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Abstract-Numerous authors have demonstrated that problems arise over existence and unique 
ness of solution in quasi-static contact problems involving large coefficients of Coulomb friction. This 
difficulty wss greatly elucidated by a simple two-degree-of-freedom model introduced by Klarbring. 

In the present paper, the dynamic behavior of Klarbring’s model is explored under a wide range of 

loading conditions. It is demonstrated that the dynamic solution is always unique and deviates from 
the quasi-static only in a bounded oscillation for sufficiently low friction coefficients. Above the criti- 

cal coefficient, slip in one of the two directions is found to be unstable so that the system never exists 

in this state for more than a short period of time compared with the loading rate. In the limit of 
vanishing mass, these periods become infinitesimal but permit unidirectional state changes with dis- 
continuous displacements. A revised quasi-static algorithm is developed from this limit and is shown 

to predict the dynamic behavior of the system within a bounded oscillation for large coefficients of 
friction. @ 1998 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

If an elastic system is subjected to loads that vary only slowly in comparison with the period 

of the lowest natural frequency, it is usually possible to predict its behavior using a quasi-static 

analysis in which the mass of the system is neglected and the structure is assumed to pass 

through a sequence of equilibrium states. However, if the system has Coulomb friction boundary 

conditions, the quasi-static analysis can predict multiple solutions if the coefficient of friction is 

sufficiently high [l]. This is a serious difficulty if numerical methods (e.g., finite elements methods) 

are used, since there is then no way of guaranteeing that the solution found is the correct one 

for the physical problem under consideration. There is evidence to suggest that the difficulty 

can be resolved by reintroducing the mass into the analysis, i.e., by using a full elastodynamic 

formulation-but this is extremely computationally intensive and introduces its own difficulties 

associated with the numerical description of the resulting wave motion in the system. 

2. KLARBRING’S MODEL 

These paradoxical questions are conveniently illustrated and investigated in the context of the 
simple two degree of freedom system introduced by Klarbring [1,2] and shown in Figure 1. A 
rigid mass M is supported by a generalized massless elastic support and makes contact with a 
rigid frictional surface, at which the coefficient of friction is f. A force F (components Fl, Fz) 
is applied to the body and varies slowly in time in magnitude and/or direction. The body is 

allowed to translate horizontally and/or vertically, but is not permitted to rotate. We denote the 
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Figure 1. Klarbring’s model. 

time-varying displacements of the msss by ui, ~2 and the reaction forces at the contact interface 
by Rr,Rz, as shown in Figure 1. 

2.1. States of the System 

We distinguish four possible states for the system at any given time, namely stick, formrd 
slip, backward slip, and separation. We shall define these states and their governing conditions 
in the 

(1) 

(2) 

(3) 

(4) 

following sections. 

Stick is the state in which the mass makes contact with the plane and is not moving. In 
other words, 

u2=0 and icr = 0. (I) 

This condition is possible if and only if the normal reaction at the interface is positive and 
the tangential reaction is less than the limiting value permitted by Coulomb friction, i.e., 

R2>0 and IRll < f&. (2) 
Forward slip is the state in which the mass remains in contact with the plane but moves 
to the right, i.e., 

u2=0 and icr > 0. (3) 

Once again, the normal reaction force must be positive, but in this case, the tangential 
reaction is equal to the limiting friction force-f R2 (we assume that the static and dynamic 
coefficient of friction are equal) and opposes the motion, so that 

Rz>O and RI = -fRz. (4) 

Backward slip is the corresponding state where the mass moves to the left, and hence, 
by similar arguments, we have 

212 = 0, til < 0, R2 > 0, and RI = fR2. (5) 

Separation. Finally, the mass may lose contact with the plane, in which case there are 
no reaction forces and the displacement 262 must be positive, i.e., 

RI = 0, R2 =O, and u2 > 0. (6) 
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Notice, that each of the above states is defined by two equations and one or more inequalities. 
Two additional equations will be obtained from equilibrium considerations (or more generally 
from Newton’s law), thus permitting the unknown reactions RI, RZ and displacements ui, ‘112 to 
be determined. We then anticipate that the inequalities will serve to determined which state is 
realized at any given time. 

2.2. The Quasi-Static Governing Equations 

Under the quasi-static assumption, the system is assumed to pass through a sequence of equi- 
librium states and hence we obtain the two equilibrium equations, 

Fl + RI - kllul - k12u2 = 0, 

F2 + R2 - k21ul - k22u2 = 0. 

