| Carmichael function car(m) |
car [m] |
| Chinese Remainder Theorem |
crt [a1 m1 a2 m2] |
| convert decimal to rational | d2r [x] |
| convert rational to decimal | r2d [a q] |
| determinant modulo m | detmodm |
| discrete logarithm base g of a modulo p |
ind [g a p] |
| factor n | |
| by trial division |
factor [n] |
| by p - 1 method |
p-1 [n [a]] |
| by rho method |
rho [n [c]] |
| find next prime | getnextp [x] |
| greatest common divisor | gcd [b c] |
| index base g of a modulo p |
ind [g a p] |
| Jacobi symbol (P/Q) |
jacobi [P Q] |
| Lucas functions Un, Vn modulo m |
lucas [n [a b] m] |
| multiply residue classes modulo m |
mult [a b m] |
| order of a modulo m |
order [a m [c]] |
| phi function | phi [n] |
| pi(x) | pi [x] |
| power ak modulo m |
power [a k m] |
| primitive root of prime p |
primroot [p [a]] |
| prove primality of p |
provep [p] |
| reduce ax2 + bxy + cy2 |
reduce a b c |
| represent n as a sum of s k-th powers |
sumspwrs [n s k] |
| roots of | |
| ax = b (mod m) |
lincon [a b m] |
| f(x) = 0 (mod pj) |
hensel |
| P(x) = 0 (mod m) |
polysolv |
| x2 = a (mod p) |
sqrtmodp [a p] |
| Ax = b in integers |
simlinde |
| square root modulo p | sqrtmodp [a p] |
| strong pseudoprime test of m base a |
spsp [[a] m] |
| Chinese Remainder Theorem |
crtdem |
| determinants modulo m | detdem |
| discrete logarithm base g of a modulo p |
inddem [g a p] |
| Euclidean algorithm | eualgdelm [b c] |
| factorization | |
| by p - 1 method |
p-1dem |
| by rho method |
rhodem [n] |
| greatest common divisors | fastgcd, slowgcd |
| (see also Euclidean algorithm) | |
| heapsort algorithm | hsortdem |
| index base g of a modulo p |
inddem [g a p] |
| Jacobi symbol (P/Q) | jacobdem [P Q] |
| linear congruence ax = b (mod m) |
lncndem [a b m] |
| Lucas functions | lucasdem [n [a b] m] |
| multiplication of residue classes |
multdem1, multdem2, multdem3 |
| order of a modulo m |
orderdem [a m [c]] |
| powering algorithm | pwrdem1a [a k m] |
| | pwrdem1b [a k m] |
| | pwrdem2 [a k m] |
| RSA encryption | rsa, rsapars |
| square root modulo p | sqrtdem [a p] |
| strong pseudoprime test of m base a |
spspdem[[a] m] |