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The use of static reduction in the finite
element solution of two-dimensional
frictional contact problems

A Thaitirarot1, RC Flicek1, DA Hills1 and JR Barber2

Abstract

In this paper, detailed instructions are given for performing static reduction on a finite element description of an elastic

contact problem, thus reducing the dimensionality of the problem to the set of contact nodes alone. This significantly

reduces the computational time for the solution to evolutionary contact problems and also gives the user greater control

over the detailed implementation of the contact and friction laws. The reduced stiffness matrix is also an essential

ingredient in the determination of the critical coefficient of friction for the problem to be well posed, and it facilitates the

determination of the conditions under which a frictional system may shake down under periodic loading.
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Introduction

Finite element solutions to quasi-static frictional elas-
tic contact problems are generally constructed by link-
ing finite element models of the contacting bodies
through contact elements and utilizing either penalty
methods or the augmented Lagrangian method to
handle the discontinuous nature of the contact
boundary conditions. The resulting models are often
rather large and this can be a barrier to achieving
good accuracy, particularly in cyclic loading problems
where we would like to run a sufficient number of
cycles to reach a steady state, or when multiple load
cases are to be studied. Also, it can be difficult to
decide whether unexpected features of the solution
(e.g. contact traction distributions) reflect real fea-
tures of the underlying continuum problem, or are
mere artefacts of the regularization inherent in the
contact elements.

An alternative approach that is particularly attract-
ive in the case of two-dimensional problems is to use
the equilibrium equations for the degrees of freedom
at the non-contact nodes to reduce the problem to a
contact problem defined on the N contact nodes
alone. This procedure is known as static reduction or
substructuring. In effect, the problem then becomes
formally equivalent to a system of N massless rigid
blocks connected by a general N�N stiffness
matrix, with each block potentially in frictional con-
tact with a rigid plane obstacle.

In this formulation, the evolutionary contact prob-
lem can be defined and solved without the necessity of
contact elements, using iterative applications of the
contact inequalities1 or linear complementarity
(LCP) methods.2 Also, the reduced stiffness matrix
provides a convenient vehicle for exploring other gen-
eral features of the contact problem, such as the max-
imum amplitude of cyclic external loads below which
the system is capable of shaking down.

The general idea of static reduction is, of course,
well known. The purpose of the present paper is to
define precisely the steps that need to be taken to con-
vert a conventional finite element model to a reduced
model, and to give access to a suite of files that can be
downloaded for this purpose.

Single elastic body pressed against
a rigid body

In explaining the procedure for extracting the reduced
stiffness matrix from the full finite element stiffness
matrix K, it is convenient to start with the simplest
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case where there is only a single elastic body that
makes frictional contact with a rigid obstacle at a
set of contact nodes. We shall find that the more gen-
eral problem where two elastic bodies make contact
with each other can be solved using a series of steps
for the two bodies separately.

We discretize the body using the finite element
method and characterize the resulting nodes as
belonging to one of three complementary sets: the
contact nodes SC, the externally loaded nodes SE
and the unloaded nodes SI. For the most general
case, the set SE should be further partitioned into
SU, where non-zero nodal displacements are pre-
scribed, and ST, where non-zero nodal forces are pre-
scribed, but in most practical problems one of these
sets will be null. In other words, we usually define the
problem either under force control or under displace-
ment control. In all cases we shall denote the nodal
displacements by u and the nodal forces by f with
appropriate subscripts or superscripts.

Sign convention

Since the problem is two-dimensional, the contact
nodal force f C

j will have two components, which we
denote by

f C
j ¼

qj
pj

� �
, ð1Þ

where pj is the force normal to the contact surface and
is defined as positive when compressive and qj is the
component tangential to the surface with the sign con-
vention of Figure 1(a).

The corresponding nodal displacements shown in
Figure 1(b) are denoted by

uC
j ¼

vj
wj

� �
, ð2Þ

where wj is normal to the contact surface and hence
contributes to a positive gap, whilst vj is a tangential
(slip) displacement.

We then construct contact nodal force and nodal
displacement vectors

f C ¼ f C
1 , f C

2 , f C
3 , . . . , f C

N

� �T
ð3aÞ

uC ¼ uC1 , u
C
2 , u

C
3 , . . . , uCN

� �T
, ð3bÞ

where N is the number of contact nodes, and since the
system is linear elastic, we can write

f C ¼ f w þ KCuC, ð4Þ

where K C is a positive definite and symmetric contact
stiffness matrix and f w comprises the contact nodal
forces that would be developed by the given external

loading if the contact nodal displacements were all
constrained to be zero (i.e. if uC ¼ 0).

Eliminating the displacements at the unloaded
nodes

Since SC and SE are sets of points on the boundary,
whereas SI includes all the nodes in the interior of the
body (an area), most of the nodes will be in SI and the
dimensionality of the resulting matrices can be signifi-
cantly reduced by using the condition f I ¼ 0 to elim-
inate these degrees of freedom. We first partition the
full stiffness matrix such that

f �
f I

f E

f C

8<
:

9=
; ¼ Ku �

K II K IE K IC

KEI KEE KEC

K CI KCE KCC

2
4

3
5 uI

uE

uC

8<
:

9=
;,
ð5Þ

from which we conclude that

f I ¼ K IIuI þ K IEuE þ K ICuC, ð6Þ

and

f E

f C

� �
¼

KEI KEE KEC

KCI KCE KCC

� � uI

uE

uC

8<
:

