Mathl. Comput. Modelling Vol. 28, No. 4-8, pp. 37-53, 1998

Pergamon © 1998 Elsevier Science Ltd. All rights reserved
Printed in Great Britain

0895-7177/98 $19.00 + 0.00

PII: S0895-7177(98)00107-1

Dynamic Behavior and Stability of
Simple Frictional Systems

H. CHo AND J. R. BARBER
Department of Mechanical Engineering and Applied Mechanics
University of Michigan, Ann Arbor, MI 48109-2125, U.S.A.

Abstract—Numerous authors have demonstrated that problems arise over existence and unique-
ness of solution in quasi-static contact problems involving large coefficients of Coulomb friction. This
difficulty was greatly elucidated by a simple two-degree-of-freedom model introduced by Klarbring.
In the present paper, the dynamic behavior of Klarbring’s model is explored under a wide range of
loading conditions. It is demonstrated that the dynamic solution is always unique and deviates from
the quasi-static only in a bounded oscillation for sufficiently low friction coefficients. Above the criti-
cal coefficient, slip in one of the two directions is found to be unstable so that the system never exists
in this state for more than a short period of time compared with the loading rate. In the limit of
vanishing mass, these periods become infinitesimal but permit unidirectional state changes with dis-
continuous displacements. A revised quasi-static algorithm is developed from this limit and is shown
to predict the dynamic behavior of the system within a bounded oscillation for large coefficients of
friction. © 1998 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

If an elastic system is subjected to loads that vary only slowly in comparison with the period
of the lowest natural frequency, it is usually possible to predict its behavior using a quasi-static
analysis in which the mass of the system is neglected and the structure is assumed to pass
through a sequence of equilibrium states. However, if the system has Coulomb friction boundary
conditions, the quasi-static analysis can predict multiple solutions if the coefficient of friction is
sufficiently high [1]. This is a serious difficulty if numerical methods (e.g., finite elements methods)
are used, since there is then no way of guaranteeing that the solution found is the correct one
for the physical problem under consideration. There is evidence to suggest that the difficulty
can be resolved by reintroducing the mass into the analysis, i.e., by using a full elastodynamic
formulation—but this is extremely computationally intensive and introduces its own difficulties
associated with the numerical description of the resulting wave motion in the system.

2. KLARBRING’S MODEL

These paradoxical questions are conveniently illustrated and investigated in the context of the
simple two degree of freedom system introduced by Klarbring [1,2] and shown in Figure 1. A
rigid mass M is supported by a generalized massless elastic support and makes contact with a
rigid frictional surface, at which the coefficient of friction is f. A force F (components F}, Fy)
is applied to the body and varies slowly in time in magnitude and/or direction. The body is
allowed to translate horizontally and/or vertically, but is not permitted to rotate. We denote the
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Figure 1. Klarbring’s model.

time-varying displacements of the mass by u;, u2 and the reaction forces at the contact interface
by R, R3, as shown in Figure 1.

2.1. States of the System

We distinguish four possible states for the system at any given time, namely stick, forward
slip, backward slip, and separation. We shall define these states and their governing conditions
in the following sections.

(1) Stick is the state in which the mass makes contact with the plane and is not moving. In

other words,

Ug = 0 and 111 =0. (1)
This condition is possible if and only if the normal reaction at the interface is positive and
the tangential reaction is less than the limiting value permitted by Coulomb friction, i.e.,

R2 >0 and |R1| < fRz. (2)

(2) Forward slip is the state in which the mass remains in contact with the plane but moves
to the right, i.e.,
uz =0 and u; > 0. (3)

Once again, the normal reaction force must be positive, but in this case, the tangential
reaction is equal to the limiting friction force— f R; (we assume that the static and dynamic
coefficient of friction are equal) and opposes the motion, so that

Ry>0 and R; = ~fR,. 4)

(3) Backward slip is the corresponding state where the mass moves to the left, and hence,
by similar arguments, we have

ug =0, u; <0, R; > 0, and Ry = fR2 (5)

(4) Separation. Finally, the mass may lose contact with the plane, in which case there are
no reaction forces and the displacement u2 must be positive, i.e.,

R1 =0, Rz =0, and uz > 0. (6)
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Notice, that each of the above states is defined by two equations and one or more inequalities.
Two additional equations will be obtained from equilibrium considerations (or more generally
from Newton’s law), thus permitting the unknown reactions Ry, R; and displacements 3, us to
be determined. We then anticipate that the inequalities will serve to determined which state is
realized at any given time.

