
EMPIRICALLY EVALUATING GENETIC ALGORITHMS FOR

GENERATING TEST SUITES FOR WEB APPLICATIONS

by

Hammad Ahmad

2019

© 2019 Hammad Ahmad
All Rights Reserved

TABLE OF CONTENTS

LIST OF TABLES . vi
LIST OF FIGURES . vii
ABSTRACT . ix

Chapter

1 INTRODUCTION . 1

2 BACKGROUND . 4

2.1 Web Applications . 4
2.2 Testing Web Applications . 5
2.3 Genetic Algorithms . 7

2.3.1 Model . 8
2.3.2 Fitness Functions . 9
2.3.3 Parent Selection Algorithms 9
2.3.4 Genetic Operators . 10
2.3.5 Applying the Genetic Algorithm to Software Testing 11

2.4 Open Problems . 12

2.4.1 Problems in Testing Web Applications 12
2.4.2 Evaluating Web Application Testing Approaches 13

3 GENERATING TEST SUITES FOR WEB APPLICATIONS
USING THE GENETIC ALGORITHM 14

3.1 Motivation . 14
3.2 Model . 14
3.3 Implementation . 15

3.3.1 Initialization . 15

iii

3.3.2 Fitness Function . 16
3.3.3 Genetic Operators . 17
3.3.4 Parent Selection Algorithms 18
3.3.5 Summary . 20

4 THE EVALUATION FRAMEWORK 21

4.1 Design . 21

4.1.1 Configuring the Application 22
4.1.2 Initializing the Persistent State 23
4.1.3 Instrumenting the Source Code 23
4.1.4 Executing the Test Suites . 24

4.2 Implementation . 24

4.2.1 Automating the Execution of Test Suites 25

4.2.1.1 Instrumenting the Source Code 25
4.2.1.2 Initializing the Persistent State 25
4.2.1.3 Running the Web Applications Server 26
4.2.1.4 Executing the Test Suites 26

4.2.2 Evaluating the Results . 26
4.2.3 Summary . 27

5 EXPERIMENTAL STUDY . 28

5.1 Research Questions . 28
5.2 Subject Applications . 29
5.3 Methodology . 29

5.3.1 Gathering User Sessions . 29
5.3.2 Evaluation and Analysis Metrics 30
5.3.3 Generating Test Suites . 30
5.3.4 Analyzing the Resulting Test Suites 34
5.3.5 Evaluating the Resulting Test Suites 34

5.4 Threats to Validity . 35

iv

5.5 Results . 36

5.5.1 Generating Test Suites . 36

5.5.1.1 Comparing Parent Selection Algorithms 37
5.5.1.2 Comparing Genetic Operators and Genetic Algorithm

Parameters . 39
5.5.1.3 Comparing Fitness Weights 43
5.5.1.4 Comparing the Genetic Algorithm to the Hill Climbing

Algorithm for Generating Cost-Effective Test Suites . 44

5.5.2 Evaluating Test Suites . 47

5.6 Discussion . 49

5.6.1 Comparing Parent Selection Algorithms 50
5.6.2 Comparing Genetic Operators and Genetic Algorithm

Parameters . 51
5.6.3 Comparing Fitness Weights 52
5.6.4 Evaluating the Performance of the Generated Test Suites . . . 52
5.6.5 Comparing the Genetic Algorithm to the Hill Climbing

Algorithm for Generating Cost-Effective Test Suites 53

5.7 Recommendations for Testers . 54

6 CONTRIBUTIONS AND FUTURE WORK 56

6.1 Contributions . 56
6.2 Future Work . 57

BIBLIOGRAPHY . 59

v

LIST OF TABLES

5.1 Subject Application Characteristics 29

5.2 Subject User Session Set Characteristics 29

5.3 Genetic Operator Thresholds . 32

5.4 Original Test Suite Coverage . 47

5.5 Coverage for Test Suites Generated by the Genetic Algorithm . . . 48

5.6 Coverage for Test Suites Generated by the Hill Climbing Algorithm 48

vi

LIST OF FIGURES

2.1 A Sample HTTP Request from the Ancient Graffiti Project 5

2.2 A Sample User Session from a Google Search 6

2.3 An Overview of the Genetic Algorithm Process 7

2.4 The Model for the Genetic Algorithm 8

3.1 Modeling Web Applications Test Suites for the Genetic Algorithm . 15

3.2 An Overview of the Genetic Algorithm For Generating Test Suites . 16

3.3 An Overview of the Mutation Operator 17

3.4 An Overview of the Variable Length Mutation Operator 17

3.5 An Overview of the One-point Genome-level Crossover Operator . . 19

3.6 An Overview of the Two-point Chromosome-level Crossover Operator 19

4.1 An Overview of the Evaluation Framework 22

5.1 Baseline Graphs for the Generated Test Suites. The x-axis is the
generation number. The y-axes for the graphs in the left column are
test suite’s number of requests (left y-axis) and percent RRN
coverage (right y-axis), and the y-axis for the graphs in the right
column is the test suite’s fitness. 36

5.2 A Comparison Parent Selection Algorithms for logic fall2010. The
x-axis is the generation number. The y-axes are test suite’s number of
requests (left y-axis) and percent RRN coverage (right y-axis). . . . 37

