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Abstract

During fretting, the removal of material by wear leads to an increase of
contact stress in the stick zone. If elastic behaviour is assumed, the boundary
between stick and slip zones does not move, wear eventually ceases, and a mode-I
singularity of contact pressure is predicted after infinitely many cycles.

For real materials, the development of singular stresses must be limited by
plastic deformation. Here we investigate the effect of plasticity on fretting wear,
using a finite-element model. We find that the principal effect of plasticity is
to allow the wear scar to extend continuously into the contact region. Thus,
wear continues indefinitely, and extensive damage or catastrophic failure is to
be anticipated, given a sufficient number of fretting cycles.

In the elastic régime, the results can be cast in dimensionless terms, permit-
ting application to any material or loading condition. Plasticity introduces an
additional dimensionless parameter into the analysis, but results of considerable
generality can still be obtained. In particular, the contact pressure distribution
exhibits a stable maximum related to the yield strength of the material, and
the maximum accumulated plastic strain increases approximately linearly with
the number of loading cycles and occurs close to the instantaneous slip-stick
boundary.
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1. Introduction

Partial slip or ‘microslip’, a common phenomenon in many engineering appli-
cations (Vingsbo & Söderberg, 1988, Ciavarella, 1998a,b, Fouvry et al., 2003),
occurs when the shear load is insufficient to cause slip throughout a contact in-
terface between deformable bodies. In ‘incomplete’ or non-conforming contact
problems, such as indentation of a plane surface by a cylinder or a punch with
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rounded edges, the normal tractions decrease smoothly to zero at the contact
edge (Ciavarella et al., 1998). However, when the contact is subjected to a cyclic
shear load, regions of reversed microslip are developed at the edges of the con-
tact area and the resulting wear leads to a redistribution of stress (Johansson,
1994, Goryacheva, et al., 2001, Ding et al., 2004, Kasarekar et al., 2007).

Hills and Fellows (1999) showed that the boundary between stick and slip
regions does not change during this wear process. This result can be proved
rigorously for any problem to which the Ciavarella-Jäger theorem (Ciavarella,
1998a, Jäger, 1998) applies and is also observed in numerical solutions (Johans-
son, 1994, Ding et al., 2004, Madge et al., 2007). Under these conditions, wear
will eventually progress to the state where the contact pressures are negligible in
the slip region. Wear will then cease and the system becomes elastically similar
to a crack, with consequent square-root singularities in the normal and shear
tractions in the stick region, as shown in Figure 1.

Figure 1: The initial contact pressure decreases to zero smoothly. However,
after a large number n of loading cycles, the material in the slip zone is worn
away and the contact pressure near the stick slip boundary becomes elastically
singular.

In most practical cases, this process will be limited by plastic deformation
near the incipient crack tip, and this in turn may affect the wear process and
the evolution of contact pressure. This is the effect to be explored in the present
paper. It has potentially important consequences for the prediction of the ini-
tiation and propagation of fretting fatigue cracks (Vingsbo & Söderberg, 1988,
Kuno et al., 1989, Giannakopoulos et al., 2000, Fouvry et al., 2003, Sum et al.,
2005, Arújo et al., 2006).

In many contact systems, the intention is to provide sufficient normal force to
approximate a completely stuck situation, so that the resulting cyclic slip zones
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are small. In particular, if these zones are sufficiently small compared with the
other linear dimensions of the problem, the local stress fields can be completely
characterized in terms of appropriate generalized stress-intensity factors (Dini
& Hills, 2004). This procedure is similar in concept to the ‘small-scale yielding’
criterion in linear elastic fracture mechanics (LEFM) (Rice, 1974) and has been
shown to be very successful in correlating fretting fatigue life (Hills et al., 2012).

In the present paper, we shall use this characterization in the context of
a finite-element model to make fairly general predictions about the effect of
plastic deformation on the evolution of wear and contact tractions, and on the
accumulation of plastic strain during fretting.

