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a b s t r a c t

If the nominal contact tractions at an interface are everywhere below the Coulomb friction

limit throughout a cycle of oscillatory loading, the introduction of surface roughness will

generally cause local microslip between the contacting asperities and hence some frictional

dissipation. This dissipation is important both as a source of structural damping and as an

indicator of potential fretting damage. Here we use a strategy based on the Ciavarella-Jäger

superposition and a recent solution of the general problem of the contact of two half spaces

under oscillatory loading to derive expressions for the dissipation per cycle which depend

only on the normal incremental stiffness of the contact, the external forces and the local

coefficient of friction. The results show that the dissipation depends significantly on the

relative phase between the oscillations in normal and tangential load—a factor which has

been largely ignored in previous investigations. In particular, for given load amplitudes, the

dissipation is significantly larger when the loads are out of phase. We also establish that for

small amplitudes the dissipation varies with the cube of the load amplitude and is linearly

proportional to the second derivative of the elastic compliance function for all contact

geometries, including those involving surface roughness. It follows that experimental

observations of less than cubic dependence on load amplitude cannot be explained by

reference to roughness alone, or by any other geometric effect in the contact of half spaces.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

If a contact between two elastic components transmits a combination of normal and tangential loads, it is well known
that microslip can occur in localized regions at load levels well below those required for complete slip or sliding to occur. If
the loading is periodic, as in the case of a machine subject to vibratory loading, the resulting oscillatory microslip is a
source of frictional energy dissipation (hysteretic damping) (Wentzel, 2006) and can lead to the initiation of local fretting
fatigue cracks and eventual failure (Nowell et al., 2006).

The first solution to a problem of this kind is that due to Cattaneo (1938) (see also Mindlin, 1949), who considered the
case where a Hertzian contact is loaded first by a normal load and then by a tangential load. If the tangential load is
oscillatory, cyclic microslip is predicted in an annulus surrounding a central stick zone (Mindlin et al., 1952) and classical
experimental evidence of the resulting fretting damage was presented by Johnson (1955).
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If the contact problem is ‘conforming’, meaning that the bodies make contact over an extended area even before the loads
are applied, then a sufficiently large normal preload can be defined such that no microslip is predicted at any point in the
contact area during the oscillatory loading cycle. By contrast, in ‘non-conforming’ contact, the normal contact tractions will
tend to zero at the edge of the contact region and this almost always implies the occurrence of a local region of cyclic microslip.
However, all practical surfaces are rough on the microscale, implying that there are no truly conforming problems when the
rough surface profile is included in the problem description. Thus, even in nominally conforming problems, we must anticipate
some microslip on the scale of the surface roughness, including the attendant frictional dissipation.

Previous studies of the effect of roughness on hysteretic damping have generally depended on the use of a specific
rough surface contact model. For example, Björkland (1997) and Eriten et al. (2011) combined the asperity model of
Greenwood and Williamson (1966) with Mindlin’s treatment of the tangential contact problem to define a statistical
estimate of the resulting dissipation. A similar approach was used by Bureau et al. (2003) to interpret the results of
experimental dissipation measurements under microslip conditions.

In this paper, we shall use some recent results (Barber et al., 2011) to show that the dissipation per unit area in a fairly
general contact can be determined without reference to such a contact model, provided only that we have access to
reliable data for the incremental normal contact problem and experimental measurements of the friction coefficient. The
former might for example be obtained from a multiscale numerical model of the contact of rough surfaces (Hyun et al.,
2004; Campañá et al., 2011; Putignano et al., under review). We also extend previous investigations to consider the effect
of oscillations in both normal and tangential tractions, with particular reference to the significant effect of the relative
phase of these components.
2. The tangential model

In Barber et al. (2011) a rationale was developed for determining the sequence of traction distributions experienced by
a two-dimensional elastic contact between two half planes of arbitrary profiles subjected to fairly general far-field
oscillatory loading, under the assumption of Coulomb’s friction law. The method draws on Ciavarella and Jäger’s extension
of the Cattaneo–Mindlin superposition (Jäger, 1998; Ciavarella, 1998a). In particular, it was established that the initial
conditions and the time-independent term in the tangential load affect the tractions locked in the ‘permanent stick zone’,
but the extent of this zone and the time-varying terms in the tractions are unaffected by these parameters. As a
consequence, the dissipation must also be so independent. The argument depends only on the assumptions that (i) the
contacting bodies can be realistically represented as elastic half planes of similar materials, (ii) that the contact obeys
Coulomb’s law of friction in a pointwise sense with a constant coefficient f.