5.3 A Comparison Parent Selection Algorithms for logic 2012 2013. The
x-axis is the generation number. The y-axes are test suite’s number of
requests (left y-axis) and percent RRN coverage (right y-axis). . . . 38

vii

5.4 A Comparison Parent Selection Algorithms for logic winter2016. The
x-axis is the generation number. The y-axes are test suite’s number of
requests (left y-axis) and percent RRN coverage (right y-axis). . . . 39

5.5 A Comparison Genetic Operator Thresholds for logic 2012 2013. The
x-axis is the generation number. The y-axes are test suite’s number of
requests (left y-axis) and percent RRN coverage (right y-axis). . . . 40

5.6 A Comparison the Maximum Number of Generations for
logic 2012 2013. The x-axis is the generation number. The y-axes are
test suite’s number of requests (left y-axis) and percent RRN
coverage (right y-axis). 41

5.7 A Comparison the Tournament Sizes for logic 2012 2013. The x-axis
is the generation number. The y-axes are test suite’s number of
requests (left y-axis) and percent RRN coverage (right y-axis). . . . 42

5.8 A Comparison Fitness Weights for logic 2012 2013. The x-axis is the
generation number. The y-axes are test suite’s number of requests
(left y-axis) and percent RRN coverage (right y-axis). 43

5.9 A Comparison of Test Suite Generation by the Genetic and the
Hill-Climbing Algorithms. The x-axis is the generation number. The
y-axes are test suite’s number of requests (left y-axis) and percent
RRN coverage (right y-axis). 45

viii

ABSTRACT

As web applications increase in popularity, the need for extensively testing the

web applications has become greater than ever. Developers are increasingly pressed to

ensure that the number of faults in a web application is kept to a minimum to avoid

a potential loss in the number of users of the web application. Despite the increasing

importance of identifying faults and fixing them, testing web applications continues

to be a very time-consuming task. As such, there exists a dire need for automating

the process of testing to reveal potential faults. One such approach to testing is the

generation of test suites representative of actual user behavior. However, systematic,

empirical evaluation of test suites continues to be a largely unexplored area.

I propose the use of the genetic algorithm to generate test suites for web ap-

plications by first parsing user access logs to create a set of user sessions, and then

modeling those user sessions as genes, chromosomes, and genomes to be used by the

genetic algorithm to generate test suites representative of user behavior. I also explore

the various possibilities with a genetic algorithm approach to generating test suites,

and assess what effect tuning various parameters, such as genetic operator thresholds,

has on the test suite produced at the end of the evolutionary run. I develop and use

a framework to empirically evaluate the cost-effectiveness of the generated test suites

output by the genetic algorithm. The framework employs code coverage as an eval-

uation metric to assess the quality of the generated test suites in particular, and the

efficacy of the testing approach in general. I juxtapose the use of the genetic algorithm

to generate test suites against another well-known, comparable approach. My results

indicate that using the genetic algorithm can decrease the size of the test suite signifi-

cantly while maintaining most of the testing functionality. In other words, the genetic

algorithm can be used to create cost-effective test suites for web applications.

ix

Chapter 1

INTRODUCTION

A web application is a software that usually resides on a remote server. Users

typically access the software through a web browser over the Internet, although some

applications do run only on local networks known as Intranets (e.g. a web application

to log work hours for a company). Most web applications serve content that is dynamic

in nature, i.e. the content that users see depends on certain states of the application.

For example, users for a video streaming service have different recommended videos

dependent on factors including their subscribed channels, their geographic locations,

and their histories of videos watched, among other things. Web applications may also

serve content that is static, i.e. the same content is delivered to every user, such as

a log-in page for an application. Unfortunately, the dynamic and complex nature of

web applications renders testing the applications more difficult than testing standalone

software applications.

Web applications are increasingly becoming an integral part of our lives. We

rely on web applications for day-to-day tasks, such as online banking, video stream-

ing, social networking, and cloud computing. As our dependence on web applications

increases, so does the need for web applications that are free of faults. According to

an estimate, software testing process ”accounts for approximately 50% of the cost of

a software system development” [9]. This figure is likely higher for web applications

testing for two reasons. Firstly, this estimate made in 1998 may not hold today, as

software has gotten increasingly complex and so have software requirements. Secondly,

this figure, which was estimate for software in general, may be an underestimation

for web applications due to the increased difficulty associated with web applications

testing.

1

Given the increase in popularity of web applications, and the greater need for

extensively testing web applications, developers are increasingly pressed to ensure that

the number of faults in a web application is kept to a minimum to avoid a potential

loss in the number of users of the web application. It comes as no surprise then

that efforts have been made to automate the process of web applications testing to

minimize the time and resources spent in testing. An effective approach to testing web

applications is the use of user sessions to generate test cases representative of actual

user behavior [3]. However, user sessions can be very large, and this trait results in

large test suites with redundant test cases. Attempts have been made to rectify this

limitation, but to little effect. Peng et al. attempted to generate test cases using

evolutionary computation [12], but their approach suffered from several limitations.

In Peng et al.’s approach, the transition relations between pages and requests not

present in the original user session set would not be covered in the generated test suite,

regardless of the number of generations allowed for the evolutionary run. Additionally,

this approach did not explore test case generation using other possibilities with the

genetic algorithm, such as more sophisticated parent selection algorithms or different

levels of crossover or mutation operations. Peng et al. also evaluated their approach

on one small application using less than 100 user sessions–a sample size so small that

the results might not be scalable.