2. Methodology

Figure 2 shows the edge of the contact between two smooth bodies subjected
to a constant normal force P and a tangential force that oscillates between ±Q,
where Q < µP and µ is the coefficient of friction, which is assumed to be
the same under static and dynamic conditions. We assume that the line of
action of the tangential force lies at the contact interface, so that no moment
is induced. We also assume that the materials of the two bodies are similar, so
that the second Dundurs’ constant, β, is zero (Dundurs, 1969), and hence the
slip displacements have no effect on the distribution of contact pressure. This
also implies that the critical coefficient of friction defined by Klarbring’s ‘P-
matrix’ condition is infinite (Klarbring, 1999), and hence that the incremental
frictional problem is well-posed for all values of µ.

Figure 2: A contact pair with a smooth contact edge. The indenter is subjected
to a normal force P and oscillating force Q, The coordinate x is measured from
the edge of the contact.

2.1. Asymptotic elastic fields
Following Dini and Hills (2004), we characterize the normal tractions local

to the contact edge in the absence of wear by the expression

p(x) = C
√
x , (1)

where C is a constant that depends on the external loads and the macroscopic
geometry. If the length d of the slip zone is sufficiently small compared with
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the macroscopic length dimensions, the local tangential tractions can then be
written as

q(x) = ±µC
(√

x−
√
x− d

)
(2)

(Dini & Hills, 2004), where the sign depends on the direction of slip and the
square roots are interpreted as zero in any region where their arguments are
negative.

We assume that the slip zone length d is sufficiently small that there exists a
range in which x� d, but x� D, where D is a characteristic dimension of the
macroscopic contact problem. For practical geometries, this requires that the
oscillatory term in the tangential force be much less than the value required for
full slip — i.e. Q� µP . However, in the numerical study described in Section
4.1 below, we found that the asymptotic characterization gave predictions within
±3% for values up to Q = 0.25µP . The slip zone has little effect on the shear
tractions in x � d, so these can be characterized by a mode-II stress-intensity
factor KII (Ciavarella et al., 1998, Giannakopoulos et al., 2000, Ciavarella &
Macina, 2003, Dini & Hills, 2004), where

q(x) =
µdC

2
√
x

=
KII√
x
. (3)

Notice that this definition differs by a numerical factor of
√

2π from that con-
ventionally used in fracture mechanics.

The parameters C and KII are determined only by the macroscopic geometry
and the external loading, and hence could be determined from a numerical
model of the system under ‘full stick’ conditions. Equation (3) then provides a
condition

d =
2KII

µC
(4)

for the length of the slip zone, and hence for the local shear traction distribu-
tion, through equation (2). Notice that this implies the existence of an edge
slip zone for all finite values of the coefficient of friction µ, in contrast to ‘com-
plete’ contact problems, which always stick in the corner if µ is sufficiently high
(Churchman & Hills, 2006). Equation (4) can be used to define a dimension-
less coordinate ξ = x/d and a corresponding normalization for tractions can be
defined as p̃ = p/σ0, q̃ = q/σ0, where the stress measure

σ0 =

√
2KIIC

µ
. (5)

With this normalization, all elastic problems are condensed into a single prob-
lem, subject only to the ‘small slip zone’ approximation.

2.2. Effect of wear
Ciavarella (1998a) and Jäger (1998) have shown that when an elastic contact

is loaded first by a normal load P and then by a tangential load Q, the stick
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region Astick is coextensive with the contact region A∗ for a fictitious normal
load P ∗ given by

P ∗ = P − Q

µ
. (6)

This result also applies at the extreme points where the tangential load is ±Q,
during completely reversed periodic loading.

It follows that Astick depends only on the profile of the contacting bodies
inside Astick, and this cannot be affected by wear, since wear occurs only where
there is slip. Thus, the extent of the stick region remains unchanged throughout
the process (Hills & Fellows, 1999, Goryacheva, 2001). By contrast, material
is worn away in the slip region and eventually, if the process is not limited by
yielding, the entire load P will be carried by the stick region. The pressure
distribution in this limiting state will comprise the superposition of (i) p∗(x)
due to the fictitious load P ∗ and (ii) a ‘flat punch’ distribution due to the
additional load (P − P ∗) = Q/µ transferred to Astick from the worn region.
This latter contribution will lead to a singular traction at the edge of the stick
zone, whose magnitude can be characterized by a mode-I stress-intensity factor
KI. Furthermore, since the Green’s functions for normal and tangential loading
of the half plane are identical in form, equation (6) implies that

KI =
KII

µ
. (7)

2.3. The limiting wear profile
In order to reach this limiting state, material must have been worn from the

slip region, corresponding to the overlap that would be implied by the limiting
solution if there had been no wear and interpenetration of the bodies had been
permitted.