(7) 

(8) 

These equations also serve to define the support stiffness matrix kij . We note that the reciprocal 
theorem demands that kl2 = k21, i.e., that the matrix be symmetric. Also the energy stored in 
the spring must be positive for all conceivable displacements and this requires that 

hl > 0, hz > 0, hkzz > k:2. (9) 

The off-diagonal stiffness, k12, can be either positive or negative, but the coordinate direction zi 
can be defined to make k12 > 0 without loss of generality. We shall, therefore, assume kl2 > 0 

for the purpose of illustration. In all the following discussion, the effect of kl2 being negative is 
equivalent to an interchange of the definitions of ‘forward’ and ‘backward’ slip. 

2.3. Monotonic Unidirectional Loading 

Klarbring [l] considered the special case where the body is initially unloaded (Fl = F2 = 0) 
and just makes contact with the plane at the origin (ui = 2~2 = 0). The forces Fl, F2 are now 

increased linearly with time, i.e., 

FI = Clt and F2 = C2t. (10) 

The system may adopt any one of the four states defined in Section 2.1 depending on the values 
of ci,c,. 

l Stick. In this case, ui = ‘112 = 0, and hence, 

RI = -Clt and R2 = -C2t, (11) 

from equations (7) and (8). The reaction forces must satisfy the inequalities (2), which 
imply 

c2 < 0 and ICll < -fC2, (12) 

since t > 0. These inequalities constrain the values of Ci, C2 to the region of Ci - C2 
space labelled ‘stick’ in Figure 2a. 

l Forward slip. Substituting equations (3) and (4) into the quasi-static governing equa- 
tions (7) and (8) and solving for 211 and Rz, we obtain 

fC2 + Cl 

u1 = fkzl + kilt 
and 

R 
2 

= -kllCz + K21G t 

021 + hl ’ 
(13) 

Substituting these results into the inequalities (3),(4), respectively, noting that t > 0, we 

find that Ci, C2 must satisfy the conditions, 

fc2+‘1 >o md -hC2 + k2lCl 

fk21 + h 021 + hl 
> 0. (14) 
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The implication of these inequalities depends on the sign of the denominator fkzi + kii. 
However, Icli must be positive (see, Section 2.2) and we have chosen the coordinate system 
to ensure ksr > 0. It follows that 

which is the region labelled ‘forward slip’ in Figure 2a. 
l Backward slip. A similar solution procedure, using (5) in place of (3),(4) yields 

Cl - fC2 < o and 
k2lG - hC2 

hl - fk21 h - 021 
> 0. 

05) 

(16) 

As in the case of forward slip, the implication of these two inequalities depends on the 
sign of the denominator, kll - fk21. 

(i) If kll - fkzl > 0, the denominators of the inequalities (16) are positive, and hence, 
Cl - fC2 < 0, k21C1 - kllC2 > 0, i.e., 

jc, < c2 

This corresponds to the region labelled 

< 51. 
kii 

‘backward slip’ in Figure 2a. 

(17) 

(ii) However, if kll - fk2l < 0 the denominators are negative, leading to the conditions 

The Ci - Cz diagram for this case is shown in Figure 2b and the region defined by (18) 
is labelled ‘backward slip’. 

l Separation. In this case RI = R2 = 0 and the quasi-static governing equations (7),(8) 
can be solved to obtain the vertical displacement 

The denominator is always positive according to (9), so separation occurs only when, 

(20) 

Referring to Figure 2a, we see that each point in Ci - CZ space corresponds to one and only one 
state for the system. By contrast, in Figure 2b, there is a region in which stick, backward slip, 
and separation are all possible. 1 This region of nonuniqueness arises if and only if the coefficient 

of friction f > f”, where 

f’=&. (21) 

Klarbring [2] has shown that similar difficulties are encountered in the more general incremental 
loading problem if f > f *. In particular, nonuniqueness is then predicted whenever RI, Rz, 

and 212 are simultaneously equal to zero, as must be the case at any transition between contact 
and separation. He also demonstrated that if the system is instantaneously in a state of backward 
slip, there are some loading scenarios for which the incremental problem has no solution for 

f > f‘- 

‘Notice, that if kzl < 0, it will be found that this region occurs on the right of the diagram and involves stick, 
forward slip, and separation. 
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(a) Quasi-static diagram with unique solution (f < kll/&). 