I propose generating cost-effective test suites using the genetic algorithm by

first parsing user access logs to create a set of user sessions, and then modeling those

user sessions as genes, chromosomes, and genomes. I then use the genetic algorithm

on an initial population of genomes over a maximum number of generations to gener-

ate a representative test suite for web application testing. I also explore what effect

tuning various parameters, such as mutation and crossover thresholds and the number

of generations, has on the test suite produced at the end of the evolutionary run. Ad-

ditionally, I also implement different levels of genetic operations, such as genome-level

and chromosome-level crossover operations, and sophisticated mutation operations, to

assess the effect this variation has on the generated test suites.

2

I develop and use an extensible framework to empirically evaluate the effec-

tiveness of the generated test suites output by the genetic algorithm. The framework

employs code coverage as an evaluation metric to assess the quality of the generated

test suites.

My contributions in this thesis:

1. explored test-suite generation by leveraging the genetic algorithm,

2. modeled test suites for web applications as components for the genetic algorithm:
genes, chromosomes, and genomes,

3. implemented several genetic operators and parent selection algorithms to manip-
ulate the genetic information of the test suites modeled as genomes,

4. produced an extensible evaluation framework that can be used to empirically
evaluate testing approaches, and plan on making the evaluation framework avail-
able on GitHub for a straightforward install and an easy use,

5. empirically evaluated the test suites generated by the genetic algorithm, using
code coverage as evaluation metrics, to assess their cost-effectiveness,

6. recommended the best parameters to tune the genetic algorithm for cost-effective
test suite generation based on the results of my experimental study.

The organization of this thesis is as follows:

• Chapter 2 provides background knowledge about web applications, web applica-
tions testing, and genetic algorithms. It also outlines open problems involving
testing and evaluating web applications.

• Chapter 3 describes my process for generating test suites for web applications
using the genetic algorithm, including the motivation behind the process, the
model for the algorithm, and the implementation details.

• Chapter 4 delineates the design and implementation details for the evaluation
framework, including the motivation behind the metrics used for the evaluation.

• Chapter 5 explores my experimental study, including the research questions that
I explore, the hypotheses I present, and the a discussion of the methodology I
follow and the results I obtain.

• Chapter 6 discusses my contributions to this thesis in detail, the conclusions I
draw, and the future work that I recommend.

3

Chapter 2

BACKGROUND

This chapter contains background information on web applications, web appli-

cations testing, and genetic algorithms. It also discusses some of the open problems in

testing web applications.

2.1 Web Applications

A web application is a complex, dynamic client-server computer program that

a user can access over the internet through a web browser. To interact with a web

application, the client’s web browser makes a HyperText Transfer Protocol (HTTP)

request over a network to the server hosting the application. When the application

server receives an HTTP request, it sends back an appropriate response to the client,

typically in the form of a HyperText Markup Language (HTML) document. The

client’s web browser can process the HTML response and display it in a user-friendly

format to user. The response may either be static, i.e., the content is the same for all

users, or it may be dynamic, i.e., the content may depend on the user input or the

state of the application.

Web applications are generally considered to be dynamic in nature. The content

displayed by a web application in the web browser is often dependent on several factors.

For example, the information being displayed may be pulled from a database. As the

data is updated in the database, the content displayed to the user would reflect those

changes. The content displayed may also depend on other factors, e.g., the type of

user (administrators see information that typical users would not) and the location of

the user (some content may only be accessible in certain regions). The database and

4

Figure 2.1: A Sample HTTP Request from the Ancient Graffiti Project

other data that a web application depends on is referred to as persistent state, in that

the state outlives the process that initiated it.

When a user communicates with a web application, the application server

records the user request and other identifying information, such as the user’s IP ad-

dress and the type of request, in an access log. Among other things, a user request

contains the date and time of request, the type of request (typically a GET or POST),

the path and name of the resource being requested, and the names and values of any

parameters being passed. The access log contains all requests made by all users to the

web application. Figure 2.1 breaks down the components of a user request made to

the Ancient Graffiti Project1, a web application.

A user session is the sequence of requests made by one user at one time to the

application. Figure 2.2 shows a snapshot of a typical user session. User sessions are

parsed from access logs, which contain all requests to the web application.

2.2 Testing Web Applications

Given their dynamic nature, composition of multiple components, and dis-

tributed architecture, it is more complicated to test web applications than standalone

1 The Ancient Graffiti Project is a digital resource for locating and studying handwrit-
ten inscriptions of the early Roman empire.

5

http://ancientgraffiti.org

Figure 2.2: A Sample User Session from a Google Search

computer applications for functionality. Several web applications testing approaches

have been shown to be effective at revealing faults in functionality [10], but each ap-

proach has its limitations.

Past attempts at using user sessions to test web applications have proven to be

promising [3][4][2][16]. Employing user sessions in testing approaches is an effective

technique because user sessions are representative of actual user behavior, and as such,

can serve as useful test cases. This is because mimicking user behavior tends to produce

test cases that focus on the parts of the web application that are used frequently, and

as such, can be more effective at revealing higher priority faults (i.e., the faults that

users are likely to encounter).

Another approach to testing web applications involves the use of bots, such

as web crawlers, to browse through web pages. The use of crawlers to automate the

process of testing web applications to reveal faults has also proven to be effective [14]

at revealing faults in web applications. However, test cases from this approach do not

represent how the web application is used on a daily basis by users since this approach

merely visits pages in certain sequences to reveal faults.