9=
;: ð7Þ

Substituting f I ¼ 0 into equation (6), we have

K IIuI ¼ �K IEuE � K ICuC,

and hence, solving for uI

uI ¼ � K II
� 	�1

K IE K IC
� 	 uE

uC

� �
: ð8Þ

Using this result to eliminate uI in equation (7), we
then obtain

f E

f C

( )
¼ �

KEI

KCI

" #
K II
� 	�1

K IE K IC
� 	"

þ
KEE KEC

KCE KCC

" ##
uE

uC

� �
: ð9Þ

pj

qj

wj vj

(a) (b)

Figure 1. Sign convention for (a) nodal forces and (b) nodal

displacements.
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At this point, it is convenient to use these relations
to define a reduced matrix

L¼ �
KEI

KCI

� �
KII
� 	�1

KIE KIC
� 	

þ
KEE KEC

KCE KCC

� �� �
,

and to partition it such that

f E

f C

� �
¼

LEE LEC

LCE LCC

� �
uE

uC

� �
: ð10Þ

The force-control problem. In this case, SU is null and the
nodal forces at the externally loaded nodes f E in SE
are known functions of time t. Equation (10) can be
written

f E ¼ LEEuE þ LECuC ð11aÞ

f C ¼ LCEuE þ LCCuC, ð11bÞ

and since the external nodal force vector fE is known,
we can solve (11a) for the vector of nodal displace-
ments at the externally loaded nodes uE obtaining

uE ¼ LEE
� 	�1

fE � LECuC
� 	

: ð12Þ

Substituting this result in (11b), we obtain

f C ¼ LCE LEE
� 	�1

fE � LECuC
� 	h i

þ LCCuC

¼ KEf E þ KCuC,
ð13Þ

where

KE ¼ LCE LEE
� 	�1

, ð14Þ

and

KC ¼ LCC � LCE LEE
� 	�1

LEC
h i

ð15Þ

is the contact stiffness matrix. Notice that equation
(13) is of the same form as equation (4), with

f w ¼ KEf E: ð16Þ

In other words, this procedure determines the
reduced nodal forces f w due to prescribed external
forces fE, as well as the contact stiffness matrix KC,
which is given by equation (15).

The displacement-control problem. If the nodal displace-
ments at the externally loaded nodes uE are prescribed
functions of time, equation (11b) still applies, and
hence

f C ¼ LCEuE þ LCCuC:

Since in this case the nodal displacements uE are
known, we can immediately write the equations in the
form of equation (4), with

f w ¼ LCEuE ð17Þ

KC ¼ LCC: ð18Þ

Notice that the contact stiffness matrix KC is
affected by whether the externally loaded nodes are
force or displacement controlled. This is because the
contact stiffness matrix is the solution of a problem in
which the prescribed loading conditions are replaced
by equivalent homogeneous conditions, traction-free
in the force controlled case and zero displacement
(fixed) in the displacement controlled case.

Contact of two elastic bodies

If two elastic bodies make contact at a set of N con-
tact nodes, the first stage is to develop separate finite
element models of the two bodies, taking care to
locate the contact nodes at the same points on the
interface. We use the sign convention of Figure 1 for
each body separately, which implies that, for example,
p1j and p2j are both compressive nodal forces. With this
sign convention, when the two bodies are placed in
contact, Newton’s third law demands that
p1j ¼ p2j , q

1
j ¼ q2j , or equivalently f C

1 ¼ f C
2 so we can

conveniently drop the subscripts on these terms. In
geometric terms, we can enforce this sign convention
by defining local right-handed x, y coordinate systems
at each contact node in each body, with the y-axis
directed into the body, taking care to number the con-
tact nodes in the same sequence in the two bodies.

In most cases, one of the contacting bodies will be
externally supported and the other will have rigid-
body degrees of freedom. In such cases, we shall use
the index ‘2’ to denote the externally supported body
and ‘1’ for the free body. If both bodies are externally
supported, the following procedure will work regard-
less of how the bodies are denoted.

Since the two elastic bodies make contact at a
shared set of N contact nodes, we first use the proced-
ure of section ‘Single elastic body pressed against a
rigid body’ to determine the matrices KC

1 ,K
C
2 and the

loading vectors f w
1 , f w

2 for each body separately,
defined as in equation (4), and thus

f C ¼ f w
1 þ KC

1 u
C
1 ð19aÞ

f C ¼ f w
2 þ KC

2 u
C
2 : ð19bÞ

With the sign convention of Figure 1, the opening
nodal displacement in the full contact problem is
wj ¼ w1

j þ w2
j and the relative tangential (i.e. slip) dis-

placement is vj ¼ v1j þ v2j , therefore

uC ¼ uC
1 þ uC

2 : ð20Þ

Thaitirarot et al. 3
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To create the reduced contact stiffness matrix KC

for the two elastic bodies in contact, we first solve
equation (19b) for uC

2 , obtaining

KC
2

� 	�1
f C � f w

2


 �
¼ uC

2 :

We next premultiply by KC
1 , obtaining

KC
1 KC

2

� 	�1
f C � f w

2


 �
¼ KC

1 u
C
2 :

Finally, adding this to (19a) and using (20), we
have

KC
1 KC

2

� 	�1
þI

h i
f C ¼ KC

1 u
C þ f w

1 þ KC
1 KC

2

� 	�1
f w
2 ;

where I is the identity matrix. This equation can be
inverted to yield a relation of the form of equation (4),
with

KC ¼ KC
1 KC

2

� 	�1
þI

h i�1
KC

1 ð21Þ

f w ¼ KC
1 KC

2

� 	�1
þI

h i�1
f w
1 þ KC

1 KC
2

� 	�1
f w
2

� 

:

ð22Þ

Notice that if body 1 has rigid-body degrees of
freedom, the matrix KC

1 will be singular. However,
neither of the inversions in equation (22) will be ill-
defined, but the reduced stiffness matrix KC will also
be singular. In fact, it will have the same rank defi-
ciency as KC

1 , and the vectors defining the rigid-body
modes of KC will be the same as those for KC

1 .