’ c2 

(b) Quasi-static diagram with multiple solution (f < kll/k2l). 

Figure 2. 

2.4. Dynamic Solution 

A real system will generally have one and only one response to any given loading scenario. Even 
if a number of unstable equilibrium points exist, the probability of the system history passing 
exactly through such a point is vanishingly small, so that in practical terms, only unique (or 
‘almost unique’) simulation algorithms can be regarded as satisfactory. Thus, the quasi-static 
algorithm as so far stated is inadequate for f > f’. 

In an attempt to resolve this paradox, it seems reasonable to m-introduce the effect of inertia 
even though the forces are slowly applied, i.e., to compare the quasi-static predictions with those 
of a full dynamic analysis. As in Section 2.3, we consider the special case where the forces increase 
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linearly with time (equation (10)). The governing equations (7),(8) can be generalized to include 
dynamic effects by adding inertia terms, yielding 

Clt + RI - kllul - klZu2 = Miil, 

Czt + R2 - kzlul - k22u2 = Mii2. 

(22) 

(23) 

There are four unknown quantities--RI, R2, iii, and tip and two equations (22) and (23), but 
two additional conditions are available in each of the four contact states. 

We consider the case where the mass is initially at rest at the origin (ur = u2 = tir = +i2 = 0) 
and determine the loading conditions for which each of the four states is possible for small values 
of time. 

l Stick. In this case, there are no accelerations and hence, the conclusions are unchanged 
from Section 2.3, i.e., for stick to be a possible state, we must have 

c, < 0 and ICll < -fC2. (24) 

l Forward slip. We note that ux and its time derivatives are zero in this state. Using this 
result and the Coulomb law (4) in (22),(23), we obtain 

Clt - fR2 - kllul = Miil, 

C,t + R2 - k21u1 = 0. 

(25) 

(26) 

Eliminating Rs, we get an ordinary differential equation for ui 

M$I + (h + fh)ul = (Cl + fc2)t, (27) 

with initial values, ui = 0 and tir = 0. Since, kll + flip1 is positive ex hypothesis, the 
solution can be written2 

where 

Ul@> = c1Gu{c2 (wt - sin&), 

The normal reaction force can be recovered from (26) as 

Rz(t) = -Czt + kzl “‘Gp (wt - sin&). 

For small values of t, equations (28) and (30) reduce to 

m(t) = c1 ‘Mf” $3 + 0 (t5) ) 

R2(t) = -Czt + 0 (t3) , 

and hence, the conditions for forward slip, tii > 0, 

-4 < fC2 < 0. 

(30) 

(31) 

(32) 

R2 > 0, are satisfied if and only if 

(33) 

l Backward slip. The same equations apply to the case of backward slip, except that the 
frictional force is reversed, which is equivalent to replacing f by -f, i.e., 

Miil + (kll - fkzl)q = (Cl - fCz)t. (34) 

aAa long as the forward slip Bseumption ia valid. 



We get a similar for 2~1 and R2 

w(t) = 

Rz(t> = 
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when lcii - fkzi > 0. In particular, at small values oft 

Cl -fC2 1 3 ( A4 . 
jq + 0 (t5) 7 1 (35) 

-c2t + 0 (t3) . (36) 

If lcii - fkzi < 0, the solution for ~1, R2 contains hyperbolic instead of trigonometric 
functions, but the small time approximation is still given by (35) and (36). Thus, for all 
values of f, we conclude that backward slip is possible for 

Cl < p-22 < 0. (37) 

l Separation. Since 212,&z are both initially zero, the separation inequality uz(t) > 0 
demands that the first nonzero derivative, ii2, be positive at t = 0. Imposing this condition 
on equation (23), we find that separation is only possible if 

c2 > 0, (36) 

since R2 = 0 from (6) and ~1 = 212 = 0 at t = 0 from the initial conditions. 

2.5. Summary 

The above results are summarized in Figure 3. The dynamic analysis gives a unique solution 
for all values of f, and hence, resolves the issue of the multiple solution range in Figure 2b. We 
also note that the dynamic predictions differ from the quasi-static even in cases where the latter 
predicts a unique solution. Of course, Figure 3 only describes the state holding at small values 
of t and as the system evolves we should anticipate transitions to other states. To explore the 
relationship between the quasi-static and dynamic solutions at larger values of time, a numerical 
solution has been developed for the equations of motion. 

