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Articl_e history: Elastic contact problems involving Euler-Bernoulli beams or Kirchhoff plates generally involve concen-
Received 21 July 2014 trated contact forces. Linear elasticity (e.g. finite element) solutions of the same problems show that finite
ggii“’e‘j in revised form 10 September contact regions are actually developed, but these regions have dimensions that are typically of the order

of the beam thickness. Thus if beam theory is appropriate for a given structural problem, the local elas-
ticity fields can be explored by asymptotic methods and will have fairly general (problem independent)
characteristics. Here we show that the extent of the contact region is a fixed ratio of the beam thickness
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g?r/l ‘:/:crtd;:mblems which is independent of the concentrated load predicted by the beam theory, and that the distribution of
Beams contact pressure in this region has a universal form, which is well approximated by a simple algebraic
Plates expression.

Finite element methods © 2014 Elsevier Ltd. All rights reserved.

Asymptotic methods

1. Introduction 4El Py
afL—ﬁfL<1—F>. (2)
If classical Euler-Bernoulli beam theory is used to describe
elastic components in frictionless contact, the solutions generally
predict concentrated contact forces — i.e. that the extent of the 1.1. Higher order beam theories
contact area is restricted to one or more isolated points. A simple
example is illustrated in Fig. 1, where a beam of length L is simply Clearly the continuum solution of this problem will not involve
supported at its ends, and a rigid cylinder of radius R is pressed concentrated forces, with the corresponding implication of locally
against it at the mid point by a force P. unbounded stresses and strains. Instead, we anticipate the devel-
In this situation, contact will occur only at the mid-pointaslong ~ opment of small but finite regions of contact with correspondingly
as the radius of curvature of the deformed beam is greater than R large local contact stresses, whose value may be of importance for
and this condition is satisfied if design purposes.
Some degree of regularization in the beam solution can be
P<P,= @7 (1) achieved by using higher order theories, such as Timoshenko beam
LR theory (Chen, 2011), or by including the effect of transverse normal

strain (Naghdi and Rubin, 1989; Gasmi et al., 2012). However, the
resulting theories are considerably more complex to apply, and the
contact pressure distributions still exhibit significant deviations
from the ‘exact’ solution, particularly at the edges of the predicted
contact region, where asymptotic arguments require that the
contact pressure should go to zero with a square-root bounded
form (Johnson, 1985).

where El is the flexural rigidity of the beam.

For P > Py, a finite strip of contact is developed — i.e. the beam
conforms to the shape of the cylinder over a line segment of length
a, but non-zero tractions are limited to a pair of concentrated
forces P/2 at the two edges of this segment (Johnson, 1985), as
shown in Fig. 2. The beam is then essentially loaded in ‘four-point
bending’ and the bending moment in the contact segment is
P(L — a)/4, corresponding to a radius of curvature 4EI/P(L — a).
Equating this to the radius of the cylinder and solving for the 1.2. Analytical solutions
length a, we obtain

The problem of Fig. 1 was solved exactly in the context of
* Corresponding author. Tel.: +1 734 936 0406. elasticity theory by Keer and Miller (1983), by expressing the
E-mail address: jbarber@umich.edu (J.R. Barber). elastic fields in the beam as Fourier transforms with respect to
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the horizontal variable. The lower surface of the beam is traction-
free, and because the contact conditions are frictionless, the shear
traction on the upper surface is also zero everywhere. Thus, three
of the four boundary conditions are ‘global’ and can be satisfied
by elementary relations between the transform variables. The
remaining (normal) conditions on the upper surface then lead to
a pair of dual integral equations and these can be reduced to a
single Fredholm equation that must be solved numerically.

1.3. Finite element solutions

The Fourier transform technique has been applied to a range of
beam-like contact problems (Schonberg et al., 1987; Keer and
Schonberg, 1986; Keer and Silva, 1972) of which it clearly
represents the definitive solution. However, its use demands a sig-
nificant familiarity with dual integral equations and the final calcu-
lation still involves a numerical solution. A more straightforward
alternative is of course to solve the complete structural contact
problem using a two or three-dimensional finite element model,
in which the contact tractions can be approximated to any desired
degree of accuracy by suitable mesh refinement. However, this
approach has its own problems, notably because (i) the resulting
contact areas are very small and hence require very fine local
meshing, but (ii) in many cases (for example, for the problem of
Fig. 1 with P > Py), the exact location of the contact region is not
known a priori, so this fine mesh may need to be extended over a
substantial region of the body.

1.4. Asymptotic arguments

The fact that the local contact stress fields will be restricted to a
region that is small compared with the other dimensions of the
problem opens up the possibility of using asymptotic methods.
These methods have been used to great effect in deducing the char-
acter of the local frictional slip zones and stress fields in fretting
fatigue applications, from parameters defined in the simpler, fully
adhered solution (Churchman and Hills, 2006; Flicek et al., 2013).