Partitioning the reduced stiffness matrix
into normal and tangential components

The preceding operations will generate a 2N� 2N
stiffness matrix, whose components are ordered in
nodal pairs. For example, the components of the
nodal displacement vector uC will be ordered as
fv1,w1, v2,w2, v3,w3, . . . , vN,wNg. For many purposes
it is beneficial to reorder the vectors as

uC ¼
v
w

� �
ð23aÞ

f C ¼
q
p

� �
, ð23bÞ

where v ¼ fv1, v2, v3, . . . , vNg, p ¼ fp1, p2, p3, . . . , pNg,
etc. The stiffness matrix must then be partitioned
into submatrices A,B,C, such that

q
p

� �
¼

A BT

B C

� �
v
w

� �
þ

qw

pw

� �
: ð24Þ

Notice that the complete reduced stiffness matrix

KC ¼
A BT

B C

� �
ð25Þ

must be symmetric, so A,C are symmetric, but B is
not generally symmetric. A frictional elastic contact
problem is described as ‘uncoupled’ if and only if the
matrix B ¼ 0. The coupling implied when B 6¼ 0 has
important consequences for the behaviour of fric-
tional elastic systems under periodic loading (see sec-
tion ‘Shakedown’).

Algorithms for solving the reduced
contact problem

Once the reduced stiffness matrix KC and the time-
varying external nodal forces f wðtÞ have been deter-
mined, the problem becomes equivalent to that of a
set of N massless blocks in potential contact with a set
of rigid plane obstacles. Various algorithms exist for
the numerical solution. At any given point in the load-
ing cycle, each node must be in one of four states
which we designate by an integer state variable Si.
The conditions at each node are then defined by the
relations

Si¼ 1 Stick wi¼ 0; _vi¼ 0; pi50; jqij4fpi
Si¼ 2 Separation pi¼ 0; qi¼ 0; wi> 0
Si¼ 3 Forward slip wi¼ 0; qi¼�fpi; _vi> 0; pi50
Si¼ 4 Backward slip wi¼ 0; qi¼ fpi; _vi50; pi50:

Notice that we have two equations at each node, so
all the unknown nodal forces and displacements can
be determined if the states Si are assumed known.

Gauss–Seidel solution

Ahn and Barber1 describe an algorithm in which the
nodal displacements are initially assumed to have the
same values as at the previous time step. The nodes
are then examined one by one in a Gauss–Seidel sense
such that the state and the nodal displacement at the
node under examination are updated in accordance
with the conditions specified in section ‘Algorithms
for solving the reduced contact problem’. The algo-
rithm cycles through the entire set of nodes several
times until the changes during one such cycle are
less than some preset convergence criterion. This algo-
rithm requires the reduced stiffness matrix to be con-
figured as in equation (25).

LCP solution

An alternative approach is to recognize that as long as
the states at all the nodes remain the same, the evolu-
tion of the discrete solution is defined by linear equa-
tions. If the load vector f wðtÞ is also defined in
piecewise linear terms, it is possible to use the above

4 Proc IMechE Part C: J Mechanical Engineering Science 0(0)
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nodal conditions to solve for the time ti at which an
inequality at node i is first violated. If the minimum
such value is t� and if the node at which the resulting
violation occurs is node j, we can then use the linear
solution for that part of the loading cycle up to t ¼ t�,
and the nature of the violation will tell us what state
to expect at node j at times slightly larger than t�. This
approach is known as the LCP solution, and an algo-
rithm suitable for two-dimensional frictional pro-
blems is defined by Bertocchi.2

Incomplete contact problems

The discussion so far has centred on ‘complete’ con-
tact problems, where a defined set of nodes make
contact when there are no external loads.
Incomplete contact problems (also sometimes called
advancing contact problems) arise when there is an
initial gap between the bodies, the classical case
being Hertzian contact between a quadratic surface
and a plane. If the problem is to remain within the
scope of linear elasticity, the magnitude of this gap
must be small compared with other linear dimensions
of the problem, notably the expected dimensions of
the contact area.

If the contact is incomplete, the first stage is to
define a nominal contact area comprising the set of
points that might come into contact during the load-
ing process. If s defines a spatial coordinate along the
nominal contact area, the initial gap will be a function
g(s) and we also require that the derivative g0ðsÞ be
small compared with unity. This in turn ensures that
we can establish a set of nodes on each of the two
surfaces such that the line joining corresponding
nodes is approximately perpendicular to each surface,
as shown in Figure 2. In the finite element discretiza-
tion, the length of this line for node j will be denoted
by gj.

It then follows that the nodal gap after deforma-
tion is given by gi þ wi and hence the equations defin-
ing the contact algorithm of section ‘Algorithms for
solving the reduced contact problem’ must be modi-
fied to read

Si¼1 Stick wiþgi¼0; _vi¼0; pi50; jqij4fpi
Si¼2 Separation pi¼0; qi¼0; wiþgi>0
Si¼3 Forwardslip wiþgi¼0; qi¼�fpi; _vi>0; pi50
Si¼4 Backwardslip wiþgi¼0; qi¼ fpi; _vi50; pi50:

With this formulation, the contact stiffness matrix KC

and the external loading vector f w are the same as in the
corresponding problem where there is no initial gap.