Figure 3. Dynamic diagram. 
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3. NUMERICAL SOLUTION 

At a given time t, we assume that the instantaneous position us, uz(t) and the velocity 

til (t), &(t) of the mass are known. We also assume that we know which of the four states (stick, 

forward slip, backward slip, and separation) holds instantaneously. The two state equations are 

used to determine the reaction forces RI, R2 and the equations of motion (22) and (23) then yield 

the accelerations ii1 (t), &(t). The position and velocity are then updated using the equations 

uj(t + c5t) = u&) + i&(t)&, (39) 
tii(t + 6t) = Iii(t) + iij(t)btj (40) 

i = 1,2, where 6t is a small increment of time. This procedure enables us to track the motion 

of the mass as long as it remains in the same state, but we anticipate occasional state changes. 

To detect these, we continually monitor the quantities appearing in the state inequalities and 

when a violation is detected, an appropriate change is made in the assumed state. For example, 

if the reaction force RZ is found to become negative during an increment of forward slip, the 

state assumption is changed to one of separation. The full set of such state change operations 

and the resulting updating algorithm are described in more detail in Appendix A. Most of these 

operations are self-explanatory. However, it is worth noting that the termination of a period of 

separation is assumed to be governed by inelastic impact conditions, i.e., the normal velocity 

is instantaneously set to zero and transition occurs either to stick or forward or backward slip 

depending on the angle of incidence. The rational for this choice is that in more complex systems 

the effects of elastic recovery will be captured by the dynamics of the spring mass system. 

3.1. Results 

The numerical code is based on the dynamic solution, so the initial state of the system is 

equivalent to the dynamic solution of Section 2.4. However, at larger values of time, we might 

expect the behavior to approach the state predicted by the quasi-static analysis. 

3.1.1. Unique solution region 

For the purposes of illustration, we consider the system defined by the stiffness matrix 

Ic= l l 
[ 1 1 2 ’ (41) 

and coefficient of friction f = 0.25. For this system, f < kll/kzl, and hence, the quasi-static 

solution is unique, but there exist two ranges of the loading parameters Cl, C’s for which the quasi- 

static and short-time dynamic solutions predict different states. Figure 4a shows the trajectory 

of the system for the case Cr = -1.0, C’s = -0.8, which lies in the range 

$1 < c2 < 0. (42) 

The numerical solution starts in a state of backward slip, ss predicted in Section 2.4 (Figure 3), 

but then changes to separation, which remains the state for all subsequent times. The long-term 

condition of the system involves oscillation about the predicted quasi-static trajectory. 

Other cases exhibit essentially similar behavior, but there can be multiple state changes before 

the system settles into an oscillation about the quasi-static trajectory. For example, Figure 4b 

shows the trajectory obtained for the loading Cr = -1.0, C’s = -0.99 and exhibits nine state 

changes during the initial transient. The number of such state changes increases as the operating 

point approaches the boundary Cs/Cr = kzl/kll in Figures 2a and 3. 
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(a) Dynamic response from backward slip to separation Cl = -1.0, (2’2 = -0.8. (-) 
dynamic, (- - -) quasi-static. 

. 

u2 

(b) Dynamic response from backward slip to separation Cl = -1.0, C2 = -0.99. 
(-) dynamic, (- - -) quasi-static. 

Figure 4. 

One way of interpreting these results is to remark that if we assumed ab initio that the state 
would involve oscillation (driven by the initial conditions) about the quasi-static trajectory, some 
of these oscillations would carry the state variables outside the permissible range and would 
therefore involve state changes. As C2/Cr approaches Iczr/lcrr, the quasi-static trajectory makes 
an increasingly small angle with the plane, so that larger numbers of these cycles of oscillation 
would involve negative values of ‘112, implying periods of contact. 
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Figures 2a and 3 also disagree in their predictions when 

$1 > c2 > 0. (43) 

Figure 5 shows the trajectory for the case Cl = 1.0, C2 = 0.7. The system starts with a period 

of separation, but reverts to forward slip as predicted by the quasi-static solution. Forward slip 

then continues indefinitely, though there is some oscillation about the quasi-static trajectory 

reflected in a periodic variation in slip velocity til about the (constant) quasi-static value. As 

in the previous cases discussed, more state changes occur during the transition period if C2/Cl 

approaches the boundary kzl/kll. 

4 

Ul 

Figure 5. Dynamic response from separation to forward slip Cl = 1.0, Cz = 0.7. 
(-) dynamic, (- - -) quasi-static. 