Figure 3: Overlapping material (shaded) that must be removed in the limiting
state.

This situation is illustrated in Figure 3, where the origin of coordinate s is
now taken at the edge of the stick region, so s = x−d. For s > 0, the asymptotic
form of the contact pressure is

p(s) =
KI√
s

+ C
√
s . (8)
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Near s = 0 this expression is consistent with the elastic field around a crack tip
with a compressive stress-intensity factor given by equation (7), whilst further
from s = 0 the contact pressure approaches the asymptotic form (1). Note that
the parameter C defining the strength of the bounded term is not significantly
changed between loads P and P ∗ as long as the slip zone is sufficiently small.

Application of Williams’ asymptotic technique to these fields, shows that
the necessary wear w∞(s) in s < 0 to avoid interpenetration is

w∞(s) =
4KI(−s)1/2

E∗
− 4C(−s)3/2

3E∗
=

4KII(−s)1/2

µE∗
− 4C(−s)3/2

3E∗
, (9)

where E∗ is the composite modulus (Johnson, 1985), which for similar materials
is

E
∗

=
E

2(1− ν2)
, (10)

where E and ν are respectively Young’s modulus and Poisson’s ratio.
Equation (9) shows that w(s) is positive in a region of length

d1 =
3KII

µC
, (11)

and this is exactly 50% larger than the original slip length d from equation (4).
In other words, as wear occurs, the bodies move closer together, so that the
contact region grows. The limiting wear profile (9) can be written in terms of
the coordinate x = s+ d of Figure 3 as

w̃∞ ≡
E
∗
w∞

σ0d
= 2 (1− ξ)1/2 − 4

3
(1− ξ)3/2 ; −1

2
< ξ < 1 , (12)

where σ0 is defined in (5) and we recall that ξ = x/d. No wear occurs outside
this range.

2.4. Wear model
We assume that wear is governed by the Archard wear law (Archard, 1953)

in the form that wear is proportional to the work done against friction. Since the
contact pressure is independent of slip displacements, it is approximately con-
stant throughout a single loading cycle, so the wear depth accumulated during
the ith loading cycle can be written

wi(x) = 2µαpi(x)∆(x) (13)

where α is the wear coefficient and ∆(x) is the local slip displacement dur-
ing tangential loading from −Q to Q. We can also write this equation in the
dimensionless form

w̃i (ξ) =
E
∗
wi

σ0d
= 2α̃ p̃i (ξ) ∆̃ (ξ) , (14)
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where

α̃ = µ2σ0α ; p̃i =
pi
σ0

; ∆̃ =
E
∗∆

µσ0d
. (15)

With this formulation, wear rates of the order α̃ ≈ 1 would cause the steady state
w̃∞(ξ) to be closely approached in a few cycles. Realistic dimensionless wear
rates are significantly lower than unity, and indeed must be of order α̃ ≈ 10−2

or below for the assumption of constant pressure during each separate cycle to
be reasonable.

3. Finite element simulation

In order to determine the effect of wear on the contact stresses, particularly
in the presence of yielding, we created a plane-strain, finite-element model in
ABAQUS, of the form shown in Figure 4.

Figure 4: Finite-element model.

In the system illustrated, microslip and wear will occur at both the left and
right edges of the contact area. However, if the microslip regions are sufficiently
small compared with the total contact area, they will not interact and it is suffi-
cient to focus attention on the left edge, since with completely reversed loading
±Q, the evolution of wear at the two edges is similar. Very considerable mesh
refinement was used in this region, as shown in the two successive insets. The
two bodies were modelled by semicircles in order to facilitate appropriate mesh
gradation away from the contact region. The contact surfaces were chosen to
be circular of large radius, in order that the model could be validated using
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theoretical results. However, we emphasize that although the model approxi-
mates Hertzian contact, the normalization introduced in Section 2 implies that
the conclusions are applicable to any problem having a smooth transition from
contact to separation.