2.2. The Quasi-Static Governing Equations

Under the quasi-static assumption, the system is assumed to pass through a sequence of equi-
librium states and hence we obtain the two equilibrium equations,

Fy + Ry — knjug — kigug =0, (N
Fy + Ry — kojuy — kogug = 0. (8)

These equations also serve to define the support stiffness matrix k;;. We note that the reciprocal
theorem demands that ki3 = ko1, i.e., that the matrix be symmetric. Also the energy stored in
the spring must be positive for all conceivable displacements and this requires that

k11 > 0, k22 > 0, kirkaz > k2,. 9)

The off-diagonal stiffness, k12, can be either positive or negative, but the coordinate direction
can be defined to make k15 > 0 without loss of generality. We shall, therefore, assume k3 > 0
for the purpose of illustration. In all the following discussion, the effect of k;2 being negative is
equivalent to an interchange of the definitions of ‘forward’ and ‘backward’ slip.

2.3. Monotonic Unidirectional Loading

Klarbring {1] considered the special case where the body is initially unloaded (F; = F; = 0)
and just makes contact with the plane at the origin (u; = us = 0). The forces Fy, F5 are now
increased linearly with time, i.e.,

F1 = Clt and F2 = Cgt. (10)
The system may adopt any one of the four states defined in Section 2.1 depending on the values
of C 1 Cz.

e Stick. In this case, u; = ug = 0, and hence,
Ry = —-Cit and Ry = —Cht, (11)

from equations (7) and (8). The reaction forces must satisfy the inequalities (2), which
imply
Cy <0 and ICy] < —fCs, (12)

since t > 0. These inequalities constrain the values of Cy,Csy to the region of Cy — C;
space labelled ‘stick’ in Figure 2a.

e Forward slip. Substituting equations (3) and (4) into the quasi-static governing equa-
tions (7) and (8) and solving for u; and Rj, we obtain

fCy+C ~k11Cs + K91 Cy
= = d Ry =
“ fka1 + k1 an 2 fko1 + k1s

(13)

Substituting these results into the inequalities (3),(4), respectively, noting that ¢ > 0, we
find that Cy, Cy must satisfy the conditions,

fC+C >0  and —k11Cs + k21 Cy

—— > 0. 14
fkar + k11 ka1 + k1 (14)
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The implication of these inequalities depends on the sign of the denominator fks; + k3.
However, k1, must be positive (see, Section 2.2) and we have chosen the coordinate system
to ensure kg; > 0. It follows that

k21
——C <Cy< —
it 2=

which is the region labelled ‘forward slip’ in Figure 2a.

¢ Backward slip. A similar solution procedure, using (5) in place of (3),(4) yields
k21C1 — k11C2

- fCs
o <0 nd —_— > 0. 16
ki1 — fka > ki1 — fka (16)

—C, (15)

As in the case of forward slip, the implication of these two inequalities depends on the
sign of the denominator, k;; — fka;.

(i) If k31 — fko1 > 0, the denominators of the inequalities (16) are positive, and hence,

- sz <0, Ic2101 —_ ICHCz >0, i.e.,
ka1
?Cl <(Cy < —Cl (17)
This corresponds to the region labelled ‘backward slip’ in Figure 2a.

(ii) However, if k13 — fk21 < 0 the denominators are negative, leading to the conditions

ka1
=1 <Cy < C 18
b N (18)

The C; —C; diagram for this case is shown in Figure 2b and the region defined by (18)
is labelled ‘backward slip’.
o Separation. In this case Ry = Ry = 0 and the quasi-static governing equations (7),(8)
can be solved to obtain the vertical displacement

k1103 — k21Cy

= s 2t 19
ki1kay — k12ka1 (19)

The denominator is always positive according to (9), so separation occurs only when,

02 > %2—1'6'1 (20)

Referring to Figure 2a, we see that each point in C; — C space corresponds to one and only one
state for the system. By contrast, in Figure 2b, there is a region in which stick, backward slip,
and separation are all possible.! This region of nonuniqueness arises if and only if the coefficient

of friction f > f*, where -

Thaa|’

Klarbring [2] has shown that similar difficulties are encountered in the more general incremental
loading problem if f > f*. In particular, nonuniqueness is then predicted whenever R;, R;,
and us are simultaneously equal to zero, as must be the case at any transition between contact
and separation. He also demonstrated that if the system is instantaneously in a state of backward
slip, there are some loading scenarios for which the incremental problem has no solution for

f>r

1Noi:ic‘e, that if k7 < 0, it will be found that this region occurs on the right of the diagram and involves stick,
forward slip, and separation.

fr= (21)
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(b) Quasi-static diagram with multiple solution (f < k11/k21).