3.1.2. Multiple solution region 

The more interesting case is that in which the coefficient of friction exceeds the critical value 

(f > f*), since in this case the quasi-static solution is nonunique and the ambiguity can only be 

resolved by reference to dynamic analysis. 

The multiple-solution range in Figure 2b involves the states of stick, backward slip, and sepa- 

ration. If the system starts in a state of stick, the dynamic analysis of Section 2.4 shows that it 

will never move--this is the one case in Section 2.4 that is not restricted to small values of time. 

The question then arises as to whether this state of stick is stable, or more generally whether 

there is a level of initial perturbation that would lead to one of the other quasi-static states being 

realized as the long-term solution. Tests were made using various combinations of initial nonzero 

values of ul,u2,&l,ti2. 

As an example, we consider the system defined by the stiffness matrix (41), with coefficient 

of friction f = 1.25 which satisfies the criterion for multiple solution. The loading scenario is 

chosen to bisect the multiple solution sector in Figure 2b. Figure 6 shows the long-the state as a 

function of the initial values of til, I&, for u1 = uz = 0. Notice, that the final state is always stick 

if the initial horizontal velocity til is of sufficiently large magnitude in either direction. Separation 

is obtained as a final state only at intermediate levels of til. 

The result for large til is at first sight rather surprising, since it would seem that giving the 

system a large initial velocity would be more likely to cause it to pass into a state of separation. 
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Figure 6. Final state as a function of initial velocities icl, ti2 for initial conditions 
u1 = u2 = 0. 

However, we note that the system is linear with regard to the loading rates Cr , C2, so that 
a scaled formulation of the problem can be written in terms of the ratio u/C, where C = 
,/m. Thus, the behavior of the system for large &i(O) is algorithmically equivalent to that 
for small C. In physical terms, this means that at large &(O), the response is dominated by the 
initial perturbation and the contribution of the applied loads Cit, C2t is small. In the limit, we 
obtain the response of the system to initial perturbation in the absence of external load which, 
not surprisingly, is one of stick. 

The backward slip solution 

All the regions in Figure 6 correspond to long-term states of separation or stick. No initial 
conditions were found leading to the third quasi-static solution of backward slip, suggesting that 
this state might be unstable in some sense. 

To explore this hypothesis in more detail, we first note that for linear loading rates the dis- 
placements in the quasi-static solution are linear functions of time. For example, in backward 
slip we have 

U1(t) = (Cl - fC2b 

hl - 021 
(44) 

It follows that the corresponding velocity 

til(t) = (Cl - fCd 
kll - fk21 ’ 

is constant and there is no acceleration. Thus, the quasi-static solution will be the full dynamic 
solution of the problem if initial conditions are chosen such that tir (0) is given by equation (45). 

The numerical solution was tested under these conditions. The system does indeed follow the 
backward slip quasi-static solution, but an arbitrarily small perturbation from this condition is 
found to grow monotonically with time until eventually the system changes to one of the other 
two quasi-static states. Even the round-off errors in the computations are sufficient to precipitate 
this behavior. Also, since the growth of the perturbation is monotonic, only the sign of its initial 
value is influential in determining which of the two stable states is eventually realized. 
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Stability analysis 

A more general analytical proof can be given of this result. During a period of backward slip, 
the displacement component ~1 is governed by equation (34) 

MGl + (kl - fk2l)W = Fl@) - fF2@), (46) 

where we have reinstated the more general from of the applied forces. 
This is a linear ordinary differential equation and its solution can be written as the sum of a 

particular solution P and the general homogeneous solution H which will contain two arbitrary 
constants to enable us to satisfy appropriate initial conditions on ui, til. 

Suppose, the appropriate solution has been found and we now wish to examine the conditions 
under which a small perturbation on this solution can grow without limit in time. Any such 
perturbation must satisfy the homogeneous equation. It follows that stability of the system (in 
backward slip) depends on the existence of a term in H that grows with time and is independent 
of the particular loading scenario, Fi (t), Fz(t). 

The solution H can be written 

ul(t) = Aebt + Beebt, (47) 

where 

(43) 

Thus, b is pure imaginary for f < f*, causing H to be oscillatory in nature, while it is real for 
f > f*. In the latter case, one of the two terms in (47) grows without limit with t, indicating 
instability of the solution. In other words, when f > f*, the state of backward slip is always 
unstable, and hence, cannot be the long-term solution of the problem. 