Here, the underlying contact problem is one between two nominally flat, but rough half spaces and this is inherently a
three-dimensional problem. Cattaneo and Mindlin’s original papers considered the three-dimensional Hertzian geometry and,
relative to the two-dimensional case in Barber et al. (2011), this involves an approximation. The Cattaneo–Mindlin
superposition defines a traction distribution that satisfies the condition for ‘stick’ (no relative tangential motion) in part of
the contact area and the slip condition qðx,yÞ ¼ fpðx,yÞ outside the stuck region, but the three-dimensional Coulomb law that
the direction of the relative microslip at each point must oppose the tractions is satisfied only approximately, except in the
special case n¼ 0 (Ciavarella, 1998b). However, the magnitude of the error involved in this approximation was assessed by
Munisamy et al. (1994) and found to be extremely small, so we make no apology for using the same approximation here.
3. Formulation

We suppose that the contacting bodies are subjected to a normal compressive force P and a tangential force Q that vary
cyclically in the form

PðtÞ ¼ P0þP1 cosðotÞ, Q ðtÞ ¼Q0þQ1cosðot�fÞ, ð1Þ

where t is the time and f is a relative phase angle. This defines an ellipse in PQ-space, as shown in Fig. 1.
Notice that if we start from the unloaded condition, this implies the existence of some initial loading path such as OA in

Fig. 1, but it was shown in Barber et al. (2011) that the time-varying terms in the steady state are unaffected by the exact
nature of this path.
3.1. The Ciavarella–Jäger superposition

Suppose that the normal contact problem has been solved in some sense, so that we know the extent of the contact area
AðPÞ and the contact pressure distribution pðx,y,PÞ as functions of the normal load P. Notice that since the surfaces are
rough, we anticipate that AðPÞ will comprise the collection of ‘actual contact areas’ at the points of contact between
asperities of the two surfaces. The contact pressure is zero outside the contact area and hence

pðx,y,PÞ ¼ 0 ðx,yÞ=2AðPÞ: ð2Þ
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Fig. 1. Periodic loading cycle in PQ-space.
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As part of the solution for the normal contact problem, we assume that we also know the rigid body approach of the
bodies, which we denote by v(P). This function will also be influenced by the surface roughness and will therefore
generally be a strongly non-linear (and stiffening) function of P.

The contact area, contact pressure and normal approach are all non-decreasing functions of P in the sense that v0ðPÞZ0,
v00ðPÞr0, AðP1Þ 2 AðP2Þ if P24P1 and p0ðx,y,PÞZ0 for all x,y (Barber, 1974), where we introduce the notation

p0ðx,y,PÞ �
@pðx,y,PÞ

@P
, v0ðPÞ �

@vðPÞ

@P
: ð3Þ

If the normal force is instantaneously equal to P and n¼ 0, Ciavarella (1998b) showed that the incremental distribution
of shear tractions in the x-direction

qxðx,yÞ ¼ fpðx,y,PÞ�fpðx,y,Pn
Þ, PnoP ð4Þ

satisfies the condition for stick in the region defined by AðPn
Þ and for slip in the x-direction in the region AðPÞ\AðPn

Þ. In
Barber et al. (2011), it was shown how this superposition could be used in two-dimensional problems to define the
traction distribution throughout the cycle defined by Eqs. (1) and Fig. 1.

3.2. Frictional dissipation

Two methods are available for the determination of the frictional dissipation. One is to determine the local slip
displacement and integrate it over the slip area, and the other is to evaluate the work done by the external tangential force
in moving through the relative rigid-body displacement of the contacting bodies during a complete cycle. In the two-
dimensional problem (Barber et al., 2011), only the first of these approaches was practical, since in plane problems the
rigid-body displacement due to contact loads is logarithmically infinite. In other words, we can only give a meaning to the
relative motion of the distant regions of the bodies if these are finite in extent.