Sinusoidal tractions pb(θ, τ) were applied at the semicircular boundaries r =
b in order to ensure the transmission of the desired forces P,Q(τ) across the
interface. Here, τ is a time-like parameter which is introduced solely in order to
define the sequence of loading, since this is periodic and hence non-monotonic.
All the results were obtained under quasi-static assumptions and, hence, are
independent of loading rate. The model was constrained against rigid body
motion by fixing both degrees-of-freedom at one interior node and one degree-
of-freedom at another node. It was verified that no unwanted nodal forces were
generated at these constrained nodes.

The model was validated by comparing the normal tractions with the clas-
sical Hertzian solution, and the shear tractions with the Cattaneo-Mindlin so-
lution (Johnson, 1985). Also, slip displacements, ∆(x), during the first cycle
were compared with theoretical calculations from Goryacheva et al. (2001). In
all cases, excellent agreement was obtained.

Wear at the slip nodes was calculated using equation (14) and the corre-
sponding mesh adjustment was made using the method of fictitious eigenstrains
(Hu et al., 2015). We assume that the worn material is completely removed
from the slip zone. In practical situations, the wear process is generally very
slow, so that there is very little change in the contact pressure distribution even
after hundreds of cycles. For computational efficiency, it is then reasonable to
use an enhanced value of α̃ which is equivalent to considering an appropriate
number of successive cycles as having the same pressure distribution.

Various strategies might be used to implement this approximation. Here,
we used a linear extrapolation method in which two successive cycles were sim-
ulated, including the very small change in the second cycle due to wear, giving
values for w̃i(ξ), w̃i+1(ξ). The change in wear during each of the next n cycles
is then assumed to be [w̃i+1(ξ) − w̃i(ξ)], so that the total accumulated wear
during n cycles is

i+n∑
j=i

w̃j(ξ) = nw̃i(ξ) +
n(n− 1)

2
[w̃i+1(ξ)− w̃i(ξ)] . (16)

4. Results

In this section, we first investigate the evolution of the stress field due to
wear under elastic conditions, from which we can determine when yielding is
triggered for a given dimensionless yield strength σY /σ0. We then investigate
the subsequent plastic deformation, including its effects on the evolution of the
wear profile and the accumulated plastic strain.



4 RESULTS 9

4.1. Elastic behaviour
As long as the system remains elastic and the slip zone is small compared

with the other linear dimensions in the problem, the dimensionless solution is
independent of all material and loading parameters, including the coefficient of
friction, and a completely general numerical solution can be presented. The
evolutionary process is then characterized by the product α̃N , where N is the
number of tangential loading cycles. We shall refer to this product as the nor-
malized number of loading cycles.

4.1.1. Wear profile
Figure 5 shows the dimensionless wear profile w̃(ξ) at several values of α̃N .

These results were obtained using a value of n in equation (16) corresponding to
α̃n ≈ 0.16× 10−3. This involved around 1500 applications of the extrapolation
strategy of equation (16) in the range 0 < α̃N < 0.25, which we found to be more
than adequate to achieve numerical convergence. Also, the high degree of mesh
refinement ensured extremely smooth results, which are therefore presented as
lines rather than points in this and subsequent figures.

Notice that the wear profile has reached approximately 95% of its steady-
state value at α̃N = 0.25. We also note that the left extent of the slip zone
moves steadily towards the limiting value ξ = −1/2 as wear progresses, but the
stick-slip boundary remains unchanged, as predicted by theoretical arguments
(Hills & Fellows, 1999, Goryacheva et al., 2001).

Figure 5: Evolution of the wear profile with the normalized number of loading
cycles α̃N , from elastic analysis. The dotted curve represents the maximum
wear profile in the elastic case, illustrated by the shaded region in Figure 3 and
defined by equation (12).
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4.1.2. Contact pressure
Figure 6 shows the corresponding evolution of the dimensionless contact

pressure distribution p̃(ξ). A singular field is developed well away from the
boundary of the stick zone for α̃N > 0.1. For small amounts of wear, while
there is still significant contact across the wear scar, this singular field is not
very strong. However, it tends to the expected inverse-square root value when
the wear scar has developed to such an extent that it approximates an unbridged
crack. In many ways, this is a direct analogue (in compression) of what is seen
in tension for lightly and heavily bridged cracks (Sills and Thouless, 2015). Fur-
thermore the peak pressure near the stick-slip boundary ξ = 1 continues to grow
(without limit) as the wear profile approaches its long-time limit.