Other widely-used post-deployment approaches to web applications testing in-

clude load testing [8][17], which assesses the robustness of the web application when

6

Figure 2.3: An Overview of the Genetic Algorithm Process

it is under heavy traffic (e.g., an abnormal number of users accessing the web applica-

tion’s resources simultaneously), and crowd-sourced testing, which involves a number

of testers from different places—instead of the software developers—testing the web

application application [21].

2.3 Genetic Algorithms

Genetic algorithms are adaptive problem-solving tools, primarily used to solve

optimization problems. In a process that attempts to mimic the biological evolution

process, genetic algorithms take as input a population of random individuals—also

known as genomes—and manipulate these individuals over the course of the evolu-

tionary run to achieve a certain goal. Similar to biological evolution, the individuals

with high fitness survive and reproduce in genetic algorithms, attempting to produce

individuals with higher fitness values. This process is continued until the goal is ac-

complished or a certain maximum number of generations is achieved, at which point

the fittest individual is output. Genetic algorithms employ fitness functions, parent

selection algorithms, and various genetic operators to accomplish this task. Figure 2.3

7

Figure 2.4: The Model for the Genetic Algorithm

delineates the steps involved in a genetic algorithm evolutionary process, which are

discussed in detail in the remainder of this section.

2.3.1 Model

A genetic algorithm attempts to achieve a specified goal by evolving genomes to

produce higher fitness genomes. To do so, a genetic algorithm framework requires that

the input to the genetic algorithm be modeled as genes, chromosomes, and genomes.

A gene serves as the building block of a genome. A sequence of genes represent a

chromosome. A genome, then, encodes a sequence of chromosomes. Figure 2.4 outlines

the model for the genetic algorithm.

The set of all genomes for a generation is known as the population for the gener-

ation. A genetic algorithm framework maintains a pool of chromosomes throughout the

evolutionary process. This pool is used to initialize the random population of genomes

before beginning the evolution and to swap random chromosomes into a genome during

a mutation operation (see 2.3.4).

8

2.3.2 Fitness Functions

To evolve genomes, the concept of fitness for individuals in the problem’s do-

main needs to be introduced. A fitness function is used as a metric to evaluate the

strength of the candidacy of individuals to pass their genetic information to subsequent

generations. A good fitness function assigns high fitness values to individuals that pos-

sess desirable behavior and penalizes the fitness of individuals that do not. This ensures

that, for the most part, better characteristics are passed on as the evolution proceeds,

while the less desirable ones are discouraged.

2.3.3 Parent Selection Algorithms

Parent selection algorithms work in conjunction with the fitness function to

select an individual with genetic information that would benefit future generations

of individuals. There are several parent selection algorithms that may be used with

genetic algorithms, and each comes with its own benefits and drawbacks. Some of the

more common parent selection algorithms are listed below:

1. Random Selection: This algorithm simply selects an individual from the pop-
ulation as the parent, regardless of the individual’s fitness. Despite its runtime
complexity of O(1) and its potential for increases in genetic diversity, this al-
gorithm does little to steer the population towards individuals of higher fitness
through the evolutionary process.

2. Tournament Selection: This algorithm selects a pool (or a sub-population) of
n random individuals and returns the best individual in that pool. This algorithm
has a runtime complexity of O(n) and, as such, is the most efficient approach
for selecting a parent besides random selection. The simplicity of its algorithm,
coupled with the remarkable extent to which it selects a parent with desirable
characteristics, makes it a widely chosen default parent selection algorithm for
genetic algorithm frameworks.

3. Roulette Selection (Fitness Proportionate Selection): This algorithm
functions as a roulette wheel in that each individual’s probability of being se-
lected is proportional to its fitness. Therefore, higher fitness individuals have
a greater chance of being selected. However, there is still a chance that lower
fitness individuals might get selected.

9

4. Pareto Selection: This algorithm makes use of Pareto fronts, as opposed to
the fitness function, to select individuals as parents. Given a set of fitness ob-
jectives, an individual Pareto-dominates another if the former does not perform
worse than the latter in all fitness objectives and performs better in at least one
fitness objective [13]. The Pareto front is first computed as the set of all individ-
uals that are not Pareto-dominated. A parent is then selected at random from
the Pareto front. Pareto selection is well-suited to applications attempting to
optimize multiple objectives for the individuals during the evolutionary process.

5. Truncation Selection: This algorithm orders individuals by fitness, and a pro-
portion p of the fittest individuals are selected and reproduced 1/p times. Doing
so ensures that only the fittest individuals pass genes to future generations and
the genes from the less fit individuals are lost in evolution. Truncation selection
is less sophisticated than most other parent selection algorithms but has less to
offer and is therefore not widely used in practice.

6. Reward-based Selection: This algorithm requires a concept of rewards–which
could be closely tied to fitness–for individuals. In this algorithm, the probability
of an individual to be selected is proportional to its cumulative reward, which
can be computed as the sum of the rewards of the genome and its parent(s).
This algorithm works similarly to roulette selection, except that it also considers
the parents’ reward values in determining the individual’s reward. This allows
a weak child of strong parents to still have a fair chance at being selected as a
parent in hopes for passing the desirable genes from the parents. This algorithm
provides greater potential to increase the diversity of a population, at the expense
of having to define a reward metric for the individuals.

2.3.4 Genetic Operators

Genetic operators manipulate the individuals’ genetic information to guide the

population towards a solution to the problem. Some of the more common genetic

operators are listed below:

1. Mutation: This operator selects a chromosome at random from a genome and
replaces it with a randomly selected chromosome from the pool of chromosomes.