By contrast, the three-dimensional problem gives finite rigid-body displacements even when the contacting bodies are
half spaces and this greatly facilitates the energy calculation. In particular, the input power can be written as

_W ¼Q _u, ð5Þ

where u is the tangential relative rigid-body displacement, which is also equal to the sum of the (uniform) elastic
tangential displacements of the contacting bodies in the stick area. Notice that the external work goes to a combination of
dissipation and strain energy of the contacting bodies, but if it is integrated over a complete cycle, the initial and final
values of strain energy are the same, so the dissipation per cycle is given by

W ¼

I
Q du¼

I
Q

du

dP
dP: ð6Þ

3.3. Tangential compliance

To determine the tangential displacement u in Eq. (6), we need to evaluate the rigid-body displacement in the stick
region AðPn

Þ associated with the Ciavarella–Jäger traction distribution (4). In the special case where n¼ 0, this is equal to
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the corresponding normal displacement fvðPÞ�fvðPn
Þ, but for other values of n we can obtain a better approximation by

considering the relation between the normal and tangential compliance for surface loading of the half space.
The ratio between the tangential and normal compliance depends on the shape of the contact area, but this dependence

is relatively weak. For example, Mindlin (1949) showed that the tangential elastic compliance CT of all ‘stuck’ elliptical
contacts lie in the range

CN oCT o
CN

ð1�nÞ , ð7Þ

where CN is the corresponding normal compliance and n is Poisson’s ratio. The extreme values are only approached when
the ellipticity is close to unity, the higher compliance corresponding to loading along the major axis and the lower to
loading along the minor axis. For a circular contact area, the two values are of course equal by symmetry and satisfy the
relation

CT ¼ lCN where l¼
ð2�nÞ

2ð1�nÞ
: ð8Þ

It is clear that the difference between the maximum and minimum tangential compliance must correlate with the degree
of anisotropy of the contact geometry and it seems probable that (i) all such geometries are likely to be bounded by the
limiting expressions (7) and (ii) that all statistically isotropic geometries would exhibit a compliance at or close to the
value (8). To the best of the authors’ knowledge neither of these results have been rigorously proved, though Campañá
et al. (2011) present a persuasive argument based on statistical considerations of the strain energy associated with the
traction distributions. Also, Sevostianov and Kachanov (2008) established the relation (8) for a random distribution of
elliptical contact areas. Based on these arguments, we therefore assume that the traction distribution (4) will produce a
uniform relative tangential displacement in the stick area AðPn

Þ of

uðx,yÞ ¼ lf ½vðPÞ�vðPn
Þ�, ð9Þ

where l is defined in (8).
3.4. Evolution of the traction distribution

The determination of the tangential traction distribution during the steady-state loading cycle of Fig. 1 is fully described
in Barber et al. (2011) and will only be summarized here. The cycle falls into four segments BC, CH, HE, EB, where the points
B,C,H,E are defined in Fig. 2. The dashed lines defining these points all have slope of 7 f and the ellipse is traversed in the
anticlockwise direction, as shown.

In BC, the contact area is growing (dP=dt40) and d9Q9=dPo f , thus satisfying the condition for the newly established
contact to remain stuck. In CE there is a growing forward slip zone, but the equations governing this process change at the
point H, where a line of slope f drawn through B cuts the other side of the ellipse. The system then sticks instantaneously at
E, after which a reverse slip zone grows from the outside of the contact until once again the system sticks instantaneously
at B.

The tangential traction distribution in these segments can be written down as the superposition of Ciavarella-Jäger
distributions, except in the stick phase BC where we need to use an incremental (integral) representation. We obtain:
Q

P

Q = f P

O

Q = - f P

B

C

E

H

Fig. 2. Definition of the four segments of the ellipse.
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In EB:

qðx,yÞ ¼�fpðx,y,PÞþ2fpðx,y,PSÞþq0ðx,yÞ,

u¼ lf ½�vðPÞþ2vðPSÞ�, ð10Þ

where

PS ¼
1

2

Q

f
þP�

QE

f
þPE

� �
þu0 ð11Þ

and q0ðx,yÞ, u0 represent time-invariant terms that persist throughout the cycle. These terms depend upon the details of
the initial loading path OA in Fig. 1 and on the value of the mean tangential load Q0, but they have no influence on the
steady-state dissipation. In particular, the tractions q0ðx,yÞ are confined to the permanent stick zone. Eq. (11) and similar
relations for the remaining segments come from the requirement that the total tangential force be equal to the
instantaneous value of Q.