An alternative approach

An alternative approach, which does not require the
contact algorithm to be modified, is to redefine the
function f w as the set of nodal forces needed to estab-
lish contact with no slip at all the nodes in the

nominal contact area – including closing the initial
gap. The easiest way to determine these forces is to
superpose the solution of two separate problems:

1. the forces f w0 that would be generated by the
external loads if there had been no initial gap
g ¼ 0, that is, if the contact had been complete,
and

2. the forces f wg that are required to close the initial
gap in the absence of external loads. These are
readily obtained using equation (24) as

qwg

pwg

� �
¼

A BT

B C

� �
0
�g

� �
: ð26Þ

The required reduced external forces are then

f w ¼ f w0 þ f wg: ð27Þ

The two methods are equivalent. To establish this,
define a new contact nodal displacement vector u�,
such that

u� ¼ uC þ ug, ð28Þ

where uC is the nodal displacement excluding the
initial gap, and ug is the nodal displacement corre-
sponding to the initial gap, which is defined as

ug ¼
v
w

� �
¼

0
�g

� �
: ð29Þ

We then have

f w ¼ f w0 þ KCug, ð30Þ

and hence

fC¼ fwþKCuC¼ fw0þKCðuCþugÞ ¼ fw0þKCu�:

ð31Þ

The contact boundary condition at node i is wi ¼ 0,
which therefore implies w�i ¼ �gi. Thus, we can use
the original contact algorithm with the modified value
of f w, or the modified algorithm (with contact bound-
ary condition w�i ¼ �gi) and the original value
f w ¼ f w0.

gj

Figure 2. Definition of the nodal gap gj.

Thaitirarot et al. 5
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Example problems

We will now look at three example problems. Each
was solved in two ways: first, by using the commercial
finite element programme ABAQUS, incorporating
contact elements, and using the option of an artificial
stiffness between sticking nodes, to help linearize the
problem. Second, the same model was generated with
ABAQUS and the stiffness matrix (or matrices if both
contacting bodies have a finite stiffness) abstracted
and processed in the way described in previous sec-
tions. In the latter case, the contact problem itself was
solved within MATLAB, again as described, so that
the Signorini conditions were incorporated precisely
in the solution, using the Gauss–Seidel algorithm.

Case 1: Single elastic body pressed against a rigid
counterface

Figure 3 shows a square elastic block, of side 2a,
pressed onto a flat surface, which is taken to be per-
fectly rigid. The block is first loaded with a total
normal force P, which is distributed uniformly along
the top surface of the block. A uniformly distributed
(in space) shear traction, with a total resultant force of
Q(t), is subsequently applied to the top of the block,
and its magnitude is monotonically increased in time.
At the same time that the shear Q(t) is applied, a
further pressure distribution, varying linearly with
position and proportional in magnitude to the shear
traction, is applied to the top of the block, so that a
moment is developed which renders the shear load
statically equivalent to one applied along the plane
of the contact. This device is employed so that the
detailed way in which the loads are exerted does not
significantly influence the traction distribution along
the contact interface. The coefficient of friction f is
initially taken as 0.2.

A finite element model of the block was developed
having 5000 nodes and with 101 nodes present along
the line of the contact interface. Therefore, the full
stiffness matrix for the problem K is of size
10, 000� 10, 000, whilst the statically reduced matrix
KC is only 202� 202. The results of the calculation
are given in Figure 4. Only one set of figures is given
both here and for all subsequent examples, because
the results provided by ABAQUS and those derived
from the statically reduced matrix are indistinguish-
able. Figure 4(a) shows the interfacial slip displace-
ment v(x) present when the normal load P alone is
applied. As expected, the distribution of slip displace-
ment v(x) is antisymmetric and there is a significant

(b)(a)

Figure 4. Plots of the (normalized) slip displacement v(x) along the contact interface for the case of an elastic block in frictional

contact with a rigid plane obstacle, at a coefficient of friction f of 0.2, when (a) the normal load P is first applied and (b) at several levels

of shear load Q(t).

Figure 3. A diagram of the geometry considered in Case 1,

which shows the applied loads and the x, y coordinate set that is

used.

6 Proc IMechE Part C: J Mechanical Engineering Science 0(0)
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central stick region. As the shear load Q(t) is increased
from zero, what is now the trailing edge sticks upon
application of an infinitesimal load. This locks in the
reverse slip displacement that is already present, and
this behaviour continues as the shearing load Q(t) is
increased in value. At the same time, the forward slip
zone attached to the leading edge increases in size as
the shear load Q(t) is raised, and this is shown in
Figure 4(b). In Figure 4, the normalization of the
displacement v(x) is with respect to the ‘plane strain
modulus’, where E is Young’s modulus and � is
Poisson’s ratio. On this scale, any very local contact
corner oscillatory behaviour is not apparent.

Although this is, of course, very machine specific,
the reduction in computer time between the conven-
tional solution and that found from the reduced stiff-
ness matrix was a factor of 60 here.