Figure 2.
2.4. Dynamic Solution

A real system will generally have one and only one response to any given loading scenario. Even
if a number of unstable equilibrium points exist, the probability of the system history passing
exactly through such a point is vanishingly small, so that in practical terms, only unique (or
‘almost unique’) simulation algorithms can be regarded as satisfactory. Thus, the quasi-static
algorithm as so far stated is inadequate for f > f*.

In an attempt to resolve this paradox, it seems reasonable to re-introduce the effect of inertia
even though the forces are slowly applied, i.e., to compare the quasi-static predictions with those
of a full dynamic analysis. As in Section 2.3, we consider the special case where the forces increase
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linearly with time (equation (10)). The governing equations (7),(8) can be generalized to include
dynamic effects by adding inertia terms, yielding

Cit + Ry — kjyur — kazus = Mii, (22)
Cat + Ry — kajuy — kaauz = Miip. (23)

There are four unknown quantities—R;, Rj, i, and iz and two equations (22) and (23), but
two additional conditions are available in each of the four contact states.

We consider the case where the mass is initially at rest at the origin (u; = u; = 4; = 13 =0)
and determine the loading conditions for which each of the four states is possible for small values
of time.

e Stick. In this case, there are no accelerations and hence, the conclusions are unchanged
from Section 2.3, i.e., for stick to be a possible state, we must have

C2<0 and 1G] < = fCha. (24)

¢ Forward slip. We note that uz and its time derivatives are zero in this state. Using this
result and the Coulomb law (4) in (22),(23), we obtain

Cit — fRy — kyjyuy = My, (25)
Cat + Ry — kayuq = 0. (26)

Eliminating Rz, we get an ordinary differential equation for u;
My + (ki1 + fkai)uy = (C1 + fCa)t, (27)

with initial values, u; = 0 and 4; = 0. Since, k1; + fk2; is positive ex hypothesis, the
solution can be written?

C1 + fC:
w® = e

w= \/ﬂ%l—f-k—zl (29)

The normal reaction force can be recovered from (26) as

C1+ fC
Mw3

(wt — sinwt), (28)

where

Ry(t) = —Cat + ka1 (wt — sinwt). (30)

For small values of ¢, equations (28) and (30) reduce to

w(t) = C‘—;’w—fﬁ %ﬁ +0 (t%), (31)
Ry(t) = —Cat + O (%), (32)

and hence, the conditions for forward slip, %; > 0, Rz > 0, are satisfied if and only if
-C1 < fC2 <0. (33)

o Backward slip. The same equations apply to the case of backward slip, except that the
frictional force is reversed, which is equivalent to replacing f by —f, i.e.,

Miiy + (k11 — fka1)uy = (Cy — fCy)t. , (34)

2As long as the forward slip assumption is valid.
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We get a similar for u; and Ry when kyy — fkg; > 0. In particular, at small values of ¢

ur(t) = 91%02 (-31-!t3 +0 (t5)> , (35)
Ry(t) = —Cat + O (). (36)

If k11 — fka1 < 0, the solution for u,, Ry contains hyperbolic instead of trigonometric
functions, but the small time approximation is still given by (35) and (36). Thus, for all
values of f, we conclude that backward slip is possible for

C1 < fC2<0. 37

e Separation. Since ug,u; are both initially zero, the separation inequality ua(t) > 0
demands that the first nonzero derivative, iz, be positive at t = 0. Imposing this condition
on equation (23), we find that separation is only possible if

Ca >0, (38)
since Rz = 0 from (6) and u; = us = 0 at t = 0 from the initial conditions.