2. Variable Length Mutation: Previously shown to be successful [6], this op-
erator makes a single pass through a genome, inserting a random number of
chromosomes, selected from the pool of available chromosomes, to the genome.
It then makes another pass through the genome and selects and deletes a random
number of chromosomes. The resulting variable-length genome is then returned.

3. One-point Crossover: This operator picks a split point for two genomes and
slices the genomes at that point. It then combines the first part of the first

10

genome and the second part of the second genome to create a child. Similarly, it
also combines the second part of the first genome and the first part of the second
genome to create another child.

4. Two-point Crossover: This operator works in very much the same way as
one-point crossover, except that it picks two split points—which are very likely
different—and slices the genomes at their respective split points. It then combines
a part of one genome and a part of another genome to create a child, using
the other parts of the genomes to create the second child. Unlike its one-point
counterpart that preserves the genome length after the crossover, the two-point
crossover operator often results in variable length genomes after the crossover.
Allowing the crossover operator to manipulate genome length offers the possibility
of shortening genome length during the crossover, thereby increasing the fitness
of the genome even more.

2.3.5 Applying the Genetic Algorithm to Software Testing

Employing the Genetic Algorithm for software testing is not a novel concept.

For example, Srivasta and Kim proposed a method for optimizing software testing

efficiency by employing the genetic algorithm to identify the most critical path clusters

in a program [20], while Alander et al. used the genetic algorithm to automatically

generate test data to find problematic situations, such as processing time extremes [1].

Peng and Lu [12] first proposed using the genetic algorithm to generate test

suites from user sessions, using roulette selection as the parent selection algorithm

and simple mutation and crossover as the genetic operators. Their findings indicated

that using the genetic algorithm approach is more effective than the traditional user

session based testing and attains higher path coverage and fault detection rate with a

smaller sized test suite. However, for the approach proposed by Peng and Lu, transition

relations between pages and requests not present in the original user session set would

not be covered in the generated test suite, regardless of the number of generations

allowed for the evolutionary run. Additionally, Peng and Lu did not explore test

suite generation using other possibilities with the genetic algorithm, such as more

sophisticated parent selection algorithms or different levels of crossover or mutation

operations. They evaluated their approach on one small application using less than

100 user sessions.

11

2.4 Open Problems

As web applications increase in popularity, the need for extensively testing web

applications has become greater than ever. Developers are increasingly pressed to

ensure that the number of faults in a web application is kept to a minimum. Despite the

increasing importance of identifying faults and fixing them, testing web applications

continues to be a very time-consuming task. As such, there exists a dire need for

automating the process of testing to reveal potential faults. Employing efficacious

strategies to generate test suites for web applications, and then empirically evaluating

them for effectiveness could significantly reduce the time it takes to identify faults in

web applications. Unfortunately, little work has been done on evaluating test suites in

particular, and testing strategies in general, for testing efficacy.

2.4.1 Problems in Testing Web Applications

Given the complex and dynamic nature of web applications, the process of test-

ing web applications is more complicated than testing a standalone user application.

Developers often need to ensure cross-browser compatibility to make the web appli-

cation easier to access. This requirement has the potential to introduce unexpected

complications (e.g., different browsers may render HTML in slightly different ways, so

faults hidden in one browser may be revealed in another). Given that a web applica-

tion has different components (e.g., the server, the clients, and the data store) working

together, any of which may be physically separated from the rest, a fault in a single

component is often difficult to isolate and fix. Furthermore, responses from web appli-

cations are dynamic and dependent on the application’s state. As such, it is virtually

impossible to probe the application with all possible user inputs on all possible states

and test all possible responses from the application. This limitation necessitates the

generation of test suites that represent normal use-case scenarios for the web appli-

cation to ensure that parts that users rely on do not crash upon daily use. In other

words, the test suite needs to at least test what the users did with the web application

and what they are likely to do.

12

2.4.2 Evaluating Web Application Testing Approaches

Systematic, empirical evaluation of test suites continues to be a largely under-

explored area. While there have been attempts to define metrics that can be used to

assess the quality of test suites, this area is still relatively underdeveloped.

The reasons behind the lack of the existence of good evaluation frameworks for

web applications testing are largely tied to the difficulty involving evaluating test suites

for web applications. Most web applications are large—both in terms of the amount of

back-end code that goes into the web application and in terms of the size of the user

base of the web application. To make evaluating test suites even more complicated,

virtually all web applications are dependent on certain configuration files and other

software dependencies. Furthermore, the software dependencies may have different

requirements, such as the version of the dependency.

To effectively evaluate test suites, a software developer would need to deploy

the web application on a server separate from the actual production server so as not

to interfere with the normal functionality of the web application. The application’s

persistent state (e.g., a database holding the information used by the application)

would need to be initialized before the application can run and the test suites are

executed. Once the process of execution of test suites is complete, the results of the

executions would be evaluated. These steps are often done multiple times, so it is of

paramount importance that they be handled automatically with minimal input from

the software developer.

13

Chapter 3

GENERATING TEST SUITES FOR WEB APPLICATIONS USING
THE GENETIC ALGORITHM

I apply the genetic algorithm to generate test suites for web applications using

logged user sessions from web applications. My goal is to generate cost-effective test

suites better suited for exposing functionality faults.

3.1 Motivation

Genetic algorithms are adaptive problem-solving tools primarily used to solve

optimization problems, as discussed in section 2.3. Previous studies have demonstrated

that search-based techniques have shown promise when applied to software testing [20].