Case 2: Elastic square body pressed onto elastically
similar half-plane

The problem depicted in Figure 3 is treated again, but
this time the rigid plane obstacle is replaced by a half-
plane with identical elastic properties to the other
contacting body, and the coefficient of friction f is
set to 0.4. The so-called half-plane is, of course,
approximated in ABAQUS as a finite block, but
larger than the contacting square by a factor of 200.
The stiffness matrix for the square block was the same
as above, and the ‘half-plane’ represented by a stiff-
ness matrix K of size 17, 000� 17, 000, but the
reduced contact stiffness matrix KC remained of the
same size as in Case 1. The slip displacement v(x)
resulting from the application of a normal load P is
given in Figure 5(a), and is qualitatively similar to
that found in Case 1. Upon application of an

infinitesimal shear load Q(t), what is now the trailing
edge of the contact again instantaneously sticks, and
as the shear load Q(t) is increased in value the leading
edge slip zone increases monotonically in size, as
shown in Figure 5(b). At the trailing edge a tiny
region of separation might be expected,3 but it is
not apparent from the figure.

In this case, the computation time required to solve
the evolutionary contact problem was reduced by a
factor of 65 when the reduced contact stiffness matrix
was used as compared with running the job in
ABAQUS.

Case 3: Incomplete contact

In the two problems looked at so far, the size of the
contact is known prior to the application of normal
load, which facilitates the solution a great deal. We
will now look at an incomplete contact, shown in
Figure 6, where the front face of the elastic block is
now in the form of a circular arc of radius R, which in
this case is 100 a, with the coefficient of friction f still
set to 0.4. Here, a normal load with a total resultant
force of P(t) is applied to the top of the block, and
increased monotonically in time, up to a maximum
value Pmax. The relative surface normal separation
w(x) of opposing contact nodes in the two bodies,
including that of the undeformed bodies, is shown
in Figure 7(a), as a function of applied normal load
P(t). Lastly, Figure 7(b) shows the contact pressure
distribution p(x) which is, of course, semi-elliptical in
form, again as a function of normal load P(t). It is
again emphasized that the conventional finite element
solution and a solution obtained from the reduce con-
tact stiffness matrix gave results which were
indistinguishable.

(a) (b)

Figure 5. Plots of the (normalized) slip displacement v(x) along the contact interface for the case of an elastic block in frictional

contact with an elastically similar half-plane, at a coefficient of friction f of 0.4, when (a) the normal load P is first applied and (b) at

several levels of shear load Q(t).

Thaitirarot et al. 7
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In this case, the computation time required to solve
the evolutionary contact problem was reduced by a
factor of 40.

Other applications of the reduced
stiffness matrix

The above examples show that frictional contact pro-
blems with time-varying external loads (so-called ‘rate
problems’) can be solved using the reduced stiffness
matrix with a considerable saving in computational
effort. However, the method also enables us to

formulate and solve other categories of problem that
cannot conveniently be treated using conventional
finite element methods.

The critical coefficient of friction

It is well known that the quasi-static discrete rate
problem can be mathematically ill-posed if the coeffi-
cient of friction is sufficiently high.4–6 In particular,
there may occur steps in the loading trajectory
where a strict interpretation of the friction law in
the next time step permits multiple solutions, or
(worse) no solution. In the latter case, simple exam-
ples suggest that the physical system will ‘jump’ to a
new state with a discontinuous change in displace-
ment, governed by the elastodynamic equations.7,8

Klarbring9 has shown that for two-dimensional pro-
blems, the rate problem is well posed if and only if all
matrices of the form

Aþ�B ð32Þ

are P-matrices (i.e. all principal minors of the matrix
are positive definite), where � is a diagonal matrix
whose elements are � f , and the matrices A, B are
defined in equation (24) and require a previous deter-
mination of the reduced stiffness matrix KC. Notice
that if a conventional finite element solution is
attempted above the critical coefficient of friction, a
solution of doubtful meaning will probably be
returned and no warning message will be provided.

At high coefficients of friction it is also possible for
frictional elastic systems to become wedged, meaning
that they remain in a state of stress with non-zero slip
displacements when all external loads have been

(a) (b)

Figure 7. Plots of (a) the (normalized) extent of separation w(x) along the contact interface and (b) the (normalized) contact

pressure distribution p(x), for an elastic block of radius R¼ 100 a in frictional contact with an elastically similar half-plane, at a

coefficient of friction f of 0.4, as the normal load P(t) is raised monotonically, up to a maximum value Pmax, which, once normalized by

ER / (1 – �2), takes on the value 8.2� 10–6 in this particular instance.

Figure 6. A diagram of the geometry considered in Case 3,

which shows the applied load and the x, y coordinate set that

is used.

8 Proc IMechE Part C: J Mechanical Engineering Science 0(0)



XML Template (2013) [22.10.2013–5:07pm] [1–14]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/PICJ/Vol00000/130325/APPFile/SG-PICJ130325.3d (PIC) [PREPRINTER stage]

removed. Barber and Hild10 discuss strategies for
determining whether a system can become wedged,
which also depend on a previous determination of
the reduced contact stiffness matrix.

Shakedown

If the external loading PðtÞ is periodic in time, the slip
displacements during the first few cycles modify the
behaviour in subsequent cycles, and in some circum-
stances can lead to a state of shakedown, where no slip
occurs in the steady state. A necessary condition for
shakedown is that there exist a time-independent tan-
gential displacement vector vs such that jqij5 fpi for all
nodes i and all times t during the loading, and hence

�fðpwi ðtÞþBijvjÞ5qwi ðtÞþAijvj5fðpwi ðtÞþBijvjÞ

ð33Þ

for all i, t.
Klarbring et al.11 have shown that this is a neces-

sary and sufficient condition for shakedown if and
only if the matrix B ¼ 0. It has been conjectured
that this condition is also sufficient to guarantee that
the time-varying components in the steady-state
response of such a system should be unique, even
above the shakedown limit.12

If the system is coupled (B 6¼ 0), equation (33)
defines a necessary but not sufficient condition for
shakedown, so there will generally exist a class of
periodic loading scenarios for which the occurrence
of shakedown depends on the initial conditions. A
strategy for defining the limits of this class is discussed
by Ahn et al.13 All of these procedures depend on a
prior determination of the contact stiffness matrix.