2.5. Summary

The above results are summarized in Figure 3. The dynamic analysis gives a unique solution
for all values of f, and hence, resolves the issue of the multiple solution range in Figure 2b. We
also note that the dynamic predictions differ from the quasi-static even in cases where the latter
predicts a unique solution. Of course, Figure 3 only describes the state holding at small values
of t and as the system evolves we should anticipate transitions to other states. To explore the
relationship between the quasi-static and dynamic solutions at larger values of time, a numerical
solution has been developed for the equations of motion.

Cc2
separation
C1
backward forward
slip slip
stick
ce=1c1 | C2=-+ci
f ' =t

Figure 3. Dynamic diagram.
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3. NUMERICAL SOLUTION

At a given time t, we assume that the instantaneous position u;(t), uz(t) and the velocity
1 (t), 42(t) of the mass are known. We also assume that we know which of the four states (stick,
forward slip, backward slip, and separation) holds instantaneously. The two state equations are
used to determine the reaction forces R;, R; and the equations of motion (22) and (23) then yield
the accelerations i (t), ti2(t). The position and velocity are then updated using the equations

ui(t + 6t) = u(t) + 44(t)dt, (39)
4t + 6t) = ui(t) + 4;(¢)6t, (40)

i = 1,2, where 6t is a small increment of time. This procedure enables us to track the motion
of the mass as long as it remains in the same state, but we anticipate occasional state changes.
To detect these, we continually monitor the quantities appearing in the state inequalities and
when a violation is detected, an appropriate change is made in the assumed state. For example,
if the reaction force Rj is found to become negative during an increment of forward slip, the
state assumption is changed to one of separation. The full set of such state change operations
and the resulting updating algorithm are described in more detail in Appendix A. Most of these
operations are self-explanatory. However, it is worth noting that the termination of a period of
separation is assumed to be governed by inelastic impact conditions, i.e., the normal velocity
is instantaneously set to zero and transition occurs either to stick or forward or backward slip
depending on the angle of incidence. The rational for this choice is that in more complex systems
the effects of elastic recovery will be captured by the dynamics of the spring mass system.

3.1. Results

The numerical code is based on the dynamic solution, so the initial state of the system is
equivalent to the dynamic solution of Section 2.4. However, at larger values of time, we might
expect the behavior to approach the state predicted by the quasi-static analysis.

3.1.1. Unique solution region

For the purposes of illustration, we consider the system defined by the stiffness matrix

k= [i ;] (41)

and coefficient of friction f = 0.25. For this system, f < kj1/k21, and hence, the quasi-static
solution is unique, but there exist two ranges of the loading parameters C;, C> for which the quasi-
static and short-time dynamic solutions predict different states. Figure 4a shows the trajectory
of the system for the case C; = —1.0, C3 = —0.8, which lies in the range

5—2101 < Cy <. (42)
k11
The numerical solution starts in a state of backward slip, as predicted in Section 2.4 (Figure 3),
but then changes to separation, which remains the state for all subsequent times. The long-term
condition of the system involves oscillation about the predicted quasi-static trajectory.

Other cases exhibit essentially similar behavior, but there can be multiple state changes before
the system settles into an oscillation about the quasi-static trajectory. For example, Figure 4b
shows the trajectory obtained for the loading C; = ~1.0, C2 = —0.99 and exhibits nine state
changes during the initial transient. The number of such state changes increases as the operating
point approaches the boundary C2/C1 = k21 /k11 in Figures 2a and 3.
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(a) Dynamic response from backward slip to separation C; = —1.0, C; = —0.8. (—)
dynamic, (- - -) quasi-static.
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(b) Dynamic response from backward slip to separation C; = —1.0, C2 = —0.99.
(—) dynamic, (- - -) quasi-static.

Figure 4.

One way of interpreting these results is to remark that if we assumed ab initio that the state
would involve oscillation (driven by the initial conditions) about the quasi-static trajectory, some
of these oscillations would carry the state variables outside the permissible range and would
therefore involve state changes. As C,/C; approaches ka2;/k;1, the quasi-static trajectory makes
an increasingly small angle with the plane, so that larger numbers of these cycles of oscillation
would involve negative values of up, implying periods of contact.
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Figures 2a and 3 also disagree in their predictions when

@C’l > Ch > 0. (43)

k11
Figure 5 shows the trajectory for the case C1 = 1.0, C2 = 0.7. The system starts with a period
of separation, but reverts to forward slip as predicted by the quasi-static solution. Forward slip
then continues indefinitely, though there is some oscillation about the quasi-static trajectory
reflected in a periodic variation in slip velocity @; about the (constant) quasi-static value. As
in the previous cases discussed, more state changes occur during the transition period if Cp/C)
approaches the boundary ko1 /k1;.

