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We consider the effect of differing coefficients of static

and dynamic friction coefficients on the behaviour

of contacts involving microslip. The classic solutions

of Cattaneo and Mindlin are unchanged if the

transition in coefficients is abrupt, but if it occurs

over some small slip distance, the solution has some

mathematical similarities with those governing the

normal tractions in adhesive contact problems. In

particular, if the transition to dynamic slip occurs

over a sufficiently small area, we can identify a

‘JKR’ approximation, where the transition region is

condensed to a line. A local singularity in shear

traction is then predicted, with a stress-intensity factor

that is proportional to the the square root of the local

contact pressure and to a certain integral of the friction

coefficient-slip distance relation. We can also define

an equivalent of the ‘small-scale yielding’ criterion,

which enables us to assess when the singular solution

provides a good approximation. One consequence

of the results is that the static coefficient of friction

determined from force measurements in experiments

is significantly smaller than the value that holds at the

microscale.

1. Introduction
If a deformable structure with frictional interfaces is

subjected to loads that are insufficient to cause gross slip

(sliding), the deformation of the components generally

permits some local regions of ‘microslip’ at the nominally

stuck contact interfaces. When the loading is periodic,

these regions contribute to the energy dissipation in the

structure and hence influence the dynamic behaviour
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[1,2]. Also, cyclic microslip can eventually lead to the initiation and propagation of fretting fatigue

cracks [3].

Most of the extensive literature on problems involving microslip assumes that Coulomb’s

friction law applies — i.e.

q = −fp
u̇

|u̇| ; u̇ 6= 0 (1.1)

|q| ≤ fp ; u̇ = 0 , (1.2)

where q is the frictional (tangential) traction, p is the contact pressure, u̇ is the local microslip

velocity, and f is the coefficient of friction. In particular, it is usually assumed that the same

coefficient f governs both the slip and stick regions.

By contrast, dynamicists and tribologists often make a distinction between static and dynamic

friction [4], so that equations (1.1,1.2) are replaced by

q = −fd p
u̇

|u̇| ; u̇ 6= 0 (1.3)

|q| ≤ fs p ; u̇ = 0 , (1.4)

where fs, fd are the static and dynamic friction coefficients respectively. In particular, if fs >

fd, this friction law provides a mechanism for ‘stick-slip’ frictional vibrations [5]. Numerous

experimental investigations have shown differences between static and sliding friction (e.g. [6]).

These differences are generally small for drymetals [7], but can be substantial for earthquake fault

mechanics, where ratios as high as ten between the coefficients have been reported [8]. Rice [9]

characterizes such interfaces as ‘strong but brittle’.

A higher coefficient of static friction can to some extent be explained by noting that the

formation of adhesive bonds, which forms the basis of Bowden and Tabor’s friction theory [10],

will be enhanced by diffusion if asperities remain in contact for some period of time. Similar

arguments can be used to justify the ‘rate-state’ friction model [11,12]

In this paper, we shall examine the effect of introducing a higher coefficient of static friction on

problems involving microslip. In the interests of simplicity, we shall restrict attention to cases

where Dundurs’ parameter β = 0 ( [13] p. 110), so there is no coupling between normal and

tangential loading, and the contact pressure can be determined without reference to the friction

law. Also, we shall illustrate our ideas in the context of the two-dimensional Hertz problem, since

this is susceptible to simple analytical solutions, but extension to other two-dimensional cases,

and to the axisymmetric Hertz problem is routine.

2. Evolution of frictional traction distributions
Cattaneo [14] and later Mindlin [15] considered the case where two elastic bodies are first pressed

together by a normal force P , which is then held constant whilst a monotonically increasing

unidirectional force Qx is applied. The profile of the bodies was characterized by a quadratic

initial gap function g0(x, y) = Ax2 + By2, so that the normal loading phase is defined by the

classical Hertz theory. Cattaneo and Mindlin then showed that, subject to a small approximation

associated with the local slip direction [16], the shear traction distribution has the form

qx(x, y) = f
ˆ

p(x, y) − p∗(x, y)
˜

, (2.1)

where p(x, y) is the contact pressure and p∗(x, y) is the contact pressure that would be developed

at some smaller normal force P ∗ given by

P ∗ = P − Qx

f
. (2.2)
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Ciavarella [17] and Jäger [18] have since shown that this form of superposition is exact for any

initial gap function g0(x) in the two dimensional case, and that it is a good approximation in the

general three-dimensional case [19].

