ± 1, and the proportion of the nominal contact area in actual contact will increase
with F , so we anticipate a curve that starts from the beginning of the F1 curve at
( ± 1; 0) and moves closer to the F2 curve with increasing F . A plausible curve is shown
dashed in ­ gure 3.

A lower bound on the slope of the F ( ± ) curve at a given value of F can be deter-
mined by the construction of ­ gure 4. For a given force F , we start at the point A
on the F2 curve and draw the tangent AC to the F1 curve. The slope dF=d ± at F
cannot be less than the slope of this line, since if we start anywhere between the
points A and B with a line of lesser slope and extend it backwards towards F = 0,
we could only stay between the lines F1( ± ) and F2( ± ) by making the line convex
upwards, which violates the condition that the incremental sti¬ness dF=d ± be a
non-decreasing function of ± .

By a similar argument, it follows that the slope dF=d ± at a given value of F must
be lower than that of the tangent line AD in ­ gure 4, since a steeper line than this
could only stay within the bounding curves if it were convex upwards.

Once these limiting slopes have been determined, the corresponding upper and
lower bounds on conductance follow immediately from (3.23).

(a) Contact of two rough bodies

These arguments are readily extended to the contact of two rough elastic bodies.
As shown in x 2, the contact problem depends only on the sum g0 of the two pro­ le
functions g1, g2. Thus, we can `transfer’ the roughness of one body to the other,
obtaining a composite roughness description

f(x; y) = f1(x; y) + f2(x; y): (5.2)

The required roughness height parameter s is then de­ ned as before as

s = max(f(x; y)) ¡ min(f(x; y)): (5.3)
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6. Examples

(a) Spherical indenter

Suppose that the indenter is a sphere of radius R. The results for the smooth con-
tact problem then follow from the classical Hertzian theory. The load{displacement
relation is

F = C1w3=2; (6.1)

where
C1 = 8

3MR1=2; (6.2)

(Johnson 1985) and the corresponding incremental sti¬ness is

dF

dw
= 3

2 C1w1=2: (6.3)

If we choose a coordinate system such that ± 1 = 0 and denote the point C in
­ gure 4 by ( ± 0; C1 ±

3=2
0 ), the equation of the line CA must then be

F = C1 ±
3=2
0 + 3

2C1 ±
1=2
0 ( ± ¡ ± 0); (6.4)

and its intersection with the line

F2( ± ) = C1( ± ¡ s)3=2 (6.5)

occurs when
( ± ¡ s)3=2 = 3

2 ±
1=2
0 ± ¡ 1

2 ±
3=2
0 : (6.6)

Introducing the dimensionless variables

x =

s
± ¡ s

± 0
; S =

s

± 0
; (6.7)

this equation can be written in the form

S = 2
3
x3 ¡ x2 + 1

3
= 2

3
(x + 1

2
)(x ¡ 1)2: (6.8)

We can also use this notation to de­ ne the dimensionless force and incremental
sti¬ness as

F ¤ ²
F

M
p

Rs3
=

8x3

3S3=2
; K ¤ ²

1

M
p

Rs

dF

d ±
=

4p
S

: (6.9)

We then use (3.23) to obtain the dimensionless electrical contact conductance C ¤ ,
de­ ned as

C ¤ ² ( » 1 + » 2)Cp
Rs

=
4p
S

: (6.10)

Equation (6.8) determines the value of ± at the intersection point A in ­ gure 4
corresponding to the tangent point de­ ned by the value ± 0. The solution de­ nes a
lower bound (minimum slope) if C is to the left of B, and hence ( ± ¡ s) > ± 0 and
x > 1. Conversely, upper-bound intersections correspond to 0 < ( ± ¡ s) < ± 0 and
0 < x < 1.
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Figure 5. Upper and lower bounds of dimensionless conductance C ¤

for the rough spherical indenter.
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Figure 6. Construction for determining the lower bound for the ° at indenter problem.

Equation (6.8) is cubic in x and can therefore be solved in closed form, but it is
more convenient to construct the bounds parametrically. Thus, for a given value of
x in x > 0, we calculate S from (6.8) and then obtain F ¤ and C ¤ from (6.9) and
(6.10). By following this procedure for all values in the range 0 < x < 1, the entire
upper and lower bounding curves can be constructed. Figure 5 shows the upper and
lower bounds for C ¤ as a function of F ¤ .

(b) Flat cylindrical indenter

If the indenter is a rigid perfectly conducting ®at-ended cylinder of radius a, the
load{displacement relation is

F = C2w; (6.11)

where

C2 =
4 · a

(1 ¡ ¸ )
; (6.12)

and the incremental sti¬ness is
dF

dw
= C2; (6.13)
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where · , ¸ are the elastic properties of the half-space material (Barber 1992). The
functions F1( ± ), F2( ± ) now de­ ne parallel straight lines, as shown in ­ gure 6, and
the upper bound in this case must correspond to a line of slope C2. The lower bound
is de­ ned by the line OA, which has slope

K =
F

± A
=

F

F=C2 + s
; (6.14)

and the corresponding bounds on the conductance C are easily shown to be

4a

»
> C >

4a

»

Áµ
1 +

4 · as

F (1 ¡ ¸ )

¶
: (6.15)

In this simple case, the upper bound on C is identical with Holm’s expression for
the conductance through a circular contact of radius a (Holm 1958) and corresponds
to complete electrical contact inside the plan form of the indenter. More generally,
for a rigid ®at-ended indenter of any shape, the bounding curves F1( ± ) and F2( ± )
will be parallel straight lines, and hence the upper bound for any such indenter will
correspond to complete electrical contact inside the plan form.