However, previous attempts at generating test suites using the genetic algorithm failed

to exploit the wide realm of possibilities that genetic algorithm offers, such as more

sophisticated parent selection algorithms or genetic operators, to generate test suites.

One such attempt involved evaluating the approach on one small application using less

than 100 user sessions [12]. My proposed model addresses these limitations. Addition-

ally, since I parse logged user sessions to web applications to generate test cases for the

starting point of the genetic algorithm, the test suites produced are all representative

of actual user behavior. This approach could greatly reduce the size of the test suite–

when compared to the original set of user logged user sessions–while retaining most of

the testing functionality.

3.2 Model

To model the research problem of generating test suites for the genetic algorithm,

I break a web application test suite into the genetic algorithm input components: genes,

14

Figure 3.1: Modeling Web Applications Test Suites for the Genetic Algorithm

chromosomes, and genomes. A gene encodes a single user request. A chromosome

encodes a user session, i.e., a sequence–or an ordered list–of genes. A genome encodes

a test suite, i.e., a sequence of chromosomes. Figure 3.1 highlights this relationship

between genes, chromosomes, and genomes for web application test suites.

3.3 Implementation

The following section discusses the implementation-specific details of my genetic

algorithm framework. I use Python 3.6 to implement the framework for test suite

generation. Figure 3.2 outlines the genetic algorithm framework for generating test

suites for web applications.

3.3.1 Initialization

The user accesses to the subject applications are converted into user sessions

using Sprenkle et. al framework [19]. I then parse these user sessions to produce a

user session–or chromosome–pool to be input to the genetic algorithm framework. To

initialize an evolutionary process, I generate genomes from this pool of chromosomes.

15

https://www.python.org/downloads/release/python-360/

Figure 3.2: An Overview of the Genetic Algorithm For Generating Test Suites

By default, each genome is set to comprise of a hundred chromosomes, while chromo-

somes have a variable number of genes. These genomes serve as the parent population

for the zeroth generation, or the start point, of the evolutionary process.

3.3.2 Fitness Function

As discussed in Section 2.3.2, a fitness function is used as a metric to evaluate the

strength of the candidacy of genomes to pass their genes to the subsequent generations.

A good fitness function should ensure that fit genes are preserved in an evolutionary

run, while the unfit ones are discarded.

For the purpose of finding faults in a web application, a good test suite should

provide extensive coverage of the code and must do efficiently (in a reasonable amount

of time). As such, I use two metrics to evaluate the fitness of genomes: resource plus

parameter names—or RRN—coverage and genome length. RRN coverage is defined as

the percentage of a web application’s unique requests (as represented by the request

type, resource name, and parameter names) that a test suite executes [19]. Genome

16

Figure 3.3: An Overview of the Mutation Operator

Figure 3.4: An Overview of the Variable Length Mutation Operator

length is defined as the total number of genes, i.e., user requests, in a genome. I then

combine these metrics into the fitness function used by the genetic algorithm:

fitness = w1 ∗ coverage + w2 ∗
1

log(length)
(3.1)

where w1 and w2 are weights used to provide more emphasis on one fitness metric over

the other. Increasing the ratio w1 : w2 rewards coverage over length, while decreasing

the ratio rewards length over coverage. A tester can tune these weights to find the

optimal values of w1 and w2 that result in the most effective test suite.

3.3.3 Genetic Operators

As discussed in section 2.3.4, genetic operators are used to manipulate either

chromosome sequences in a genome or gene sequences in a chromosome to steer the

population of genomes towards a global optimum. In doing so, the genetic operators

also attempt to increase the population’s genetic diversity.

I use five different genetic operators. Each operator has its own benefits, and

certain operators thrive more in select circumstances over the others:

17

• Mutation: Mutation can be useful for increasing diversity of the genomes by
potentially pulling a chromosome from the user session pool that is not already
represented in the current population. This could help the resulting test suite get
higher resource coverage, since a resource that was not previously being accessed
by a genome might be accessed after the genome mutation. Figure 3.3 describes
the mutation operator.

• Variable Length Mutation (VLM): This operator provides greater potential
for increasing diversity compared to regular mutation because every pass through
the genome swaps out multiple chromosomes instead of just one. However, this
operator is computationally more expensive than regular mutation. Figure 3.4
describes the variable length mutation operator.

• One-point Genome-level Crossover: This operator is conceptually simpler
to understand and keeps the genome lengths consistent, making the results easier
to interpret. It is useful for crossing the chromosomes of two different genomes
to yield a different chromosome sequence, allowing for greater potential to reveal
faults. Figure 3.5 outlines the one-point genome-level crossover operator.

• Two-point Genome-level Crossover: This operator has the potential to de-
crease the genome length, creating the possibility for smaller genomes (and hence,
test suites) that provide similar code coverage. It is important to note that two-
point genome-level crossover is equally likely to increase genome length, but the
fitness function would penalize an increase in genome length, so the increase will
likely not affect the final test suite—unless it increases coverage sufficiently.

• Chromosome-level Crossover: This operator introduces the potential to cre-
ate new chromosome sequences not present in the user session pool. This results
in pages being visited and resources being requested in new sequences when
the test suite is executed for evaluation, and this introduces more potential
to reveal faults. However, chromosome-level crossover can be computationally
more expensive, since the operator tries to find matching starting and ending
points for chromosomes for crossover (see Section 2.3.4). Figure 3.6 outlines
the two-point chromosome-level crossover. Note that the two-point genome-level
crossover works in very much the same way, except it operates on genomes, not
chromosomes.