A
Uzr

U

Figure 5. Dynamic response from separation to forward slip Cy = 1.0, C2 = 0.7.
(—) dynamic, (- - -) quasi-static.

3.1.2. Multiple solution region

The more interesting case is that in which the coefficient of friction exceeds the critical value
(f > f*), since in this case the quasi-static solution is nonunique and the ambiguity can only be
resolved by reference to dynamic analysis.

The multiple-solution range in Figure 2b involves the states of stick, backward slip, and sepa-
ration. If the system starts in a state of stick, the dynamic analysis of Section 2.4 shows that it
will never move—this is the one case in Section 2.4 that is not restricted to small values of time.

The question then arises as to whether this state of stick is stable, or more generally whether
there is a level of initial perturbation that would lead to one of the other quasi-static states being
realized as the long-term solution. Tests were made using various combinations of initial nonzero
values of uy, ug, 4, 2.

As an example, we consider the system defined by the stiffness matrix (41), with coefficient
of friction f = 1.25 which satisfies the criterion for multiple solution. The loading scenario is
chosen to bisect the multiple solution sector in Figure 2b. Figure 6 shows the long-time state as a
function of the initial values of %1, 4z, for u; = us = 0. Notice, that the final state is always stick
if the initial horizontal velocity 1, is of sufficiently large magnitude in either direction. Separation
is obtained as a final state only at intermediate levels of ;.

The result for large %; is at first sight rather surprising, since it would seem that giving the
system a large initial velocity would be more likely to cause it to pass into a state of separation.
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Figure 6. Final state as a function of initial velocities 11,2 for initial conditions
uy =ug =0.

However, we note that the system is linear with regard to the loading rates C;,Cs, so that
a scaled formulation of the problem can be written in terms of the ratio u/C, where C =
A /Cl2 + Cg. Thus, the behavior of the system for large 4, (0) is algorithmically equivalent to that
for small C. In physical terms, this means that at large ,(0), the response is dominated by the
initial perturbation and the contribution of the applied loads Cit, Cat is small. In the limit, we
obtain the response of the system to initial perturbation in the absence of external load which,
not surprisingly, is one of stick.

The backward slip solution

All the regions in Figure 6 correspond to long-term states of separation or stick. No initial
conditions were found leading to the third quasi-static solution of backward slip, suggesting that
this state might be unstable in some sense.

To explore this hypothesis in more detail, we first note that for linear loading rates the dis-
placements in the quasi-static solution are linear functions of time. For example, in backward
slip we have

(Cy — fC)
t) = —— ., 44
wt) k11 — fka (44)
It follows that the corresponding velocity
. (C1~ fC3)
)=~~~ "2 45
) = = Fha (4)

is constant and there is no acceleration. Thus, the quasi-static solution will be the full dynamic
solution of the problem if initial conditions are chosen such that 1,(0) is given by equation {45).

The numerical solution was tested under these conditions. The system does indeed follow the
backward slip quasi-static solution, but an arbitrarily small perturbation from this condition is
found to grow monotonically with time until eventually the system changes to one of the other
two quasi-static states. Even the round-off errors in the computations are sufficient to precipitate
this behavior. Also, since the growth of the perturbation is monotonic, only the sign of its initial
value is influential in determining which of the two stable states is eventually realized.
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Stability analysis

A more general analytical proof can be given of this result. During a period of backward slip,
the displacement component u; is governed by equation (34)

Miy + (k1 ~ fha1)uy = Fi(t) — fFa(t), (46)

where we have reinstated the more general from of the applied forces.

This is a linear ordinary differential equation and its solution can be written as the sum of a
particular solution P and the general homogeneous solution H which will contain two arbitrary
constants to enable us to satisfy appropriate initial conditions on uy,%;.

Suppose, the appropriate solution has been found and we now wish to examine the conditions
under which a small perturbation on this solution can grow without limit in time. Any such
perturbation must satisfy the homogeneous equation. It follows that stability of the system (in
backward slip) depends on the existence of a term in H that grows with time and is independent
of the particular loading scenario, Fi(t), Fa(t).