7. Consequences for fractal rough surfaces

The bounds established in x 5 bracket the electrical contact conductance between two
­ nite and non-zero values as long as the surface description has a ­ nite maximum
peak-to-valley height s. This condition must be satis­ ed by any deterministically
de­ ned fractal-surface description, such as the Weierstrass pro­ le investigated by
Ciavarella et al . (2000) and others. We conclude that the electrical conductance
between contacting perfectly elastic fractal surfaces must be ­ nite and non-zero,
despite the indication that the theoretical contact area in this case comprises an
in­ nite set of point contacts.

As the elastic contact process is extended to smaller and smaller scales, the total
contact area decreases and the mean contact pressure increases (Borri-Brunetto et
al . 1998). We must therefore anticipate that plastic deformation or some other failure
mechanism will dominate the contact process at su¯ ciently small scales, probably
giving contact areas of ­ nite number and size. However, for materials of high yield
strength, it is possible that the contact conductance will have converged to its limit
before the `plastic scale’ is reached and hence that a simpler elastic prediction may
be su¯ ciently accurate.

The function g0(x; y) of (2.1) de­ nes both the macroscopic shape of the contact-
ing bodies and the superposed surface roughness, but the distinction between these
quantities is essentially arbitrary. Thus, for a multiscale surface, we could envisage
solving for the relation F (w) for an indenter whose shape explicitly includes the
coarser scales of the surface roughness (e.g. by an asperity model theory), leaving
only the ­ ner scales to be described by the function f(x; y) of (4.1). This would reduce
the value of s and tighten the resulting bounds. In other words, the methodology
of x 5 can be seen as placing bounds on the e¬ect of those microscales of roughness
not accounted for in a classical solution of the contact problem with roughness.
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8. Conclusions

We have used an analogy between electrical conductance and elastic contact to
develop a methodology for placing bounds on the electrical conductance between
two contacting elastic bodies with rough surfaces. The bounds depend only on prop-
erties of the corresponding smooth contact problem and the maximum peak-to-valley
height of the combined roughness.

The method is illustrated by two simple examples, but its greatest potential prob-
ably lies in establishing the maximum e¬ect of neglected microscales of roughness in
a solution of the contact problem for bodies with multiscale or fractal roughness.

References

Barber, J. R. 1974 Determining the contact area in elastic indentation problems J. Strain Analy-
sis 9, 230{232.

Barber, J. R. 1992 Elasticity. Dordrecht: Kluwer.

Borri-Brunetto, M., Carpinteri, A. & Chiaia, B. 1998 Lacunarity of the contact domain between
elastic bodies with rough boundaries. In Probamat-21st century: probabilities and materials
(ed. G. Frantziskonis), pp. 45{64. Dordrecht: Kluwer.

Boussinesq, J. 1885 Application des potentiels µa l’¶etude de l’¶equilibre et du mouvement des solides
¶elastiques. Paris: Gauthier-Villars.

Bryant, M. D. 1994 Resistance buildup in electrical connectors due to fretting corrosion of rough
surfaces. IEEE Trans. Comp. Packaging Manufact. Technol. A 17, 86{95.

Ciavarella, M., Demelio, G., Barber, J. R. & Jang, Y. H. 2000 Linear elastic contact of the
Weierstrass pro¯le. Proc. R. Soc. Lond. A 456, 387{405.

Cooper, M. G., Mikic, B. B. & Yovanovich, M. M. 1969 Thermal contact conductance. Int. J.
Heat Mass Transfer 12, 279{300.

Green, A. E. & Zerna, W. 1968 Theoretical elasticity, 2nd edn, x 5.7. Oxford: Clarendon.

Greenwood, J. A. 1966 Constriction resistance and the area of real contact. Br. J. Appl. Phys.
17, 1621{1632.

Greenwood, J. A. & Williamson, J. B. P. 1966 The contact of nominally ° at surfaces. Proc. R.
Soc. Lond. A 295, 300{319.

Holm, R. 1958 Electrical contacts handbook. Springer.

Johnson, K. L. 1985 Contact mechanics. Cambridge University Press.

Majumdar, A. & Bhushan, B. 1991 Fractal model of elastic{plastic contact between rough
surfaces. ASME J. Tribol. 113, 1{11.

Nayak, P. R. 1971 Random process model of rough surfaces. ASME J. Lubrication Technol. 93,
398{407.

Slade, P. G. 1999 Electrical contacts|principles and applications. New York: Dekker.

Thornton, P. H., Krause, A. R. & Davis, R. G. 1997 Contact resistances in spot welding. Weld.
J. 75, 401s{412s.

Yune, Y. G. & Bryant, M. D. 1988 Transient nonlinear thermal runaway e® ects in carbon
graphite electrical brushes. IEEE Trans. Comp. Hybrids Manufact. Technol. 11, 91{100.

Proc. R. Soc. Lond. A (2003)