3. Static and dynamic friction
Now consider the case where fs > fd and the loading scenario is the same as in the Cattaneo-

Mindlin problem. We assume the existence of a slip zone in which qx(x, y) = fd p(x, y), so we

write the complete shear traction distribution as

qx(x, y) = fd p(x, y) − q∗x(x, y) , (3.1)

where q∗x(x, y) is a corrective distribution to be determined from the condition that the slip

displacement (i.e. the relative tangential displacement) is zero in the stick areaAstick. Conditions

(1.3,3.1) require that q∗x(x, y) be non-zero only in Astick, and hence the stick condition defines

a well-posed boundary-value problem for q∗x(x, y). The inequality condition (1.4) precludes

singularities in the shear tractions, and this imposes uniqueness on the solution for any given

Qx < fd P . It is clear that the original Cattaneo-Mindlin solution (2.1) with f = fd satisfies

these conditions, including the inequality, since in Astick, this would give qx(x, y) < fd p(x, y) <

fs p(x, y).

4. Dependence on slip distance
The discussion so far is predicated on the assumption that as soon as stick is ‘broken’ there is

an immediate transition to the dynamic coefficient fd, but in practice we might expect a more

continuous transition as slip occurs. We shall therefore examine the consequences of a friction

law in which the coefficient of friction is a continuous and monotonic function f(u) of the slip

displacement u, such that

f(0) = fs and f(u)→ fd ; u→∞ . (4.1)

Such a law can be regarded as a special case of the rate-state law [11,12] and is also related to the

the shear failure law proposed by Abercrombie and Rice [20]. Applications of similar laws to fault

mechanics are discussed by Ben Zion [21].

In general, solutions of the corresponding contact problem will then require numerical

solution, but it is instructive to consider some simple cases analytically. In particular, we shall

consider the two-dimensional case where the bodies comprise a cylinder of radius R and a half

space, so the contact pressure is given by

p(x) =
E
∗√

a2 − x2

2R
; P =

πE
∗
a2

4R
, (4.2)

where a is the semi-width of the contact area−a < x < a, and E
∗
is the composite elastic modulus

[13].

We anticipate the existence of two symmetric slip regions −a < x <−c and c < x < a in which

the slip displacement increases monotonically away from the stick-slip boundaries x =±c. Two

limiting cases can also be identified. If f(u) is a rather slowly decaying function of u, the friction

coefficient will be close to fs throughout the slip regions and the solution will approximate

the constant coefficient case with f = fs. At the other limit, if a very small amount of slip

displacement is required to precipitate the change in coefficient, most of the slip area will be

at or near fd, but we must still allow for the existence of ‘transition’ regions c < |x|< b in which

f > fd.
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The exact form of the function f(u) is not critical, but it is convenient to define a quantity W

with the dimensions of surface energy through the relation

W =

∫∞

0

(f(u) − fd)p du , (4.3)

which is equivalent to the shear fracture energy defined byAbercrombie and Rice [20]. The contact

pressure p will generally vary in the transition region, but if this is sufficiently short for p to be

regarded as uniform, we can also define a length scale ∆ characterizing the amount of slip needed

to transition to dynamic friction, such that

∆ =
W

(fs − fd)p
=

1

(fs − fd)

∫∞

0

(f(u) − fd) du . (4.4)

Rabinowicz [6] conducted some simple but elegant experiments to determine fs, fd and ∆ for

metals, his results1 being presented in Table 1.