The solution H can be written

u(t) = Ae® + Be™, (47)
where £k &
b = ——21—M—ll (48)

Thus, b is pure imaginary for f < f*, causing H to be oscillatory in nature, while it is real for
F > f*. In the latter case, one of the two terms in (47) grows without limit with ¢, indicating
instability of the solution. In other words, when f > f*, the state of backward shp is always
unstable, and hence, cannot be the long-term solution of the problem.

This does not preclude periods of backward slip for f > f*, depending on the loading scenario,
but it is worth noting that during any such periods, the system behavior will be very sensitive
to the loading conditions, F;(t), Fa(t).

4. RELATION TO THE QUASI-STATIC SOLUTION

The ultimate objective of this investigation is to use the dynamic analysis to determine the
real behavior of the system in the hope of defining a new quasi-static algorithm that captures the
important features of the system trajectory in cases where the loading rate is slow in comparison
with the time scale of dynamic effects.

For f < f* we have shown that, even though the dynamic and quasi-static predictions differ
qualitatively when ¢ is small, the long-time dynamic solution involves relatively small oscillations
about the quasi-static prediction and the two solutions predict the same state. Furthermore, a
modest amount of system damping would be sufficient to make the dynamic solution approach
the quasi-static asymptotically at large time. The effect of damping is shown in Figure 7. We,
therefore, conclude that for f < f* the quasi-static algorithm gives a good approximation to
the behavior of the system for loading rates that are slow in comparison with the periods of the
natural frequencies of the system.

For f > f*, the state of backward slip is dynamically unstable and can therefore only persist
in the dynamic solution for a limited period of time. Thus, if the loading rate is sufficiently slow,
we expect that periods of backward slip can be condensed into instantaneous transitions between
the preceding and following states.

Klarbring’s analysis of the rate problem [2] shows also that there are more loading rate scenarios
for which no continuous transitions are possible from the state of backward slip in the quasi-static

3This statement requires some qualification because the exponential growth rate defined in equations (47) and (48)
is not the usual dynamic time scale of the system and it can become arbitrarily slow when f is very close to f*.
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4 4+
u= U2

Figure 7. Effect of damping. (—) dynamic, (- - -) quasi-static.

formulation. It is, therefore, tempting to consider a quasi-static algorithm in which backward
slip is not admitted as an option when f > f*, particularly since this state tends to occur under
loading conditions where one or more of the other quasi-static states is also permissible. However,
if the system is in a state of stick and the applied forces are changed in such a way as to cross
the boundary on which R; = fR; # 0, a transition to backward slip is the only quasi-static
possibility that retains continuity in displacement.

The dynamic solution shows that when these conditions are realized, i.e., when limiting friction
is exceeded in the backward slip direction from a state of stick—there will be a rapid transition
to a state of separation. On the slow time scale of the loading rate, this will appear as an
instantaneous jump from stick to separation, involving a discontinuity in displacement. Martins
et al. [3-5] have demonstrated a similar result for the case where the mass is strictly zero, but
damping is introduced to the system and then allowed to approach zero. They note that existence
and uniqueness theorems can be established with arbitrary coefficient of friction if the requirement
of continuity of displacement is relaxed.

However, it is clearly not sufficient simply to admit discontinuous transitions between states,
since there exists a range of loading for which both stick and separation are stable. The dynamic
solution shows that the discontinuous transition can only occur in the direction stick-to-separation
and that this only occurs when the limiting friction boundary of the stick region is reached.

Some tests were carried out to determine whether the same transition could be precipitated
elsewhere in the multiple solution range by a small perturbation. For example, if a small ampli-
tude vibration is imposed on the rigid support, the reaction forces will fluctuate, but a transition
will only occur if the vibration is of sufficiently large {finite) magnitude. The magnitude required
tends continuously to zero as the operating point approaches the limiting backward slip condi-
tions. Alternatively, if a small normal impulse is applied to the mass, so as to give it a small
positive value of 1, the system experiences a short period of separation before returning to stick.
During the separation period, a small lateral motion also occurs in the negative z; direction.
Thus, if a series of such impulses were imposed, the mass would creep towards the limiting point
and eventually experience the discontinuous transition to separation. This behavior would be
predicted however small an impulse were imposed. However, if the impulse is replaced by a more
practical force-time history of finite duration, we once again find that there is a limiting mag-
nitude of disturbance required to precipitate motion and this magnitude increases the further
we are from the limiting backward slip condition. Thus, we must conclude that the system is
strictly stable in the stick condition, but that for practical systems subjected to small but finite
disturbances, the discontinuous transition to separation will occur somewhat before the limiting
condition is reached.
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Klarbring’s analysis of the rate problem exposes one other scenario in which the quasi-static
algorithm in nonunique—when the contact reactions R, Rz and the normal displacement us are
all zero and the loading rate Fy, F, is directed into the multiple solution segment of Figure 2b.
The reactions and the normal displacements must pass through zero at any continuous transition
from contact to separation of vice versa.