This does not preclude periods of backward slip for f > f’ , depending on the loading scenario, 
but it is worth noting that during any such periods, the system behavior will be very sensitive 
to the loading conditions, Fi(t), Fz(t). 

4. RELATION TO THE QUASI-STATIC SOLUTION 

The ultimate objective of this investigation is to use the dynamic analysis to determine the 
real behavior of the system in the hope of defining a new quasi-static algorithm that captures the 
important features of the system trajectory in cases where the loading rate is slow in comparison 
with the time scale of dynamic effects. 

For f < f’ we have shown that, even though the dynamic and quasi-static predictions differ 
qualitatively when t is small, the long-time dynamic solution involves relatively small oscillations 
about the quasi-static prediction and the two solutions predict the same state. Furthermore, a 
modest amount of system damping would be sufficient to make the dynamic solution approach 
the quasi-static asymptotically at large time. The effect of damping is shown in Figure 7. We, 
therefore, conclude that for f < f* the quasi-static algorithm gives a good approximation to 
the behavior of the system for loading rates that are slow in comparison with the periods of the 
natural frequencies of the system. 

For f > f *, the state of backward slip is dynamically unstable and can therefore only persist 
in the dynamic solution for a limited period of time. Thus, if the loading rate is sufficiently slow, 
we expect that periods of backward slip can be condensed into instantaneous transitions between 
the preceding and following states.3 

Klarbring’s analysis of the rate problem [2] s h ows also that there are more loading rate scenarios 
for which no continuous transitions are possible from the state of backward slip in the quasi-static 

3This statement requires some qualification because the exponential growth rate defined in equations (47) and (48) 
is not fhe usual dynamic time scale of the system and it can become arbitrarily slow when f is very close to f’. 
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Figure 7. Effect of damping. (-) dynamic, (- - -) quasi-static. 

formulation. It is, therefore, tempting to consider a quasi-static algorithm in which backward 

slip is not admitted as an option when f > f *, particularly since this state tends to occur under 

loading conditions where one or more of the other quasi-static states is also permissible. However, 

if the system is in a state of stick and the applied forces are changed in such a way as to cross 

the boundary on which RI = fR2 # 0, a transition to backward slip is the only quasi-static 

possibility that retains continuity in displacement. 

The dynamic solution shows that when these conditions are realized, i.e., when limiting friction 

is exceeded in the backward slip direction from a state of stick-there will be a rapid transition 

to a state of separation. On the slow time scale of the loading rate, this will appear as an 

instantaneous jump from stick to separation, involving a discontinuity in displacement. Martins 

et al. [3-51 have demonstrated a similar result for the case where the mass is strictly zero, but 

damping is introduced to the system and then allowed to approach zero. They note that existence 

and uniqueness theorems can be established with arbitrary coefficient of friction if the requirement 

of continuity of displacement is relaxed. 

However, it is clearly not sufficient simply to admit discontinuous transitions between states, 

since there exists a range of loading for which both stick and separation are stable. The dynamic 

solution shows that the discontinuous transition can only occur in the direction stick-to-separation 

and that this only occurs when the limiting friction boundary of the stick region is reached. 

Some tests were carried out to determine whether the same transition could be precipitated 

elsewhere in the multiple solution range by a small perturbation. For example, if a small ampli- 

tude vibration is imposed on the rigid support, the reaction forces will fluctuate, but a transition 

will only occur if the vibration is of sufficiently large (finite) magnitude. The magnitude required 

tends continuously to zero as the operating point approaches the limiting backward slip condi- 

tions. Alternatively, if a small normal impulse is applied to the mass, so as to give it a small 

positive value of ti2, the system experiences a short period of separation before returning to stick. 

During the separation period, a small lateral motion also occurs in the negative zi direction. 

Thus, if a series of such impulses were imposed, the mass would creep towards the limiting point 

and eventually experience the discontinuous transition to separation. This behavior would be 

predicted however small an impulse were imposed. However, if the impulse is replaced by a more 

practical force-time history of finite duration, we once again find that there is a limiting mag- 

nitude of disturbance required to precipitate motion and this magnitude increases the further 

we are from the limiting backward slip condition. Thus, we must conclude that the system is 

strictly stable in the stick condition, but that for practical systems subjected to small but finite 

disturbances, the discontinuous transition to separation will occur somewhat before the limiting 

condition is reached. 
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Klarbring’s analysis of the rate problem exposes one other scenario in which the quasi-static 

algorithm in nonunique-when the contact reactions RI, R2 and the normal displacement uz are 

all zero and the loading rate Fi, F2 is directed into the multiple solution segment of Figure 2b. 