In BC:

qðx,yÞ ¼�fpðx,y,PBÞþ2fpðx,y,PT Þþ

Z P

PB

p0ðx,y,PÞ
dQ

dP
dPþq0ðx,yÞ,

u¼ lf ½�vðPBÞþ2vðPT Þ�þl
Z P

PB

v0ðPÞ
dQ

dP
dPþu0, ð12Þ

where

PT ¼
1

2

QB

f
þPB�

QE

f
þPE

� �
ð13Þ

and AðPT Þ defines the permanent stick zone—i.e. the set of points that are in a state of stick throughout the steady-state
cycle (Barber et al., 2011).

In CH:

qðx,yÞ ¼ fpðx,y,PÞ�fpðx,y,PBÞþ2fpðx,y,PT Þ�fpðx,y,PY Þþ

Z PY

PB

p0ðx,y,PÞ
dQ

dP
dPþq0ðx,yÞ,

u¼ lf ½vðPÞ�vðPBÞþ2vðPT Þ�vðPY Þ�þl
Z PY

PB

v0ðPÞ
dQ

dP
dPþu0, ð14Þ

where Y is a point on the ellipse where

QY�fPY ¼Q�fP ð15Þ

and can be found from the construction in Fig. 3.
In HE:

qðx,yÞ ¼ fpðx,y,PÞ�2fpðx,y,PK Þþ2fpðx,y,PT Þþq0ðx,yÞ, ð16Þ

u¼ lf ½vðPÞ�2vðPK Þþ2vðPT Þ�þu0, ð17Þ

where

PK ¼ PTþ
1

2
P�

Q

f
�PEþ

QE

f

� �
: ð18Þ
Q

P

Q = f P

O

Q = - f P

B
C

X

Y

E

Fig. 3. Geometric construction for determining the point Y and hence PY. The instantaneous values of P and Q define the point X.
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If these expressions are substituted into (6), the resulting integral, partitioned into the four segments EB,BC,CH,HE can
be evaluated numerically for any given normal compliance function v(P). The integrals can be performed parametrically,
using t as a parameter, or alternatively, t can be eliminated between Eqs. (1) to yield Q as a function of P, after which (6)
can be evaluated directly as an integral with respect to P.

3.5. Power-law compliance relation

Following Jang and Barber (2011), we can develop a more compact representation by defining the dimensionless
loading parameters

P̂ ¼
P

P0
, Q̂ ¼

Q

fP0

: ð19Þ

A further simplification arises if the normal compliance relation has the power-law form

v0ðPÞ ¼ CPb, ð20Þ

where C,b are constants. In this case, we write

û ¼
u

ClfPbþ1
0

ð21Þ

and the dissipation integral (6) then takes the form

Ŵ �
W

Clf 2Pbþ2
0

¼

I
Q̂ dû ¼

I
Q̂

dû

dP̂
dP̂ : ð22Þ

The dimensionless tangential compliance function dû=dP̂ can then be summarized in the equations

dû

dP̂
¼�P̂

b
þ2P̂

b
S

dP̂S

dP̂
in EB

¼ P̂
b dQ̂

dP̂
in BC

¼ P̂
b
� 1�

dQ̂

dP̂

 !
P̂ Y

2
4

3
5P̂

b
Y

dP̂Y

dP̂
in CH

¼ P̂
b
�2P̂

b
K

dP̂K

dP̂
in HE:

Of course, the power-law compliance relation (20) reduces the generality of the solution, but the fractal nature of
typical rough surfaces suggests that a power law should represent a good approximation, based on Barenblatt’s (1996)
concept of incomplete similarity. Also, numerous experimental and theoretical treatments of the mathematically
analogous problem of thermal or electrical contact resistance exhibit behaviour close to power-law form (Paggi and
Barber, 2011).

More specifically, the widely used theories of Persson (e.g. Persson et al., 2002; Yang and Persson, 2008) are based on
the concept that the statistical population of asperity contacts remains unchanged as the normal force is increased, leading
to Eq. (20) with b¼�1. In other words, the normal stiffness (reciprocal of compliance) is assumed to be proportional to the
normal load. We shall use this function in the numerical results that follow, but we emphasize that there is no particular
difficulty in using a more general function v0ðPÞ, such as one obtained from a numerical study of the normal contact of two
prescribed rough surfaces.