(a) (b)

Figure 6: (a) Evolution of the dimensionless contact pressure p̃(ξ) with the nor-
malized number of loading cycles α̃N , from elastic analysis. (b) Plots showing
how the stress field near the stick-slip boundary evolves to a crack-like inverse-
root singularity as wear progresses. ξ − 1 represents the normalized distance
from the edge of the wear scar.

4.1.3. Maximum von Mises stress
In real materials, the development of the mode-I singularity at the stick-slip

boundary is limited by plastic deformation, which we assume occurs at a critical
value, σY , of the von Mises equivalent tensile stress

σe =

√
3σijσij − σiiσjj

2
. (17)

Figure 7 shows the magnitude of the maximum von Mises stress, σmax
e , as a

function of α̃N . At the beginning of the process, the maximum occurs far from
the slip region, but we obtain an almost linear increase in σmax

e with α̃N as the
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peak in contact pressure starts to develop at around α̃N ≈ 0.1. The instant at
which plastic deformation starts depends, of course, on the ratio σY /σ0. In all
cases, the maximum von Mises stress occurs at the stick-slip boundary on the
contact interface.

Figure 7: The maximum von Mises stress associated with the developing contact
pressure singularity, from elastic analysis. Notice that early in the wear process,
the maximum occurs far from the slip region and is not related to the wear
process.

4.2. Plastic deformation
We next consider the effect of plastic deformation on the evolution of the

wear process. We assume that the material is elastic-perfectly plastic, so that
yielding occurs at a constant von Mises stress σY . This introduces a new dimen-
sionless parameter σY /σ0 into the calculation, so we are only able to present
particular cases. In order to explore the influence of plastic deformation, we
chose the values σY /σ0 = 1 and 1.5, which we note from Figure 7 ensure that
the contact starts in the elastic régime, but that plastic deformation starts rel-
atively early in the wear process (at α̃N = 0.07 for σY /σ0 = 1).

4.2.1. Wear profile
Figure 8(a,b) shows the development of the wear profile for σY /σ0 = 1 and

1.5 respectively. The limiting value of wear in the elastic case is shown dotted
for comparison. It is clear that plastic deformation allows wear to continue
indefinitely both in depth and extent. In particular, the slip-stick boundary
extends into the original stick zone and the wear scar also extends further into
the original separation zone. This is in sharp contrast to the elastic case, where
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wear is restricted to the original slip zone and is eventually predicted to termi-
nate. The observation that plasticity allows a wear scar to propagate beyond
the original stick-slip boundary also applies to situations where the shear stress
is limited by the strength of the interface, rather than by plastic deformation
in the contacting materials (Hu et al., 2015). A comparison of Figs. 8(a) and
8(b) shows that wear progresses more rapidly when the yield stress is lower.

(a) (b)

Figure 8: Development of the dimensionless wear profile w̃(ξ) with the normal-
ized number of loading cycles α̃N for the elastic-plastic case: (a) σY /σ0 = 1.5
and (b) σY /σ0 = 1. The limiting wear in the elastic solution is shown dotted.

4.2.2. Contact pressure
The corresponding contact pressure distributions are shown in Figure 9 (a,b).

The most striking feature of these results is that the maximum contact pressure
now levels out at about pmax ≈ 2.5σY . This ratio is consistent with values for
the maximum normal stress that arise in elastic-plastic crack problems (e.g.,
Hutchinson, 1968, Tvergaard and Hutchinson, 1992), being slightly less than
the limiting value of 2.97 expected from the Prandtl solution for a crack in a
rigid-plastic material. The location of this maximum moves to the right as wear
progresses, and is always very close to the instantaneous slip-stick boundary.
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(a)

(b)

Figure 9: Evolution of the contact pressure distribution p̃(ξ) with the normalized
number of loading cycles α̃N for the elastic-plastic case: (a) σY /σ0 = 1.5,
(b) σY /σ0 = 1. The dotted curve shows the elastic pressure distribution for
α̃N = 0.2