It can be shown that the condition By = Ry = up = 0 cannot be reached with a local
loading rate in the multiple solution segment. If the system is in separation, a loading rate
in this segment increases the normal displacement uy and if it is in stick or forward slip, this
loading rate causes an increase in the reaction forces. Thus, Klarbring’s multiple solution scenario
can only be precipitated if the loading rate is discontinuous at the instant when the condition
R; = Ry = uy = 0 is realized.

There is no difficulty with permitting this level of discontinuity of loading—conditions at the
critical point are then exactly analogous with those discussed in Sections 2.3 and 2.4 and the
dynamic solution shows that the state realized will be that of stick.

However, in practice, this condition will almost never occur. If the system is in a state of stick
and F, Fy are changed in such a way as to reduce R;, R; to zero, the usual behavior is one of

(1) a transition occurs to forward slip and the system then remains in this state until the
reactions go to zero, after which a transition occurs to separation: or

(2) the reactions reach the limiting backward slip condition and a discontinuous transition to
separation occurs as explained above.

The system can also remain in the state of stick to ensure the reactions satisfy inequalities (2)
at all times until both reactions are zero, but only if the forces Fy, F» are carefully controlled.

If the system is in a state of separation and Fi, F; are changed in such a way as to reduce the
normal displacement u to zero, the usual transitions are either to forward slip or stick, depending
on the local values of Fy, F;; and governed by Figure 2b.

These considerations enable us to develop an alternative quasi-static algorithm for the case
fki2 > k11 which is elaborated in Appendix B. This algorithm gives a unique solution for all
loading scenarios in which F, F; are continuous functions of ¢ (which excludes entering the
multiple-solution segment through the origin as explained above).

Figure 8 compares the behavior predicted by the revised algorithm and the dynamic solution.
The system in this figure is the same as that for Figure 6 but the loading trajectory is changed
as shown to give an initial period of stick before the limiting condition Ry = fR; is passed.

5. CONCLUSIONS

The dynamic model developed in this paper resolves the issues of nonexistence and nonunique-
ness for high coefficient of friction exposed in Klarbring’s two degree of freedom model. We find
that one of the two slip directions becomes an unstable state that is realizable only for relatively
short transient periods and that a true quasi-static model of the system will then involve dis-
continuous motions of the mass when frictional limits in this direction are reached. A revised
quasi-static algorithm is proposed for fairly general loading in this range of friction coefficients.

APPENDIX A
DYNAMIC NUMERICAL SOLUTION ALGORITHM

In this section, we summarize the equations used for updating the position and velocity of the
mass at each time step and the tests used to determine when a change of state occurs.

e Stick. If the system is in a state of stick at time t, we have ug(t) = 0 and &) = 42 = i) =
iip = 0. The reaction forces R;, Ry can then be obtained from the equations of motion (22)
and (23) in the form

Rl = kuul - Fl and R2 = /C21’U.1 - Fz, (49)
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Figure 8. Instantaneous jump predicted by revised guasi-static algorithm (- - -)
compared with dynamic solution (—).

where we have reinstated the more general form Fy, F; for the applied forces, which can
be arbitrary functions of time in the numerical solution. Stick continues as long as Ry > 0
and |R;| < fRy. If a violation of one of these inequalities is detected in any time step, a
state change is made as follows.

(1) Rz < 0. Set Ry = 0 and change state to separation.

(2) Rz >0, and Ry > fRs. Set R; = fR, and change state to backward slip.

(3) Ry >0, and Ry < —fRs. Set R; = — fRy and change state to forward slip.
Forward slip. During forward slip, we have uz(t) = @2(¢) = i2(t) = 0 and R, = — fR;.
Substituting into equations {22) and {23} and solving for i;, R> we obtain

i = —kpuy + F1 — fR2 and Ry = kyjuy — Fo. (50)

Forward slip continues as long as 4; > 0 and Ry > 0. If a violation of one of these
inequalities is detected, a state change is made as follows.