Dislocation solutions

A popular method for the analytical solution of crack
and contact problems is to write the perturbation in
the stress field as a convolution integral on the solu-
tion for a dislocation at the interface, in which case
the contact or separation conditions at the crack or
the interface define an integral equation for the
unknown dislocation distribution.14 This method
can be applied to any domain for which the solution
for a concentrated dislocation is known, but its exten-
sion to more general problems requires that the dis-
location solution be determined numerically.

The present procedure provides a simple way to
obtain such solutions. We extend the crack line to the
edge of the body, mesh the body such that this
extended crack line forms a contact interface and find
the corresponding reduced stiffness matrix KC. To
determine the solution for a unit dislocation at node
i, we then impose the displacement conditions
u C
i ¼ f1, 0g

T or f0, 1gT for all contact nodes between i
and the free end of the cut and u C

i ¼ 0 for contact
nodes between i and the ‘unextended’ end of the crack.

Conclusions

In this paper, we have shown how to determine the
reduced contact stiffness matrix, starting from the full
stiffness matrix obtained from separate finite element
models of the contacting bodies. Instructions for per-
forming these operations in MATLAB are given in
the appendix and a more detailed set of instructions
and downloadable software can be accessed at the
website www.eng.ox.ac.uk/stress.

Once the contact stiffness matrix is determined, it
can be used to develop a solution of the evolutionary
contact problem using a direct implementation of the
Signorini and Coulomb friction contact inequalities.
This is significantly more efficient than a direct finite
element solution of the same problem. For the exam-
ples treated in section ‘Example problems’, computa-
tional time is significantly reduced. However, another
advantage of the proposed method is that the non-
linearities associated with the contact conditions are
visible to and under the control of the user. This facil-
itates trouble shooting in complex problems and also
permits the user to introduce alternative friction laws
or experiment with different iterative strategies for the
solution.

The reduced stiffness matrix is also a useful start-
ing point for other more general investigations, such
as the determination of the critical coefficient of fric-
tion for the problem to be well posed, or the range
of alternating loads below which the system can
shake down. With conventional time-marching
finite element solutions, these problems can only be
explored by running numerous particular cases and
this is likely to be prohibitively computer intensive.
However, when the number of remaining degrees of
freedom is reduced to the number of contact nodes,
it becomes practicable to use optimization codes to
determine, for example, the optimal set of time-inde-
pendent slip displacements that will permit the max-
imum amplitude of periodic loading without
incurring further slip.
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Appendix

In the interest of brevity, we assume that the reader is sufficiently familiar with ABAQUS to be able to create and
mesh parts, create node sets, run jobs and most other basic operations. (If the reader is unfamiliar with ABAQUS,
please consult the URL www.eng.ox.ac.uk/stress, which provides instructions detailing how to create a basic
model and perform the required operations.)

The main pieces of information that are to be extracted from the ABAQUS model are as follows: (i) the global
stiffness matrix K and (ii) several node sets, which can be used to group each degree of freedom in the finite element
model into one of three categories; contact nodes, externally loaded nodes or internal nodes. These data are then
imported into MATLAB where the static reduction and all subsequent analysis are performed.

Create node sets in ABAQUS

First, the reader must group all the nodes in the ABAQUS model into several node sets according to the model’s
features. These node sets will then appear in the input file in the order in which they are created, not in alphabetical
order as they appear in ABAQUS. (It is helpful to name the first node set with a prefix, e.g. aa-[node set name].
This makes it easier to locate the node sets in the input file, e.g. by searching for the string *Nset, nset¼aa-.) The
nodes are to be grouped according to whether they: (i) lie along a contact region, (ii) are externally loaded, (iii) have
some boundary condition applied to them in ABAQUS or (iv) do not fall into any of the above categories. If
several independent loads are applied to different sets of nodes, or there are multiple contact regions, or there are
different types of boundary conditions applied to different sets of nodes, etc., then each of these regions should be
included in a separate node set, such that each node set contains only those nodes that can be treated in the same
way, for example, all nodes are internal nodes, or all nodes have degree of freedom 1 fixed but degree of freedom 2
left free. These node sets can then be consolidated in MATLAB, and categorized as internal, externally loaded or
contact nodes.

Export ABAQUS global stiffness matrix

To export the global stiffnessmatrix from anABAQUSmodel, the readermust create a job file from themodel that is
to be reduced, and write an input file for this job. The input file must then bemodified. To do this, search the input file
for the string ** STEP:. ForABAQUS version 6.11, the following codemust be added directly above this line of code.

*STEP, name¼exportmatrix

*MATRIX GENERATE, STIFFNESS

*MATRIX OUTPUT, STIFFNESS, FORMAT¼MATRIX INPUT

*END STEP

**
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For versions of ABAQUS prior to 6.11, the third line of the above code must be excluded, but the other four
lines of code must still be added to the input file. The modified input file must then be run in ABAQUS, and when
this is done the global stiffness matrix will be output in a .mtx file named [NAME_OF_INPUT_FILE]_STIF1.mtx.