Materials fs fd ∆ (µm)

copper/mild steel 0.46 0.31 1

lead/mild steel 0.72 0.47 3

mild steel/copper 0.54 0.39 0.9

mild steel/titanium 0.63 0.45 6

mild steel/zinc 0.65 0.47 2

Table 1: Friction coefficients and slip length ∆ for some metal combinations, from [6]

A special case satisfying equations (4.3, 4.4) is the step function f = fs − (fs − fd)H(u − ∆),

where H(·) is the Heaviside step function. The perceptive reader will notice a similarity here

to Maugis’ approximate formulation of the normal adhesive contact problem [22], where the

adhesion law is also represented by a step function and the outer boundary of the adhered region

is determined from the condition that the separation there is equal to a critical value. Indeed

we shall see that there are significant mathematical analogies between the present problem and

adhesive problems.

(a) A double-Cattaneo-Mindlin solution

The present problem could be formulated using a step function for f(u), but a simpler

mathematical approximation can be obtained by adapting the ‘double-Hertz’ concept of

Greenwood and Johnson [23]. We first note that the Cattaneo-Mindlin traction distribution

qx(x) = q(x, a, c), Qx = Q(a, c), where

q(x, a, c) =
p

a2 − x2 −
p

c2 − x2 ; Q(a, c) =
π(a2 − c2)

2
(4.5)

produces slip displacements ux(x), such that

∂ux

∂x
≡ v(x, a, c) = 0 ; − c < x < c (4.6)

= −2
√

x2 − c2

E
∗ ; c < |x|< a (4.7)

( [13] p. 214), where the square roots in (4.5) are to be interpreted as zero in any region where their

respective arguments are negative.

1It is difficult to explain why different results might be obtained by simply interchanging the materials in the mild

steel/copper case, but the difference is arguable within the range of likely experimental variance.
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We next approximate the solution to the frictional problem as

qx(x) =
E
∗
fd q(x, a, c)

2R
+ Cq(x, b, c) ; Qx =

E
∗
fd Q(a, c)

2R
+ CQ(b, c) , (4.8)

where c < b < a. The corresponding slip displacements will then satisfy

∂ux

∂x
(x) =

E
∗
fd v(x, a, c)

2R
+ Cv(x, b, c) , (4.9)

and this is zero in −c < x < c from (4.6), showing that the stick condition can be satisfied by an

appropriate rigid-body translation.

The shear tractions in b < |x|< a are

qx(x) =
E
∗
fd

√
a2 − x2

2R
= fd p(x) , (4.10)

and hence satisfy the slip condition at f = fd, since the other square-root terms make no

contribution in this range. In c < |x|< b, the shear tractions are

qx(x) = fd p(x) + C
p

b2 − x2 , (4.11)

and we can choose the constant C so as to ensure that qx(c) = fs p(c), giving

C =
E
∗
(fs − fd)

2R

s

a2 − c2

b2 − c2
(4.12)

and

qx(x) =
E
∗
fd q(x, a, c)

2R
+

E
∗
(fs − fd)

2R

s

a2 − c2

b2 − c2
q(x, b, c) . (4.13)

With this choice, the effective local coefficient of friction f = qx/p will decrease monotonically

from fs to fd in c < |x|< b.

The final step is to determine the unknown radii c, b from the equilibrium condition (4.8)2, and

from (4.3) which we can write as

W =

∫ b

c
[qx(x) − fd p(x)]

dux

dx
dx . (4.14)

In c < |x|< b, we have

dux

dx
=− 1

R

0

@fd + (fs − fd)

s

a2 − c2

b2 − c2

1

A

p

x2 − c2 , (4.15)

from (4.7,4.12). Using this expression and (4.11) in (4.14) and evaluating the integral, we obtain

W = −E
∗
b(fs − fd)

6R2

s

a2 − c2

b2 − c2

0

@fd + (fs − fd)

s

a2 − c2

b2 − c2

1

A

×
h

(b2 + c2)E(k) − 2c2K(k)
i

, (4.16)

where

k2 = 1 − c2

b2
(4.17)

and

K(k) =

∫π/2

0

dθ
p

1 − k2 sin2 θ
; E(k) =

∫π/2

0

p

1 − k2 sin2 θ dθ (4.18)

are the complete elliptic integrals of the first and second kind respectively. The equilibrium

condition is obtained from (4.5,4.8,4.12) as

Qx =
πE

∗

4R

»

fd(a2 − c2) + (fs − fd)
q

(b2 − c2)(a2 − c2)

–

. (4.19)
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If Qx, W are given, (4.16, 4.19) provide two equations for the two unknown radii c, b.