4.2.3. Accumulated plastic strain
As the wear evolves, a plastic zone forms starting from the contact interface

and its size grows. The magnitude of the accumulated plastic strain is defined
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as

εpe =
ˆ τ

0

√
2
3
∂εpij
∂τ

∂εpij
∂τ

dτ : (18)

where we recall that τ is a time-like parameter characterizing the sequence of
loading. The maximum accumulated plastic strain, ε p,max

e , is considered to be
an important indicator of fatigue crack initiation (Manonukul & Dunne, 2004,
McDowell, 2007, McDowell & Dunne, 2010, Abuzaid et al., 2013).

Notice that with the definition (18), the plastic strain increases monotoni-
cally during cyclic-loading, even if the individual strain components oscillate.
Two extreme cases would be (i) if the plastic-strain components reverse com-
pletely during each cycle, as in a beam subjected to completely-reversed bend-
ing moments, or (ii) if the plastic-strain components accumulate monotonically.
Case (i) raises difficulties for the present computational scheme, since it is not
practical to simulate every cycle of loading throughout a realistic wear process.
We therefore performed a preliminary study in which we simulated n = 50 con-
secutive cycles in the plastic régime, and compared the resulting accumulated
plastic strain with that accumulated during a single cycle with an enhanced wear
rate of α̃n. The results differed by less than 3% and, in fact, the single-cycle
strain was the largest. We therefore conclude that the evolving plastic strain is
a result of monotonic accommodation to the change of profile associated with
wear, rather than a result of cyclic plasticity. This also implies that estimates
based on a reduced number of cycles with an enhanced wear rate are likely to
give good predictions for the accumulation of plastic strain.

Figure 10 shows contour plots of εpe at α̃N = 0.15, 0.2, and 0.25 for σY /σ0 =
1. In the interests of generality, we present these results in the combination

ε̃pe ≡
E
∗
εpe

σ0
, (19)

since the results then apply to all systems with the same ratio σY /σ0. The
plastic zone first grows along the contact interface and then spreads in the
perpendicular direction. However, the maximum accumulated plastic strain is
always located close to the contact interface, and it moves with the slip-stick
boundary.
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Figure 10: Contour plot of accumulated plastic strain at three values of α̃N
(σY /σ0 = 1).

Figure 11 shows ε̃ p,max
e as a function of α̃N for σY /σ0 = 1 and 1.5. In

each case, plastic deformation starts at the value of α̃N determined by the
appropriate intercept in Figure 7, and ε̃ p,max

e increases approximately linearly
thereafter. It is interesting to note that for higher yield stress, plasticity is
delayed, but the plastic strain then accumulates more rapildy. Figure 11 is
terminated at α̃N = 0.3 because, beyond that point, the plastic zone extends
into a region of coarser mesh, implying less accuracy. However, the indications
from these less precise calculations are that ε̃ p,max

e continues to increase linearly
indefinitely as the wear scar continues to extend.
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Figure 11: Maximum accumulated plastic strain ε̃ p,max
e as a function of α̃N for

σY /σ0 = 1 and 1.5.

5. Conclusions

We have presented a finite element model of the evolution of local stress fields
due to fretting wear, in the case where the normal contact force is constant and
the slip zone is small compared with the other linear dimensions of the system.
In this limit, the elastic solution characterizes all possible problems of this class.
As wear progresses, the slip-stick boundary remains stationary, and the contact
pressure distribution develops a local maximum. Eventually, all wear ceases, and
the local stress field is characterized by a stress-intensity factor KI = KII/µ,
where KII is the mode-II stress-intensity factor for the ‘full stick’ solution and
µ is the coefficient of friction.

By contrast, for elastic-plastic material behaviour, the slip-stick boundary
moves steadily into the stick region once the yield stress is locally exceeded,
and wear continues indefinitely, leading eventually to extensive wear damage.
The contact pressure distribution achieves a stable peak value which moves with
the slip-stick boundary. Plastic strain accumulates with a maximum at or near
this moving boundary, and the maximum accumulated plastic strain increases
approximately linearly with subsequent cycles.
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