4. Results

In this section, we shall explore the effect of the three independent dimensionless parameters, P̂1,Q̂ 1,f on the
dissipation Ŵ for the special case b¼�1. Notice that this paper is restricted to cases where the entire load loop is
contained between the lines Q ¼ 7 fP in Fig. 1, so that the permanent stick zoneAðPT Þ is non-null. Thus, we do not consider
cases where the contacting bodies experience periods of gross slip (sliding) or separation. Most of the following results are
obtained by numerical integration of the preceding equations, but analytical expressions can be obtained for the
case f¼ 0, and the corresponding analysis is summarized in the Appendix. The numerical procedure tends to become
ill-conditioned near f¼ 0,p, but the results obtained agree well with the analytical limits, which lends some confidence to
the accuracy and numerical convergence of the results. For example, Fig. 4 compares numerical and analytical expressions
for the ‘Ciavarella–Jäger’ case P̂1 ¼ 0, for various values of Q̂ 1 below the gross slip limit.

Since all previous studies of frictional dissipation due to microslip have considered either pure tangential oscillations or
in-phase oblique loading (e.g. Johnson, 1961), we first examine the effect of phase on the dissipation at fixed values of
P̂1,Q̂ 1. Fig. 5 shows Ŵ as a function of f for some representative cases. In all cases, the dissipation increases with f to a
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maximum near f¼ p=2. This result agrees with the conclusions of Jang and Barber (2011), but that paper considered
mostly cases involving gross slip and/or separation so comparisons are limited. The dependence on f is substantial,
implying that it is critical to estimate the phase relation of the loading in practical applications and take it into account in
any estimate of effective damping.

Fig. 6 shows the effect of obliquity of loading for the in-phase case f¼ 0 and is plotted using the analytical expressions
(32) from the Appendix. This is the loading treated experimentally by Johnson (1961), but recall that his system comprises
a smooth axisymmetric Hertzian contact, whereas the present results are for a nominally flat rough surface. The plot is
presented on a logarithmic scale, so the approximately linear behaviour indicates a power-law dependence on the
amplitude Q̂ 1 and the slope at small Q̂ 1 is asymptotically cubic. The normal compliance relation for Johnson’s problem can
also be expressed in the power-law form (20) with b¼�1=3 and he also predicted cubic dependence of dissipation on
shear load amplitude, suggesting that this behaviour is independent of b. In fact, we shall demonstrate in Section 5.1 that
any problem involving the contact of elastic half spaces must exhibit dissipation with cubic dependence on the load
amplitude at sufficiently small oscillatory loads for arbitrary but specified values of f and the ratio P̂1=Q̂ 1, subject only to
the condition that v0ðPÞ be differentiable in the vicinity of the mean normal load P0. Notwithstanding this general result, we
should remark that many authors (including Johnson, 1961) have reported experimental results in which the dependence
of dissipation on load amplitude is less than cubic and may even approach quadratic. The present results rule out the
possibility of explaining these results in terms of surface roughness or indeed any geometrical effects.

In interpreting Fig. 6, the reader should recall that Q̂ 1 contains the coefficient of friction f and hence dissipation is zero
for P̂1=Q̂ 1Z1. Also, the curves terminate at the point where a further increase in Q̂ 1 would involve a period of gross slip.

Fig. 7 shows a similar plot of dissipation against Q̂ 1 for f¼ p=2. The curves again exhibit a substantial linear region
with a slope again indicating a cubic dependence on load amplitude. However, in contrast to Fig. 6, we observe (i) that the
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Ŵ

P̂1 = 0.3
P̂1 = 0.5
P̂1 = 0.7
P̂1 = 0.9

φ = π/2

Fig. 8. Effect of Q̂ 1 on dissipation for out-of-phase loading (f¼p=2) and various constant values of P̂1.

C. Putignano et al. / J. Mech. Phys. Solids 59 (2011) 2442–2454 2449



C. Putignano et al. / J. Mech. Phys. Solids 59 (2011) 2442–24542450
dissipation is consistently significantly larger than the corresponding values for in-phase loading, confirming the
conclusions of Fig. 5, and (ii) they bend upwards as we approach the gross slip limit.

Finally, in Fig. 8, we show the dissipation for out-of-phase loading as a function of Q̂ 1 for several fixed values of P̂1

(in the previous figures the ratio P̂1=Q̂ 1 was held constant). Notice that in this figure, the slope of the initial linear portion
is lower, indicating a power of about 2.2. It is tempting to identify this result with published experimental observations of
lower than cubic dependence of dissipation on load amplitude, but there is no indication in these experiments that a
constant out-of-phase normal load oscillation was involved. Plots similar to Fig. 8 were also developed for other values of
the phase lag f, but no slopes lower than 2.2 were obtained. In particular, the slope is also about 2.2 for f¼ 0:4p, which is
close to the maximum energy dissipation point in Fig. 5.