In the problem of Fig. 1, if we choose a coordinate system cen-
tered on one of the two contact regions implied by the geometry of
Fig. 2, and magnify the scale sufficiently for the resulting finite con-
tact area to occupy most of the field of interest, then the magnifi-
cation will usually be sufficient for the ends of the beam and the
other region of contact to appear a large distance away. St.
Venant's principle then suggests that the effects of these distant
loads can influence the local contact region only through the local
values of bending moment and shear force, and hence it should be
possible to characterize the local contact fields in terms of a quite
limited number of parameters. In other words, we should be able
to develop a few fairly general continuum contact solutions that
can be ‘patched in’ to beam contact problems, enabling the maxi-
mum contact pressure and other parameters of interest to be pre-
dicted without necessitating a full continuum solution of the each
individual problem. This is the objective of the present paper.

P

Fig. 1. A cylinder pressed against a beam.
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Fig. 2. Contact tractions for P > P,.

2. Hertzian approximation

We consider the two-dimensional plane strain problem in
which the beam of Figs. 1 and 2 is of depth h and the force P is
to be interpreted as force per unit length (into the paper). We then
have

E'h’ E'h’
where
. E
FTaow @

is the plane strain modulus, and E, v are Young's modulus and
Poisson’s ratio respectively.

If P <« Py, it seems reasonable to expect that the local contact
behavior in Fig. 1 will be well approximated by the Hertzian equa-
tions. In particular, that the contact pressure distribution will be
given by (Johnson, 1985)

2
pwzg%%;ﬁ (5)

and the contact semi-width b will be

PR
b=2,/2%. (6)

We might hope to obtain a better approximation to the local
fields by recognizing that in the beam solution, the contact surface
is concave with radius

4FI
Ry = Jr- (7)

This value is determined by the bending moment in the beam,
which is only very slightly affected by the exact contact pressure
distribution, so we can reasonably treat it as a pre-existing radius
and calculate p(x) and b by replacing R by the composite radius R*
where

1 1 1 P
R x k(R ®

We obtain

W (P 5 P

after which p(x) is given by (5). In particular, the maximum contact
pressure is

b=2

3LP(1 - P)

0) = P,
p( ) 0 7'Ch3

(10)

3. Finite element solution

To evaluate the range in which these approximations are appro-
priate, we constructed a finite element model of the problem. The
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mesh was refined sufficiently to ensure that there were never less
than 200 contact nodes in any contact region in the following
results. The finite element model used 2,000,000 four-node iso-
parametric quadrilateral elements, with a total of 2,010,201 nodes
for h/L = 0.02.

Fig. 3 compares the predictions of the contact semi-width b
from Eq. (9) (solid line) with the finite element results for
h/L = 0.02 (circles) and h/L = 0.2 (squares). The dashed line in this
figure represents the simple Hertzian prediction (6). As we might
expect, this gives a good approximation for very low values of
P/Py, but is not useful beyond about P/P, = 0.2. By contrast, Eq.
(9) gives very accurate predictions for P/Py < 0.5 even for
h/L = 0.2 which outside the range for which beam theory might
be thought appropriate. For h/L = 0.02, the approximation is excel-
lent up to P/Py, = 0.9.

Fig. 4 shows a similar comparison for the maximum contact
pressure p(0). Notice in particular that the Hertzian theory predicts
that p(0) increases monotonically with P, but Eq. (10) correctly
identifies the non-monotonic shape of the curve. Figs. 3 and 4 were
computed using a radius R = 2000h (h/R = 0.0005), but similar cal-
culations using h/R in the range (0.005,0.0002) fall on the same
curve, showing that in the linear range at least, the results are inde-
pendent of R.

3.1. Results for P > Py

For P > Py, the beam solution predicts two concentrated forces
as shown in Fig. 2. The bending moment in the central segment is
independent of a, so as long as a > h — i.e. the two contact points
are sufficiently far apart for their local fields not to interact — the
only parameter defining the local field is the magnitude of the pre-
dicted concentrated force P/2. Furthermore, the concentrated force
defines a perturbation from pure bending that is independent of
the local bending moment, suggesting that the local field will be
independent of the radius R for a given value of P/2.

The finite element results show that the width b of each of the
two contact regions is independent of P in the range P > 2P, being
given by b = 2.3h for sufficiently small values of h/R. Fig. 5 shows
the dependence of b/h on h/R in this range and shows that there is
no significant dependence on h/R below 107, Fig. 6 shows the cor-
responding contact pressure distribution in the left contact area,
normalized with respect to the average pressure F/b, where
F =P/2 is the resultant force. The factor of 2 in this expression
arises because each of the two concentrated forces in the beam
solution is equal to P/2. The numerical results show that this nor-
malized distribution is independent of P/P, in the range P > 2P,.
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Fig. 3. Contact semi-width b for P < Po. The solid line is defined by Eq. (9), the
circles are for h/L =0.02 and the squares for h/L = 0.2. The dashed line is the
Hertzian solution (6).
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Fig. 4. Maximum contact pressure p(0) for P < Py. The solid line is defined by Eq.
(9), the circles are for h/L = 0.02 and the squares for h/L = 0.2. The dashed line is
the Hertzian solution (6).
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Fig. 5. Dependence of the contact width b on indenter radius R for P > P,.
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Fig. 6. Normalized contact pressure distribution at the left contact zone for P > P,
(circles). The curve fit of Eq. (11) is shown as a solid line. The vertical dashed line
defines the line of action of the resultant force.