(b) The ‘JKR’ limit

If the transition from fs to fd occurs over a sufficiently small region, we can obtain a limiting

solution analogous to the JKR solution of normal adhesion problems. We write b = c + δ, where

δ ≪ c, in which case (4.16) can be approximated as

W ≈ πE
∗
(fs − fd)2(a2 − c2)δ

16R2
implying δ ≈ 16R2W

πE
∗
(fs − fd)2(a2 − c2)

. (4.20)

Also, the second term in qx(x) in equation (4.8) can be approximated as

Cq(x, b, c)≈Cq(x, c, c) + Cδ
∂q

∂a
(x, c, c) =

Ccδ√
c2 − x2

. (4.21)

Applying the same approximation to equations (4.12, 4.19) and substituting for δ from (4.20), we

obtain

qx(x)≈ E
∗
fd q(x, a, c)

2R
+

s

2WE
∗
c

π(c2 − x2)
, (4.22)

and
Qx

fdP
=

4RQx

πE
∗
fda2

≈ 1 − c2

a2
+

4R

fd a2

r

2Wc

πE
∗ . (4.23)

Equation (4.22) defines a locally singular field, implying the existence of a mode II stress-

intensity factor

KII ≡ lim
x→c−

qx(x)
p

2π(c − x) =
p

2WE
∗

, (4.24)

which is exactly analogous with the mode I stress intensity factor KI =

q

2∆γE
∗
in normal

adhesion problems in the JKR limit, where ∆γ is the interface energy.

In an impressive series of experiments, Svetlizky and Fineberg [24] have observed frictional

slip progressing by the relatively slow propagation of slip zones behind which the shear tractions

approximate a square-root singularity. The strength of this singularity is approximately constant,

indicating a well-defined value of fracture energy W , but they suggest it may depend on the local

pressure, as a result of the area of actual contact being approximately proportional to pressure.

Ciavarella [25] presented solutions of contact problems with a mode II stress-intensity factor

around the stick-slip boundary, motivated by Fineberg’s observations. The present analysis shows

that such an effect can be generated by a slip-dependent friction law of the form (4.1) and provides

a rationale for determining an appropriate value of KII. In particular, we notice from (4.24) that

the stress-intensity factor depends only on the composite modulus and W , and is otherwise

independent of the details of the contact problem. Since ex hypothesi, the transition is assumed to

occur over a small region (of width δ) in the contact area, we can assume that the contact pressure

p is uniform in this region, and hence use the form (4.4) for W . This leads to a stress-intensity

factor

KII =

q

2E
∗
(fs − fd)p∆ , (4.25)

which varies with
√

p and is equivalent to the ‘pressure-dependent toughness’ criterion of [25].

Using (4.4) to recast equations (4.22, 4.23) in terms of ∆, we have

qx(x) ≈ E
∗
fd q(x, a, c)

2R
+ E

∗
s

(fs − fd)∆c
√

a2 − c2

πR(c2 − x2)
(4.26)

Qx

fdP
≈ 1 − c2

a2
+

4

fd a2

s

(fs − fd)R∆c
√

a2 − c2

π
. (4.27)
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(c) Small-scale transition zone

Equation (4.25) implies that at a sufficiently small distance s from the stick boundary, the frictional

tractions have the singular form

qx(s)≈ fdp +

s

E
∗
(fs − fd)p∆

πs
. (4.28)

However, this expression violates the stick condition (1.4) in the region 0 < s < s0, where
s

E
∗
(fs − fd)p∆

πs0

= (fs − fd)p or s0 =
E
∗
∆

π(fs − fd)p
. (4.29)

An analogous situation is encountered in elastic-plastic fracture mechanics, where the ‘small-

scale yielding’ criterion is used to determine whether the fields far outside the yield zone can

reasonably be described by the elastic solution [26]. In the present case, the singular solution can

be expected to give good results everywhere except very close to x = c, provided s0 ≪ c.