The reactions and the normal displacements must pass through zero at any continuous transition 

from contact to separation of vice versa. 

It can be shown that the condition RI = R2 = ‘112 = 0 cannot be reached with a local 

loading rate in the multiple solution segment. If the system is in separation, a loading rate 

in this segment increases the normal displacement 7~2 and if it is in stick or forward slip, this 

loading rate causes an increase in the reaction forces. Thus, Klarbring’s multiple solution scenario 

can only be precipitated if the loading rate is discontinuous at the instant when the condition 

RI = Rz = 2~2 = 0 is realized. 

There is no difficulty with permitting this level of discontinuity of loading-conditions at the 

critical point are then exactly analogous with those discussed in Sections 2.3 and 2.4 and the 

dynamic solution shows that the state realized will be that of stick. 

However, in practice, this condition will almost never occur. If the system is in a state of stick 

and Fl, F2 are changed in such a way as to reduce RI, R2 to zero, the usual behavior is one of 

(1) a transition occurs to forward slip and the system then remains in this state until the 

reactions go to zero, after which a transition occurs to separation: or 

(2) the reactions reach the limiting backward slip condition and a discontinuous transition to 

separation occurs as explained above. 

The system can also remain in the state of stick to ensure the reactions satisfy inequalities (2) 

at all times until both reactions are zero, but only if the forces Fl, F2 are carefully controlled. 

If the system is in a state of separation and FI, F2 are changed in such a way as to reduce the 

normal displacement 212 to zero, the usual transitions are either to forward slip or stick, depending 

on the local values of Fi, p2 and governed by Figure 2b. 

These considerations enable us to develop an alternative quasi-static algorithm for the case 

fki2 > lcii which is elaborated in Appendix B. This algorithm gives a unique solution for all 

loading scenarios in which Fi, F2 are continuous functions of t (which excludes entering the 

multiple-solution segment through the origin as explained above). 

Figure 8 compares the behavior predicted by the revised algorithm and the dynamic solution. 

The system in this figure is the same as that for Figure 6 but the loading trajectory is changed 

as shown to give an initial period of stick before the limiting condition RI = fRz is passed. 

5. CONCLUSIONS 

The dynamic model developed in this paper resolves the issues of nonexistence and nonunique- 

ness for high coefficient of friction exposed in Klarbring’s two degree of freedom model. We find 

that one of the two slip directions becomes an unstable state that is realizable only for relatively 

short transient periods and that a true quasi-static model of the system will then involve dis- 

continuous motions of the mass when frictional limits in this direction are reached. A revised 

quasi-static algorithm is proposed for fairly general loading in this range of friction coefficients. 

APPENDIX A 

DYNAMIC NUMERICAL SOLUTION ALGORITHM 

In this section, we summarize the equations used for updating the position and velocity of the 
mass at each time step and the tests used to determine when a change of state occurs. 

l Stick. If the system is in a state of stick at time t, we have uz(t) = 0 and tii = ri2 = iii = 
iiz = 0. The reaction forces RI, Rz can then be obtained from the equations of motion (22) 
and (23) in the form 

RI = kllul - Fl and R2 = k2lul - F2, (49) 
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Figure 8. Instantaneous jump predicted by revised quasi-static algorithm (- - -) 
compared with dynamic solution (-). 

where we have reinstated the more general form Fl, Fz for the applied forces, which can 
be arbitrary functions of time in the numerical solution. Stick continues as long as Rz > 0 
and 1 RI 1 < f Rz. If a violation of one of these inequalities is detected in any time step, a 
state change is made as follows. 
(1) Rz < 0. Set Ra = 0 and change state to separation. 
(2) Rz > 0, and RI > fR2. Set RI = fR2 and change state to backward slip. 
(3) Rz > 0, and RI < -f Rz. Set RI = -fRz and change state to forward slip. 

l Forward slip. During forward slip, we have up(t) = tis(t) = i&(t) = 0 and RI = -fR2. 
Substituting into equations (22) and (23) and solving for iii, Rz we obtain 

ii1 = -kllul + Fl - fRz and Rz = kzlul - F2. (50) 

Forward slip continues as long as tii > 0 and R2 > 0. If a violation of one of these 
inequalities is detected, a state change is made as follows. 
(1) R2 < 0. Set R2 = 0 and change state to separation. 
(2) Rz > 0, tii < 0, and kllul - FI - fR2 < 0. Set zii = 0 and change state to stick. 
(3) Rs > 0, tii < 0, and kllul - FI - fR2 > 0. Change state to backward slip. 