An acceptable curve fit to these results, with the asymptotically
required square-root bounded form at each edge of the contact
area, is given by the expression

PO =1 (Co+ CiE+ G +CE)VET D), (1)

where ¢ = x/b = x/2.3h, x is measured from the edge of the separa-
tion zone, and Cy = 9.624, C; = —25.82, C, =24.08, C3 = —7.667.
This expression is shown as the solid line in Fig. 6.
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Fig. 7. Distance a between the lines of action of the two patches of contact pressure
from the finite element solution (circles) for P > Py. The solid line is defined by Eq.

).

The beam solution predicts that the two concentrated forces
should be separated by a distance a given by Eq. (2). To compare
with this, we computed the line of action of the resultant force
corresponding to the pressure distribution of Fig. 6 and found the
distance between the lines of action of the two forces in the finite
element solution. The results are compared with the beam predic-
tion in Fig. 7. The beam solution (solid line) is essentially indistin-
guishable from the finite element results, shown as circles. To put
this result in perspective, we indicate by a vertical dashed line the
location of the resultant force in Fig. 6, which acts through the
point ¢ =c, where ¢ = 0.294. Alternatively, if we define a new
coordinate x’ measured from the location of the concentrated force
in Fig. 2, the actual pressure distribution is well approximated by
the expression (11) with ¢ = & +cand b = 2.3h.

4. Example

The scientific value of the above results is that they can in prin-
ciple be applied to any contact problem involving beams in which a
concentrated contact force is predicted at the edge of a segment of
contact. To illustrate this, we consider the problem shown in Fig. 8,
in which a rectangular beam of depth h resting on a rigid plane is
subjected to a uniform downward pressure wy per unit length and
an upward end force F, tending to lift a segment of the beam from
the support. Elementary beam calculations show that the sepa-
rated segment should be of length 2F/wy and that there should
be a concentrated contact force, also of magnitude F, at the separa-
tion point. This problem is discussed by Feodosyev et al. (1977)
using a beam theory including shear deformations, and an exact
analytical solution is given by Keer and Silva (1972) using the Fou-
rier transform method.

The solid line in Fig. 9 shows the contact pressure distribution
predicted in this problem for the case F = 25wph, using the beam
solution, but with the concentrated force ‘regularized’ using the

F

+ w per unit length
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Fig. 8. A uniformly loaded beam lifted by an end force.
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Fig. 9. Contact pressure distribution for the problem of Fig. 8 with F = 25wyh.

expression (11). Notice that in contrast to the problem of Fig. 2,
the beam solution in this case predicts a uniform contact pressure
equal to wy per unit length to the right of point B, which corre-
sponds to the dashed vertical line in Fig. 9. so Eq. (11) cannot be
correct very close to B. However, this error is necessarily rather
small if the ratio between the separated length a and the beam
depth h is large enough for beam theory to be appropriate. The
circles in this figure represent a direct finite element solution of
the same problem and are very close to the predictions from the
regularized beam theory, except in a small transition region. In
particular, the predictions of the location and magnitude of the
maximum contact pressure are extremely good. We anticipate
similar levels of agreement for all problems of this general class.

5. Three-dimensional problems

Similar problems arise in the contact of plates and shells. For
example, if a rigid sphere is pressed into the center of a simply sup-
ported circular Kirchhoff plate by a force P, a concentrated line con-
tact force will occur on a circle whose radius a increases with P. If
a/h > 1, where h is the plate thickness, the three-dimensional
solution of this problem will involve a finite contact pressure over
a thin annulus near r = a and we might expect the stress state to be
locally approximately two-dimensional. Similar asymptotic meth-
ods have been used by Kalker (1977) to approximate the solution
of three-dimensional contact problems involving slender contact
areas, and a similar asymptotic argument underpins the use of
stress-intensity factors as a measure of loading severity in three-
dimensional fracture problems.

This argument leads us to expect the width of the annulus to be
approximately b = 2.3h and the pressure to take the form of Eq.
(11), where the appropriate force per unit length from the plate
solution is used for F.

6. Conclusions

The regularization introduced into contact problems for beams
by the use of linear elasticity is localized to a region whose dimen-
sions are of the order of the beam thickness. This implies that if
beam theory is appropriate for a given structural problem, the local
elasticity fields can be explored by asymptotic methods and will
have fairly general (problem independent) characteristics. In par-
ticular, the extent of the contact region is a fixed ratio of the beam
thickness which is independent of the load, and the distribution of
contact pressure in this region has a universal form. This makes it
possible to develop good approximations to the elasticity solution
by (i) solving an equivalent beam or plate problem and then (ii)
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patching in a local corrective field to regularize the resulting con-
centrated forces.
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