3.3.4 Parent Selection Algorithms

As discussed in section 2.3.3, parent selection algorithms work in conjunction

with the fitness function to select a parent with genes that would benefit future gen-

erations of genomes. Doing so ensures that good genes are passed on to the final test

suite, and the bad ones are discarded in the evolution process.

18

Figure 3.5: An Overview of the One-point Genome-level Crossover Operator

Figure 3.6: An Overview of the Two-point Chromosome-level Crossover Operator

I use three different parent selection algorithms out of the set of parent selection

algorithms mentioned in section 2.3.3:

• Tournament Selection: This is a simple selection algorithm that is used as the
default for most genetic algorithmic frameworks. It is a straightforward algorithm
that does not attempt complex calculations to pick a parent, but at the same
time performs better than sorting the population by the genomes’ fitness values
and only picking the best ones. In picking a pool, or a sub-population, from the
population of genomes, tournament selection attempts to maintain some form
of genetic diversity by potentially allowing less fit genomes to be selected for
mutation or crossover.

• Roulette Selection (Fitness Proportionate Selection): This algorithm,
while still avoiding complex calculations, preserves genetic diversity better than
tournament selection. Since every individual’s probability of being selected for
mutation or crossover is dependent on its fitness value, roulette selection has the
potential to pick a less fit genome. In contrast, tournament selection always picks
the best genome out of a pool of genomes. By picking a less fit genome, roulette
selection allows for the possibility of preserving a good gene in a bad genome–this
gene may prove useful later in the evolutionary run.

• Pareto Selection: This selection algorithm works well for optimizing multiple
objectives, as is the case for test-suite generation, where we want test suites with

19

high code coverage and few resources executed. Pareto selection has been shown
to perform well for multi-objective optimization [15], eliminating the need for a
specific fitness function dependent on fitness weights to balance the prioritization
of one objective over another.

3.3.5 Summary

This chapter highlighted how I apply the genetic algorithm to generate test

suites using logged user sessions from web applications and delineated my goal to

generate cost-effective test suites for web applications. The next chapter discusses

my methodology for evaluating the test suites generated by the genetic algorithm

framework.

20

Chapter 4

THE EVALUATION FRAMEWORK

I present an extensible evaluation framework that can be used to empirically

evaluate web application test suites and testing approaches. This chapter contains the

details about the design and the implementation of my evaluation framework.

4.1 Design

Due to the difficulty involving evaluating testing approaches for web applications

testing (see section 2.4.2), there is a lack of frameworks that automate the process of

evaluating test suites for web applications. Much of the problems in evaluating these

test suites stem from the repetitive nature and the complications involving the tasks

that need to be performed before a test suite can be evaluated. As such, automating

the steps involved in evaluating test suites for a web application was an important

requirement of the design of the evaluation framework.

At a high level, a single command starts the evaluation of test suites. This

command executes a script used to automate the steps involved in evaluating web

applications testing. The script starts a web application server locally to deploy a

copy of the application and then executes the test suite. Before this can happen,

however, there are certain tasks that need to be performed, including instrumentation

of the source code, setting up the application’s configuration files, and initializing the

application’s persistent state. Once this setup for the evaluation is done, the framework

can proceed to executing test suites, before the results of the execution can be processed

and displayed for evaluation. Figure 4.1 shows an overview of the evaluation framework.

It should be noted that there is an initial setup cost when the evaluation frame-

work is initialized to be run on a new machine. This setup requires changes to the

21

Figure 4.1: An Overview of the Evaluation Framework

scripts and configuration files, since the directories of the installation of the web

server or the Java Runtime Environment (JRE), among other things, may be machine-

dependent. However, the benefits of the evaluation framework far outweigh the costs

of setting it up to work with an application.

4.1.1 Configuring the Application

Virtually all web applications are dependent on configuration files (see sec-

tion 2.4.2). To ensure correct functionality of a web application, it is necessary to

initialize the configuration files prior to running the application. Ideally, configuring

the web application should be an automated process. In reality, however, some con-

figurations are machine-dependent, e.g., setting up the class paths for the application.

As such, these configurations need to be handled manually by the tester, which adds

to the overhead cost of evaluating web applications.

My evaluation framework attempts to address this limitation by semi-automating

the process of configuring an application. Prior to evaluating a new application, the

22

tester must modify the scripts used to run the evaluation process to set any configura-

tions that may be needed, e.g., updating the class paths. Once this is done, however,

the tester can use the same script multiple times without manually changing configu-

ration files.

4.1.2 Initializing the Persistent State

The dynamic content generated by a web application is often largely dependent

on the persistent state of the application, as discussed in section 2.4.1. The persistent

state of a web application includes the database and other states that outlive the

processes that initiated the states, and are external to the application itself.

Without the initialization of the persistent state of the web application, most

of the executed test suites will result in error pages (e.g., HTTP Status 500) or pages

with error messages (e.g., “Login failed”), and the test suites will not be able to be

fairly evaluated. Given that the tester has gone through the initial steps of getting

the persistent state of an application, storing it in a data store on the machine, and

updating the evaluation scripts to point to the correct configuration files, my evaluation

framework automates the process of setting up the persistent state for the application

to run. While the initial steps to configuring the scripts for the persistent state result

in an increased overhead cost of setting up the evaluation framework, the benefits to

this approach far outweigh the drawbacks. The tester never has to worry about setting

up, for example, the database for the web application, each time he or she executes

test suites. This automation ends up saving the time and effort put into preparing the

application before test suites can be executed.