Import node sets into MATLAB

To import the node sets into MATLAB, first, save a copy of the job input file under a different name, and, in this
file, delete all information except for the node sets, such that the first line of the file begins with the string *Nset,

nset¼, and ends after the list of nodes numbers corresponding to the last node set that was created. This modified
input file can be read with the MATLAB command read_input_file ¼ fopen(0NAME_OF_INPUT_FILE.inp0,0,0),
which stores the file that is being read in the variable read_input_file. The code below then imports the first
node set into the MATLAB variable abaqus_node_set.

% read line containing the node set name starting with 0*Nset, nset¼0

read_header ¼ textscan(read_input_file, 0 %s0,1,0delimiter0, 0\n0);

% check if the string 0, generate’ appears in the header line

nodeset_header ¼ strfind(read_header{1},0, generate’);

% if string 0, generate0 does not appear

if numel(nodeset_header{1}) ¼¼ 0

temp_textscan_output ¼ textscan(read_input_file,...
0%d0,0delimiter0,0,0);

abaqus_node_set ¼ temp_textscan_output{1}0;

% if string 0, generate0 does appear

elseif numel(nodeset_header{1}) ¼¼ 1

temp_textscan_output ¼ textscan(read_input_file, ...0

0delimiter0,0,0);

abaqus_node_info ¼ temp_textscan_output{1}0;

abaqus_node_set ¼ zeros(1,1þ(abaqus_node_info(1,2)-...

abaqus_node_info(1,1))/abaqus_node_info(1,3));

for i ¼ 1:length(abaqus_node_set)

abaqus_node_set(1,i) ¼ abaqus_node_info(1,1) þ...

(i-1)*(abaqus_node_info(1,3));

end

else

error(’Error: the string ", generate" appears more than once’)

end

This code imports one node set at a time. To import all the node sets in the modified input file, this code
can either be repeated several times, or used to create a MATLAB function that is then called several times.
Once all the node sets have been imported from the input file, the input file can be closed using the command
fclose(read_input_file).

Convert ‘ABAQUS nodes’ to ‘MATLAB nodes’

In ABAQUS, each node has two degrees of freedom. However, in MATLAB we define a new convention in which
each Mnode has only one degree of freedom, which we define as

MnodeDOF1 ¼ 2ðAnode� 1Þ þ 1 ð34aÞ

MnodeDOF2 ¼ 2ðAnode� 1Þ þ 2 ð34bÞ

where Anode is a shorthand for the node number given by ABAQUS, and where MnodeDOF1 and MnodeDOF2
are the ‘MATLAB node numbers’, or Mnodes, for the degree of freedom in direction 1 and direction 2, respec-
tively. If both degrees of freedom from a set of Anodes are to be included in the corresponding set of Mnodes, then
the conversion is performed by the following code, which stores the Mnodes in the MATLAB variable
matlab_node_set.

matlab_node_set ¼ zeros(1,2*length(abaqus_node_set));

for j ¼ 1:length(abaqus_node_set)
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matlab_node_set(1, 2*(j-1)þ1) ¼ 2.*(abaqus_node_set(1,j)-1)þ1;

matlab_node_set(1, 2*(j-1)þ2) ¼ 2.*(abaqus_node_set(1,j)-1)þ2;

end

If only one of the degrees of freedom from a set of Anodes is to be included in the corresponding set of Mnodes,
then the following code must be used, where the string XXXXDOFXXXX must be replaced either by the value 1 or 2,
according to which degree of freedom is to be retained. (An example situation in which this would be required is if
a boundary condition is applied in ABAQUS, such that, for some set of nodes, say, degree of freedom 1 is fixed,
but degree of freedom 2 is left free. In this case, degree of freedom 1 should be left out of the reduction, and only
degree of freedom 2 should be retained, and should be included in the set of internal Mnodes.)

matlab_node_set ¼ zeros(1,length(abaqus_node_set));

for j ¼ 1:length(abaqus_node_set)

matlab_node_set(1,j) ¼ 2.*(abaqus_node_set(1,j)-1)þ XXXXDOFXXXX;

end

Import global stiffness matrix into MATLAB

The code provided below will import the global stiffness matrix from an .mtx file into MATLAB. Note that, the
string NAME_OF_STIFFNESS_MATRIX must be replaced by the name of the .mtx file, and this file must be located in
MATLAB’s working directory.

% Read the abaqus .mtx file into a [n x 5] sparse matrix in matlab

abaqus_stiffness_matrix ¼ dlmread(0NAME_OF_STIFFNESS_MATRIX.mtx0);

%merge columns 1 and 2, and turn into Mnodes

matlab_nodes(:,1) ¼ 2*(abaqus_stiffness_matrix(:,1)-1)þ...

abaqus_stiffness_matrix(:,2);

%merge columns 3 and 4, and turn into Mnodes

matlab_nodes(:,2) ¼ 2*(abaqus_stiffness_matrix(:,3)-1)þ...

abaqus_stiffness_matrix(:,4);

% extract stiffness values, and store in a double length vector

stiffness_values ¼ [abaqus_stiffness_matrix(:,5);...

abaqus_stiffness_matrix(:,5)];

% compile the stiffness matrix using the new node numbering convention

[matlab_matrix_indices, abaqus_stiffness_value_index] ¼ unique(...

[matlab_nodes; matlab_nodes(:,2) matlab_nodes(:,1)], 0rows0);

K ¼ accumarray(matlab_matrix_indices,...

stiffness_values(abaqus_stiffness_value_index), [], @max, [], true);

The global stiffness matrix is output to the variable K in sparse matrix format. The stiffness values are stored as
element values in the matrix, and are arranged such that the row and column numbers represent the numbers of
the two Mnodes that the stiffness value connects.