5. Discussion

5.1. Small amplitude oscillations

If the P̂1,Q̂ 151, the oscillating loads will be small compared with the mean normal load P0 and the ellipse in Fig. 1 will
be small and relatively distant from the slip lines Q ¼ 7P. To explore the behaviour in this range, it is convenient to define
a new variable

~P ¼ P̂�1¼
P�P0

P0
51,

and it is easily verified from Eqs. (11) and (18) and the construction in Fig. 3 that the corresponding values of ~PS, ~PY , ~PK 51
at all points in the cycle. If v0ðPÞ is a continuous function, we can therefore expand it as a Taylor series

v0ðPÞ ¼ v0ðP0Þþv00ðP0ÞðP�P0Þþ
v000ðP0ÞðP�P0Þ

2

2!
þ � � � ð23Þ

and for sufficiently small load amplitudes, only contributions from the first two terms will be significant. Furthermore, the
first term makes no contribution to the integral (6). This can be verified by a rather tedious evaluation of the integrals in
the four regions EB,BC,CH,HE, but a more direct proof comes from the observation that a constant value of v0ðPÞ can arise
only if AðPÞ is independent of P, in which case we know from the Ciavarella–Jäger superposition that the entire contact
area must be in a state of stick as long as we do not reach the gross slip limit. Thus, at small amplitudes, we need only
consider the second (linear) term in (23).

Suppose we now perform a second normalization on the integrals in Section 3.4 by defining

Pn
¼

P�P0

P1
, Qn

¼
Q

fP1

, ð24Þ

so that (for example) in EB,

du

dP
¼ lfP1v00ðP0Þ �Pn

þ2Pn

S

dPn

S

dPn

� �
:

Using this result and (24) in the integral (6) over the segment EB,we then have

WEB ¼ f 2P3
1v00ðP0Þ

Z Pn

B

Pn

E

Qn
�Pn
þ2Pn

S

dPn

S

dPn

� �
dPn

ð25Þ

and the load amplitude enters the expression only through the explicit multiplier P3
1 (or equivalently Q3

1), since the
integral, including the limits, is the same for all load paths of a given shape (prescribed Q1=fP1 and f). Similar results are
obtained for each of the four segments, showing that dissipation is proportional to the cube of the load amplitude.

We also note that for small load amplitudes, the dissipation due to surface roughness is linearly proportional to the
second derivative of the compliance function at the mean load, v00ðP0Þ. This suggests that dissipation may be sensitive to
microscopic changes in surface topography due to wear, which may be a contributory factor in regard to Johnson’s
observation that experimental measurements of dissipation show significant history dependence (Johnson, 1961).

Mathematically, the lack of dependence on the constant term v0ðP0Þ has the incidental advantage of eliminating
complications associated with the infinite displacements in two-dimensional, half-plane solutions of the contact problem
and also permits one to use numerical models of sufficiently large finite bodies without regard to the conditions at the
distant boundaries.

5.2. Bounds on the dissipation

For the present theory to yield quantitative results, we need to measure or estimate the incremental normal compliance
function v(P). Barber (2003) showed that the inverse ‘load-compliance’ function P¼ PðvÞ can be rigorously bounded
between the curves

FðvÞ4PðvÞ4FðvþsÞ,
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where F(v) is the load-compliance relation for the system in the absence of roughness and s is the maximum peak-to-
valley roughness height. Furthermore, these bounds can be tightened at the cost of transferring some of the long
wavelength roughness features to the ‘deterministic’ part of the profile. Bounds on the incremental stiffness P0ðvÞ [and
hence on v0ðPÞ] can then be obtained, using the fact that P0ðvÞ is a non-decreasing function (Barber, 1974).