This criterion depends on c and hence on Qx, but a rough estimate of the applicability of the

JKR solution in the present problem can be obtained by using p(0), a for p, c respectively, defining

the modified criterion

Λ≡ R∆

(fs − fd)a2
≪ 1 . (4.30)

(d) More general two-dimensional problems

We have analyzed the two-dimensional Hertzian problem in detail because the resulting

expressions are algebraically straightforward, enabling the fundamental structure of the solution

to be exposed. However, the same method can be applied to any two-dimensional problem

involving a single symmetric contact area. We simply replace equation (4.5) by

q(x, a, c) = p(x, a) − p(x, c) ; Q(a, c) = P (a) − P (c) , (4.31)

where p(x, a) is the normal contact pressure when the contact area is defined by −a < x < a, and

P (a) is the corresponding normal force. We know from Ciavarella [17] and Jäger [18] that this will

satisfy equation (4.6), so the traction distribution

qx(x) = fdq(x, a, c) − Cq(x, b, c) (4.32)

will satisfy the stick conditions in −c < x < c and the dynamic slip conditions in b < |x|< a. The

rest of the solution can then be completed as in §4.1.

If the length scale s0 in (4.29) is sufficiently small to justify the JKR approximation, the second

term will take the universal form (4.21), so the solution can be written down as the superposition

of a conventional Cattaneo-Mindlin solution with coefficient of friction fd and equation (4.21). In

this context, it may be helpful to note that the limiting expression for Q(b, c) is

Q(b, c) =

∫ c

−c
Cq(x, b, c)dx→

p

2πWE
∗
c , (4.33)

so the total tangential force is

Qx = fd [P (a) − P (c)] +
p

2πWE
∗
c . (4.34)

Since Qx will usually be prescribed, this provides an equation from which c can be determined as

a function of Qx.

5. Finite element results
The double Cattaneo-Mindlin solution is approximate in the sense that we are able to match a

specific value of the fracture energy W or (equivalently) the length scale ∆, but the exact form

of the function f(u) cannot be prescribed. The implied form of this function depends on the



8

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

dimensionless ratios b/c, a/c, some representative curves being shown as dashed and dotted lines

in Fig. 1.

Fig. 1: The friction coefficient function f(u) implied by the double Cattaneo-Mindlin solution for

a/c = 1.6, b/c = 1.5 ( ), a/c = 8.0, b/c = 4.5 ( ), a/c = 8.0, b/c = 1.2 ( ).

To assess the effect of this approximation, we constructed a finite element solution of the

problem, as an extension of the "verification manual" VM272 example in Ansys 15 [27], which

in turn is based on the method of Yang et al. [28] and an example given therein which compares

satisfactorily with the analytical Cattaneo-Mindlin solution. It is based on a mortar formulation of

the contact which is able to deal with nonconforming discretizations across boundaries and large

sliding which is more than adequate for our problem. In [28], several examples and comparisons

are made to show that this method has an optimal convergence rate and robustness with respect

to other approaches. The example considers two parallel linear elastic half cylinders of radius R

and pressed by a small distributed pressure on the diameter. A tangential pressure is then applied

to cause friction at the contact interface, while the top of the upper cylinder is constrained from

rotating. The bottom of the lower cylinder is fixed in all directions. The standard input listing

available in ANSYS is adequate for many problems, but two minor changes made in the present

case were:-

(i) We used quadratic PLANE183-CONTA172 instead of linear elements PLANE182-

CONTA171, and we modified the mesh parametrically keeping the same ratio of

elements, in order to improve marginally the accuracy of the results. For the figures

reported in the paper we divided every element edge by 3 which brings the total number

of elements to about 45000, but still permits a solution of an entire curve of loading in less

than a minute.