Static reduction

The static reduction procedure begins by partitioning the K matrix and creating and partitioning the L matrix. To
do this, the various sets of Mnodes must be grouped into three categories: (i) internal, (ii) externally loaded and
(iii) contact nodes. Once the node sets are consolidated in this way, and stored in the MATLAB variables
internal_nodes, ext_loaded_nodes, contact_nodes, the following code will create the K and L submatrices.

KII ¼ K(internal_nodes, internal_nodes);

KIE ¼ K(internal_nodes, ext_loaded_nodes);

KIC ¼ K(internal_nodes, contact_nodes);

KEE ¼ K(ext_loaded_nodes, ext_loaded_nodes);

KEC ¼ K(ext_loaded_nodes, contact_nodes);

KCC ¼ K(contact_nodes, contact_nodes);

KEI ¼ KIE’; KCI ¼ KIC’; KCE ¼ KEC’;

L ¼ full([KEE,KEC;KCE,KCC]-[KEI;KCI]*(KII\[KIE,KIC]));

LEE ¼ L(1:length(KEE(:,1)), 1:length(KEE(:,1)));

12 Proc IMechE Part C: J Mechanical Engineering Science 0(0)



XML Template (2013) [22.10.2013–5:07pm] [1–14]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/PICJ/Vol00000/130325/APPFile/SG-PICJ130325.3d (PIC) [PREPRINTER stage]

LEC ¼ L(1:length(KEE(:,1)), length(KEE(:,1))þ1:length(L(:,1)));

LCE ¼ LEC’;

LCC ¼ L(length(KEE(:,1))þ1:length(L(:,1)),...

length(KEE(:,1))þ1:length(L(:,1)));

If the external loads are applied in force control, then KC and KE can be computed using the code below.

KC ¼ LCC-LCE*(LEE\LEC);

KE ¼ LCE/LEE;

If the external loads are applied in displacement control, then KC and KE are found using the following code.

KC ¼ LCC;

KE ¼ LCE;

Create the A, B, C matrices from K C

The following MATLAB code will repartition KC and create the A,B,C matrices.

degree_of_freedom_one ¼ zeros(1,length(KC)/2);

degree_of_freedom_two ¼ zeros(1,length(KC)/2);

for j ¼ 1:length(KC)/2

degree_of_freedom_one(1,j) ¼ 2*(j-1)þ1;

degree_of_freedom_two(1,j) ¼ 2*(j-1)þ2;

end

A ¼ KC(degree_of_freedom_one, degree_of_freedom_one);

B ¼ KC(degree_of_freedom_two, degree_of_freedom_one);

C ¼ KC(degree_of_freedom_two, degree_of_freedom_two);

Create f w for a single body problem

To create f w, first, the load distribution must be determined. MATLAB code for some common load distributions
is provided below. It does not matter whether the problem is force or displacement controlled, this procedure
remains the same.

load_zero ¼ zeros(length(KE(1,:))/2,1);

load_constant ¼ ones(length(KE(1,:))/2,1);

load_linear ¼ zeros(length(KE(1,:))/2,1); %preallocate

for i ¼ 0:length(load_linear)-1

load_linear(iþ1,1) ¼ -1 þ 2*(i/(length(load_linear)-1));

end

The load distributions above are half the length of the KE matrix. Half of the KE matrix corresponds to degree
of freedom 1, and the other half to degree of freedom 2. Thus, a load distribution must be selected for the set of
nodes comprising each degree of freedom, and saved as the variables load_distribution_DOF_one and
load_distribution_DOF_two. The following code will then form a vector containing the full load distribution,
and create f w.

load_distribution ¼ zeros(2*length(load_distribution_DOF_one),1);

for j ¼ 1:(length(KE(1,:))/2)

load_distribution(2*(j-1)þ1, 1) ¼ load_distribution_DOF_one(j,1);

load_distribution(2*(j-1)þ2, 1) ¼ load_distribution_DOF_two(j,1);

end

fw ¼ KE*load_distribution;

Reorganize f w to match the A, B, C matrices

The following MATLAB code will reorganize f w to be compatible with the A,B,C matrices, and output the result
in the variable load_vector.

Thaitirarot et al. 13



XML Template (2013) [22.10.2013–5:07pm] [1–14]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/PICJ/Vol00000/130325/APPFile/SG-PICJ130325.3d (PIC) [PREPRINTER stage]

load_vector ¼ zeros(length(fw), 1);

for j ¼ 1:length(load_vector)/2

load_vector(j, 1) ¼ fw(2*(j-1)þ1, 1);

load_vector(length(load_vector)/2þj, 1) ¼ fw(2*(j-1)þ2, 1);

end

Create K C for contact between two elastic bodies

The following code will merge the KC matrices of two elastic bodies, where the KC matrices are named body_1_KC

and body_2_KC. The result is output in the variable KC_two_body.

KC_two_body ¼ (body_1_KC/body_2_KC þ eye(size(body_2_KC)))\body_1_KC;

Create f w for contact between two elastic bodies

To create f w for a contact problem between two elastic bodies, the KC matrices are to be named as in the previous
section, and the f w matrices are to be named body_1_fw and body_2_fw. If the loads corresponding to each
individual f w vector are to be independently applied, then the vectors should be created by running the following
code with only one vector input as either body_1_fw or body_2_fw, and the other vector should be input as a null
vector.

load_vector_two_body ¼ (body_1_KC/body_2_KC þ...

eye(size(body_2_KC))) \(body_1_fw þ body_1_KC*(body_2_KC\body_2_fw));

14 Proc IMechE Part C: J Mechanical Engineering Science 0(0)