Unfortunately, there is no proof that the second derivative P00ðvÞ is monotonic, so this strategy cannot be directly
extended to establish rigorous bounds on the function v00ðPÞ required in dissipation equations like (25), but one might
reasonably use this strategy to obtain an order of magnitude estimate of the expected dissipation. For example, Eqs. (6.12)
and (6.14) of Barber (2003) show that the incremental compliance function for a rough flat punch is bounded in the range

C0

En
ov0ðPÞo

C0

En
þ

s

P
,

where En is the plane strain modulus and C0 is a constant depending only on the planform of the punch and given by 1=2a

for a circular punch of radius a.
If we estimate the actual relation as the average of these two bounds, we would have

v0ðPÞ ¼
C0

En
þ

s

2P
and hence v00ðPÞ ¼ �

s

2P2
:

Notice that this expression is rather surprisingly independent of the elastic modulus, as is therefore the dissipation at
small amplitudes calculated from integrals such as (25).

A similar conclusion follows from the assumption that increase of nominal contact pressure increases the number of
actual contact areas, without changing their statistical distribution, as in the Greenwood and Williamson (1966)
exponential asperity distribution theory and Persson’s theory (Persson et al., 2002). For the latter case, Akarapu et al.
(2011) quote a relation equivalent to

v0ðPÞ ¼
gs
P

and hence v00ðPÞ ¼�
gs
P2

,

where s is the standard deviation of the height distribution and g is a dimensionless constant of order unity.
Notice that both these arguments lead to expressions of the form of Eq. (20) with b¼ 1, and in each case the

multiplying constant C is linearly proportional to the RMS roughness amplitude—a result that can be rigorously
established for elastic systems by pure dimensional arguments, assuming that the shape of the power spectral density
(PSD) remains unchanged. In fact, this proportionality applies for any value of the exponent b and it follows from Eq. (22)
that for given loading parameters, the dissipation W must vary linearly with s.

5.3. Effect of plastic deformation

The results obtained in this paper depend on the assumption that the deformation is elastic. In the contact of rough
surfaces, very high contact pressures are to be expected at the contacting asperities and this might be expected to cause
some local plastic deformation at least during the first application of the load. The extent of plastic deformation in rough
surface contact can be assessed by calculating a plasticity index such as c¼ Ensm=H, where sm is the RMS surface slope
and H is the hardness of the softer material (Johnson, 1985, Section 13.4), values in the range co1 indicating that the
contact is predominantly elastic. Notice that sm is a scale-dependent parameter, but the bounds established in the
preceding section show that dissipation is determined largely by the coarse scale features of the surface, where sm51.
Even in cases where significant plastic deformation occurs on first loading, work hardening and residual stresses are likely
to decrease plasticity effects under cyclic loading—a conclusion that is supported by experimental evidence in the related
case of steady sliding (Archard, 1957).

5.4. Scale separation

In practice, the nominal contact problem – i.e. the problem in which roughness is ignored – may involve a
variation in contact tractions with position. The present results can be used for this case, provided the length scale over
which this variation occurs is significantly larger than the longest wavelength in the roughness profile. In this case, we first
interpret the quantities P,Q as being forces per unit nominal area—i.e. as the local contact tractions pðx,yÞ,qðx,yÞ
respectively, and the dissipation W as the dissipation per unit area wðx,yÞ. Assuming the ‘smooth’ contact problem has
been solved and that the tractions satisfy the ‘stick’ condition 9qðx,yÞ9o fpðx,yÞ for all x,y, the present results can then be
used to determine the local value of dissipation per unit area, which might be expected to correlate with the initiation of
fretting damage.

6. Conclusions

The analysis presented here permits one to calculate the frictional dissipation per cycle for the contact between two
rough surfaces with any surface profile provided only that (i) the contact is elastic, (ii) the local contact condition obeys the
Coulomb friction law with a constant coefficient of friction and (iii) we have access to information about the normal



C. Putignano et al. / J. Mech. Phys. Solids 59 (2011) 2442–24542452
incremental stiffness function v0ðPÞ. In contrast to previous studies of the problem, the method does not require any further
assumptions about the rough surface contact process (such as an asperity model theory). It is also completely rigorous
within the above constraints in the limiting case where Poisson’s ratio n¼ 0 and the extent of possible error for finite n is
quantifiable (see Section 3.3) and likely to be well below other sources of uncertainty in the physical description. We also
note that the required incremental stiffness is a quantity that is determined by the coarser levels of the multiscale surface
roughness profiles (Barber, 2003) and that tight bounds can therefore be placed on it using a relatively unsophisticated
numerical model.