Notice, that in contrast to the quasi-static solution, a direct transition from forward slip to 
backward slip is possible without an intervening stick period of finite duration. This will 
occur if the decelerating forces at the transition are sufficiently large to retain the same 
sign when the sign of the friction force is changed. This condition is explicitly defined in 
the given state change algorithm in the interests of rigor. However, the simpler ‘quasi- 
static’ algorithm, in which a transition to stick is imposed when idi < 0, can also be used 
without much loss of accuracy. In cases where the above algorithm predicts a forward to 
backward slip transition, the simpler algorithm will interpolate a single time increment of 
stick between the two slip periods and this will have only a local effect on the predicted 
trajectory. 
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l Backward slip. During backward slip we have us(t) = tiz(t) = iiz(t) = 0 and Ri = fRz. 
We obtain 

R2 = k2lul - F2, (51) 

and backward slip continues as long as tii < 0 and R2 > 0. For 
(1) Rz < 0. Set Rz = 0 and change state to separation. 

(2) Rz > 0, tii > 0, and kllul - Fl + fRz > 0; set tii = 0 and change state to stick, 
(3) R2 > 0, tii > 0, and kllul - Fl + fRz < 0; change state to forward slip. 

l Separation continues as long ss 212 > 0. We assume an inelastic impact condition, since 
in more complex problems the effects of elastic recovery will be captured by the dynamics 
of the spring-mass system. A normal impulse is required to reduce the approach velocity 
to zero and a proportional frictional impulse will be generated if the system changes to a 
state of slip. If this impulse is sufficient to cancel the tangential velocity tii, a transition 
to stick will occur. We therefore obtain the following. 
(1) 212 < 0 and tii > -f tiz. Change state to forward slip, set uz = tiz = 0 and tii = 

til + f&2. 
(2) us < 0 and ftiz < til < -ftiz. Change state to stick and set us = tiz = tii = 0. 
(3) 212 < 0 and 61 < fti2. Change state to backward slip, set uz = tis = 0 and tii = 

tii - fti2. 
In these expressions, it should be noted that the mass must be approaching the plane for 
the transition to occur and hence ziz < 0. 

APPENDIX B 

REVISED QUASI-STATIC ALGORITHM FOR fk12 > kll 

Only three states, stick, forward slip, and separation are recognized. 

(1) 

(2) 

(3) 

Stick is defined as in Appendix A. After each time increment, the reaction forces RI, Rz 
are calculated. In case of violation of any of the inequalities, the following state changes 
are made. 
(a) Rz < 0. Set Rz = 0 and change state to separation. 
(b) Rz > 0 and RI > f R2. Set RI = Rz = 0 and change state to separation (discontinu- 

ous changes in displacements). 
(c) Rz > 0 and RI < - fR2. Set RI = -fRz and change state to forward slip. 

Forward slip. During forward slip, we have 212(t) = tiz(t) = 0 and RI = -fR2. Substi- 
tuting into equations (7) and (8) and solving for ur, RI, we obtain 

fFz + FI 
u1 = fkzl + ICI1 

and 
R 

2 
= -kuFz + kzlF1 

fh +hl * (52) 

Forward slip continues as long as tii > 0 and Rz > 0. The sign of tir can be determined by 
comparing the current and previous values of ur. If a violation of one of these inequalities 
is detected, a state change is made as follows. 
(a) Rz < 0. Set Rz = 0 and change state to separation. 
(b) Rz > 0, tir < 0. Set tii = 0 and change state to stick. 
Separation continues as long as uz > 0. For contact to occur, the immediately preceding 
value of tiz < 0, and hence, kll& < kslkl from the generalized form of equation (19). 
The corresponding state changes are as follows. 

(a) 212 < 0 and (-l/f)4 < #z c (kzl/kll)pl. Change state to forward slip, set 212 = 0 
and ui = (fFz + Fd/(fkzl -+- kd 

(b) 212 < 0 and (k2Jk&‘2 < &I < -fl$. Change state to stick and set uz = 0. 
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