(ii) We did not use the ANSYS variant of the friction law with just static and dynamic

coefficients, since this does not permit a dependence on slip displacement. Instead., we

defined a table of friction coefficients in terms of slip displacement.

Fig. 2 compares the shear traction qx(x) from equation (4.13) for Qx = 0.8fdP, fs = 0.15, fd =

0.1, Λ = 0.05, with finite element results using the ramp (linear) function for f(u) from Fig. 1. The

agreement is clearly extremely good. Also shown on this figure are the conventional Cattaneo-

Mindlin prediction (equivalent to taking ∆ = 0) and the JKR approximation (4.26). The latter

gives good predictions everywhere except in the transition region, where of course the predicted

singular stress is unphysical.
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Fig. 2: Finite element results (• • •) for the shear traction distribution qx(x) for Qx = 0.8fdP, fs =

0.15, fd = 0.1 and Λ = 0.05: Double Cattaneo-Mindlin solution (4.13), Conventional

Cattaneo-Mindlin solution (2.1) with f = fd, ‘JKR’ approximation of equation (4.26).

Fig. 3 shows a similar comparison for a larger value of ∆, so that the transition extends over

a larger radius. In this figure, we compare equation (4.13) with finite element solutions using the

ramp function and the step function respectively from Fig. 1. This figure shows that the traction

distribution is relatively insensitive the the form of the function f(u) for given values of (fs − fd)

and ∆, and hence that equation (4.13) can be expected to give good results for most practical

slip-weakening laws.

Fig. 3: Effect of the function f(u) on the traction distribution qx(x): • • • ramp (finite element),

step (finite element), equation (4.13). Qx = 0.9fdP , fs = 0.15, fd = 0.1, Λ = 0.277.

6. Discussion
The principal new result from this analysis is that fracture mechanics concepts are introduced

into the microslip problem, even when the friction law is merely an extension of the Coulomb

law allowing differing static and dynamic coefficients. In particular, if the coefficient of friction

varies with slip dispacement over a relatively short slip distance ∆, we can determine a critical

stress intensity factor or fracture toughness (4.25) that depends only on the static and dynamic

coefficients, the form of the slip-weakening law, the composite modulus and the local contact

pressure.
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Equation (4.27) defines the relation between tangential force Qx and the semi-length c of the

stick area in the JKR limit, which is appropriate if the small-scale transition criterion s0 ≪ c is

satisfied. It is plotted in Fig. 4 for several values of the dimensionless parameter

Ψ =

„

fs

fd
− 1

«

R∆

fda2
=

„

fs

fd
− 1

«2

Λ . (6.1)

Fig. 4: The tangential force Qx as a function of the radius c of the stick zone (JKR limit).

All the curves except the limiting case Ψ = 0 exhibit a maximum Qx = Qmax at a non-zero

value of c, implying that under tangential force control, the system would jump unstably to full

sliding once this maximum is reached. The unstable range is shown dotted in Fig. 4.

Similar plots were made for the double Cattaneo-Mindlin solution, using equations (4.19, 4.16)

with W = (fs − fp)∆. Fig. 5 compares the resulting curves for ψ = 0.1 and Λ = 0.025, 0.4 with

the JKR solution. Notice that changing Λ at constant ψ implies a change in the friction coefficient

ratio fs/fd. The truncation in these curves near c = a occurs because the outer boundary b of

the transition region cannot exceed the boundary a of the contact area. When b = a, the double

Cattaneo-Mindlin solution reduces to a conventional Cattaneo-Mindlin solution with f = fs, so

we have arbitrarily used this result to continue the curves to c = a [shown dotted].