Results are presented for the special case where the incremental stiffness is linear with normal load, but there is no
special difficulty in evaluating the integrals for other cases. At small amplitudes, the dissipation for a given ratio P̂1=Q̂ 1 and
given relative phase varies with the cube of the load amplitude for all possible contact geometries, and is linearly
proportional to the second derivative of the compliance function v00ðPÞ evaluated at the mean normal load. It follows that
experimental observations of less than cubic dependence on load amplitude cannot be explained by reference to surface
roughness alone, or by any other geometric effect in the contact of half spaces. Dissipation is significantly larger when the
normal and tangential components are out of phase.
Acknowledgements

M.C. is grateful to the Humboldt foundation for sponsoring his visit at Hamburg TUHH University.

Appendix A. Dissipation for the in-phase case /¼ 0

If f¼ 0, the ellipse in Fig. 1 degenerates to a straight line and we can eliminate t in Eqs. (1) to obtain

Q ¼
Q1ðP�P0Þ

P1
: ð26Þ

If 9Q19o fP1, no slip occurs during loading or unloading and the dissipation is identically zero. For 9Q194 fP1, microslip will
occur during both loading segments. We suppose that Q140 and we denote the end points of the line as AðP0þP1,Q1Þ and
BðP0�P1Þ,�Q1Þ. Notice that we can set Q0 ¼ 0 without loss of generality since we know that this parameter does not affect
the cyclic dissipation.

Routine applications of the Ciavarella–Jäger distribution show that during the segment BA, the tangential displacement
u satisfies the equation

du

dP
¼ lf v0ðPÞ�2v0ðPY Þ

dPY

dP

� �
,

where

PY ¼
1

2
PþðP0�P1Þ�

ðQ1þQ Þ

f

� �
: ð27Þ

The work done during the segment BA can therefore be written as

WBA ¼

Z P0þP1

P0�P1

Q
du

dP
dP¼W1þW2,

where

W1 ¼ lf

Z P0þP1

P0�P1

Qv0ðPÞ dP, W2 ¼�2lf

Z P0 þP1

P0�P1

Qv0ðPY Þ
dPY

dP
dP:

Substituting for Q in W1, using (26) we have

W1 ¼
lfQ1

P1

Z P0þP1

P0�P1

ðP�P0Þv
0ðPÞ dP: ð28Þ

For W2 it is convenient to change the variable of integration to PY. This necessitates that we first use (26) to eliminate Q

in (27) and then solve the resulting equation for P as a function of PY. The manipulations are routine and lead to the
expression

W2 ¼
2lfQ1

ðQ1=f�P1Þ

Z P0�Q1=f

P0�P1

½2PY�2P0þP1þQ1=f �v0ðPY Þ dPY : ð29Þ

An essentially similar procedure is used for the segment AB, where

du

dP
¼ lf �v0ðPÞþ2v0ðPZÞ

dPZ

dP

� �
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and

PZ ¼
1

2
PþðP0þP1Þ�

ðQ1�Q Þ

f

� �
:

We obtain

WAB ¼W3þW4,

where

W3 ¼�
lfQ 1

P1

Z P0�P1

P0 þP1

ðP�P0Þv
0ðPÞ dP, ð30Þ

W4 ¼
2lfQ1

ðQ1=f þP1Þ

Z P0�Q1=f

P0þP1

½2PZ�2P0�P1þQ1=f �v0ðPZÞ dPZ : ð31Þ

Notice incidentally that W1 and W3 are identical, since the sign change is negated by the reversal of order of the limits. The
cyclic dissipation is then obtained as

W ¼WBAþWAB ¼W1þW2þW3þW4:

The above expressions are given for a general compliance function v0ðPÞ, but for the power-law form of Eq. (20) we can
write the dimensionless expressions

Ŵ 1 ¼ Ŵ 3 ¼
Q̂ 1

P̂1

Z 1þ P̂ 1

1�P̂ 1

ðP̂�1ÞP̂
b

dP̂ ,

Ŵ 2 ¼
2Q̂ 1

ðQ̂ 1�P̂1Þ

Z 1�Q̂ 1

1�P̂ 1

½2P̂�2þ P̂1þQ̂ 1�P̂
b

dP̂ ,

Ŵ 4 ¼
2Q̂ 1

ðQ̂ 1þ P̂1Þ

Z 1�Q̂ 1

1þ P̂ 1

½2P̂�2�P̂1þQ̂ 1�P̂
b

dP̂ , ð32Þ

where we have dropped the suffices in PY ,PZ , since at this stage these are merely dummy variables of integration.
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