(1) Rz < 0. Set Ry = 0 and change state to separation.

(2) R2 >0, 41 <0, and k11u1 — Fy — fR2 < 0. Set ; = 0 and change state to stick.

(3) R; >0, u; <0, and kjju; — Fy — fR2 > 0. Change state to backward slip.

Notice, that in contrast to the quasi-static solution, a direct transition from forward slip to
backward slip is possible without an intervening stick period of finite duration. This will
occur if the decelerating forces at the transition are sufficiently large to retain the same
sign when the sign of the friction force is changed. This condition is explicitly defined in
the given state change algorithm in the interests of rigor. However, the simpler ‘quasi-
static’ algorithm, in which a transition to stick is imposed when %; < 0, can also be used
without much loss of accuracy. In cases where the above algorithm predicts a forward to
backward slip transition, the simpler algorithm will interpolate a single time increment of
stick between the two slip periods and this will have only a local effect on the predicted
trajectory.
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Backward slip. During backward slip we have ua(t) = t2(t) = tiz(t) = 0 and R; = fRy.
We obtain

iy = ~knu1 + F1 + fRy and Ry = kyyuy — Fs, (51)

and backward slip continues as long as %; < 0 and Rz > 0. For

(1) Rz < 0. Set Rz = 0 and change state to separation.

(2) R >0, 1y >0, and kjjuy — Fy + fRy > 0; set 43 = 0 and change state to stick,

(3) Ry >0, u3 >0, and k11u1 — F1 + fR2 < 0; change state to forward slip.

Separation continues as long as us > 0. We assume an inelastic impact condition, since

in more complex problems the effects of elastic recovery will be captured by the dynamics

of the spring-mass system. A normal impulse is required to reduce the approach velocity

to zero and a proportional frictional impulse will be generated if the system changes to a

state of slip. If this impulse is sufficient to cancel the tangential velocity 1, a transition

to stick will occur. We therefore obtain the following.

(1) u2 < 0 and u; > —ftp. Change state to forward slip, set up = 1o = 0 and @; =
oy + fs.

(2) ug <0 and fiy < 43 < —fuy. Change state to stick and set ug = 42 = 4; = 0.

(3) u2 < 0 and %; < fuz. Change state to backward slip, set up = 42 = 0 and 43 =
iy — fi.

In these expressions, it should be noted that the mass must be approaching the plane for

the transition to occur and hence @, < 0.

APPENDIX B
REVISED QUASI-STATIC ALGORITHM FOR fki2 > ku

Only three states, stick, forward slip, and separation are recognized.

(1)

2

3)

Stick is defined as in Appendix A. After each time increment, the reaction forces R;, Ry

are calculated. In case of violation of any of the inequalities, the following state changes

are made.

(a) Rg < 0. Set Rz = 0 and change state to separation.

(b) Rz >0 and Ry > fRs. Set R; = Ry = 0 and change state to separation (discontinu-
ous changes in displacements).

(¢) Ry >0and R; < —fRy. Set Ry = —fR; and change state to forward slip.

Forward slip. During forward slip, we have uz(t) = i2(t) = 0 and R; = — fR;. Substi-

tuting into equations (7) and (8) and solving for u;, R;, we obtain

_ B+ F

uy = _ —kuF +kaFy
fkay + k11

and R Floor 4 Fous (52)

Forward slip continues as long as 4; > 0 and Ry > 0. The sign of 4; can be determined by

comparing the current and previous values of u;. If a violation of one of these inequalities

is detected, a state change is made as follows.

(a) R2 < 0. Set Rz = 0 and change state to separation.

(b) Ry >0, 43 <0. Set %; = 0 and change state to stick.

Separation continues as long as uz > 0. For contact to occur, the immediately preceding

value of 1y < 0, and hence, ki Fy < kg1 Fy from the generalized form of equation (19).

The corresponding state changes are as follows.

(a) u2 < 0 and (—1/f)F1 <F< (kzl/ku)Fl. Change state to forward slip, set uz = 0
and u; = (fF2 + Fl)/(kaI -+ ku).

(b) up <0 and (k21/k11)F2 <F < —sz. Change state to stick and set uy = 0.
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