Fig. 5: Comparison of the double Cattaneo-Mindlin solution with the JKR limit for ψ = 0.1.
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As predicted, the curve for Λ = 0.025 is very close to the JKR curve, though the maximum Qx

is shifted slightly to the left. Notice incidentally that we might have chosen to plot the double

Cattaneo-Mindlin curves as functions of the location of the mid-point (c + b)/2a of the slip-stick

transition region, in which case this shift would be much reduced. For larger Λ, the maximum

occurs at significantly lower values of c, but Qmax is still very well predicted by the JKR theory

even for Λ = 0.4.

Experimental measurements of static friction ceofficient are usually obtained by increasing

the applied tangential force until sliding commences. However, it is clear that under these

circumstances, microslip is likely to occur before gross sliding commences, and hence in the

present geometry such experiments would lead to the static coefficient of friction being identified

as Qmax/P , which generally differs from fs.

Fig. 6: The coefficient ratio fs/fd as a function of the apparent ratio Qmax/fd P .

Fig. 6 shows the relationship between fs/fd and the ‘apparent’ value of this ratio determined

as Qmax/fd P , for various values of

χ =
R∆

fda2
=

„

fs

fd
− 1

«

Λ . (6.2)

The dashed lines in this figure correspond to ranges in which the small-scale transition criterion

s0 ≪ c is not satisfied. We notice that the apparent static friction coefficient is always significantly

lower than fs. The reason of course is that by the time Qmax is reached, a significant part of

the contact area has slipped sufficiently to transition to a local coefficient fd, and the measured

coefficient is a weighted average over the whole contact area.

Notice that the limiting case χ = 0 can arise only if ∆ = 0, meaning that the transition from

fs to fd occurs over an infinitesimal slip distance. As explained in §3, the partial slip solution is

then identical to the conventional Cattaneo-Mindlin solution with f = fd and hence slip occurs

for Q = fdP regardless of the static coefficient of friction fs. This case is defined by the vertical

axis in Fig. 6.

7. Conclusions
Wehave shown that the use of a slip-weakening friction law has a qualitative effect on the solution

of microslip problems. The mechanics of the classical Cattaneo-Mindlin problem then have a

mathematical structure similar to that of the adhesive contact problem, and we can identify an

analogue of the ‘JKR’ solution, in which the extent of the stick zone is governed by the occurrence

of a pressure-dependentmode II stress-intensity factor at the stick-slip boundary. By exploring the
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two-dimensional Hertzian geometry, we were able to identify the equivalent fracture toughness,

which is independent of the detailed goemetry, but proportional to the square root of the local

contact pressure. We also defined a length scale s0 analogous to the small-scale yielding criterion

whose value enables us to judge whether the singular solution gives a good approximation to the

more exact solution.

The tangential force reaches a maximum before the stick zone has shrunk to zero, at which

point there will be a discontinuous change of state to gross sliding. This implies that estimates

of the static coefficient of friction from experiments on the inception of sliding will generally

significantly underestimate the values appropriate at the microscale.
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Figure and Table captions

Table 1: Friction coefficients and slip length ∆ for some metal combinations, from [6]

Fig. 1: The friction coefficient function f(u) implied by the double Cattaneo-Mindlin solution for

a/c = 1.6, b/c = 1.5 ( ), a/c = 8.0, b/c = 4.5 ( ), a/c = 8.0, b/c = 1.2 ( ).

Fig. 2: Finite element results (• • •) for the shear traction distribution qx(x) for Qx = 0.8fdP, fs =

0.15, fd = 0.1 and Λ = 0.05: Double Cattaneo-Mindlin solution (4.13), Conventional

Cattaneo-Mindlin solution (2.1) with f = fd, ‘JKR’ approximation of equation (4.26).

Fig. 3: Effect of the function f(u) on the traction distribution qx(x): • • • ramp (finite element),

step (finite element), equation (4.13). Qx = 0.9fdP , fs = 0.15, fd = 0.1, Λ = 0.277.

Fig. 4: The tangential force Qx as a function of the radius c of the stick zone (JKR limit).

Fig. 5: Comparison of the double Cattaneo-Mindlin solution with the JKR limit for ψ = 0.1.

Fig. 6: The coefficient ratio fs/fd as a function of the apparent ratio Qmax/fd P .
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