4.1.3 Instrumenting the Source Code

Instrumentation, a widely used technique in software development, testing, and

profiling, involves adding extra code to an application to monitor some behavior of the

application. This monitoring can be static (i.e., performed at compile-time) or dynamic

(i.e., performed at run-time) [7]. Instrumentation is common in evaluating software

23

testing techniques using code coverage because it provides the ability to monitor the

lines and branches of code covered by the execution of test cases.

Prior to deploying an application to the local web application server, my eval-

uation framework can instrument the Java class files and the JavaServer Pages (JSP)

files of the web application to provide code coverage on the back-end source code as

well as the code for the web pages. Requiring no user input and reporting any errors

as they occur, the instrumentation process is entirely automated.

4.1.4 Executing the Test Suites

Once the the application is instrumented and configured and its persistent state

is initialized, it can be deployed to the server for the test suites to be executed. The

automated scripts that drive my evaluation framework take care of this process in its

entirety so that the tester only has to execute one command for the test suites to

be executed. To execute the test suites, my evaluation framework uses a replay tool

that simulates the execution of each user request to the web application and saves the

response from the web server in a specified directory.

During the execution of the test suites, the instrumented source code is moni-

tored for code coverage, and the coverage data are written in real time to a specified

directory as the code is executed.

4.2 Implementation

This section delineates the implementation-specific details of the evaluation

framework that I present.

I plan on making the evaluation framework available in a GitHub repository for

easy installation on new machines. Provided that any necessary dependencies (e.g.,

JRE, Apache Tomcat, Apache Ant, etc.) have been installed on the machine, the

framework can be set up and ready to run in a matter of minutes.

24

4.2.1 Automating the Execution of Test Suites

The evaluation framework uses scripts to automate the entire process of set-

ting up the web application, executing test suites, and evaluating the results. More

specifically, I use Bourne Again Shell (Bash) scripts to execute test suites for subject

applications. The Bash scripts take as arguments the names of the application and the

test suite to be executed. When a script is executed, it sets up certain parameters and

the source and destination directories. It then instruments and compiles the source

code, initializes the persistent state, and starts the Apache Tomcat server after deploy-

ing the application. To execute the test suites, it uses a Java replay tool to execute

each test case on the application and save the response. It finally creates and saves the

coverage reports for the tester to process.

4.2.1.1 Instrumenting the Source Code

My evaluation framework uses the freely available, open-source Atlassian Clover

to instrument the Java and JSP source code to monitor and report code coverage.

I use Apache Ant, a tool for automating software build processes, to define and

produce target builds for the web application. This automated process of building in-

corporates the instrumentation features provided by Clover to instrument and compile

the application (i.e., compile the .java files and .jsp files to .class files) to prepare it for

deployment.

4.2.1.2 Initializing the Persistent State

The process of initializing the persistent state of a web application usually in-

volves setting up the database for the application. Certain applications may require

more states to be set up, e.g., setting up Elasticsearch for a search engine application.

To set up the database for a web application, I use the object-relational database

management system PostgreSQL. The process of setting up the database involves ob-

taining a data dump of the database on the production server (i.e., the server hosting

the actual web application). I then use automated scripts to create a database on the

25

https://www.atlassian.com/software/clover
https://ant.apache.org/
https://www.elastic.co/
https://www.postgresql.org/

machine running the evaluation framework, and use the original data dump to replicate

the data store for the web application for the execution of the test suites. These scripts

are called by the main driver script so there is no need for the tester to manually set

up the data store.

4.2.1.3 Running the Web Applications Server

I use Apache Tomcat 8 as the web applications server to host the subject ap-

plications being tested. The automated Bash driver script is responsible for shutting

down Tomcat if it is already running, and then starting Tomcat once the web applica-

tion has been deployed. As is the case with the other stages of the evaluation of test

suites, no user input is required for this process.

4.2.1.4 Executing the Test Suites

To execute the test suites, I use a replay tool written in Java that establishes an

HTTP connection to the server on the given host and port number before sequentially

executing the test suites on the application. The replay tool, built on HttpClient,

executes a test case by making a request to the server (typically, a GET or POST)

and then saving the response from the server in a specified directory. This process is

continued until all test cases in the test suite have been executes and their responses

saved.

Since the source code is already instrumented at this point, each request made

by the replay tool updates the code coverage data of the application as lines of code

are executed.

4.2.2 Evaluating the Results

Once the execution of the test suites is complete and the code coverage data

written to a directory, the tester has two options to evaluate the results. I use Apache

Ant (see section 4.2.1.1) to generate two targets for the coverage reports: one as an

XML report (the default format) and the other as an HTML report.

26

https://tomcat.apache.org/download-80.cgi
http://hc.apache.org/httpclient-3.x/tutorial.html

If the tester wishes to view a graphical representation of the coverage data, he

or she can view the HTML version of the report. This report includes the overall

code coverage, as well as other helpful information such as the top project risks, the

most complex packages and classes, and the least tested methods. It displays various

code metrics including the number of branches, statements, methods, classes, lines of

code, etc. The tester also has the option to browse the packages and classes to view

individual coverage percentages as well as a graphical representation of what lines of

code were covered and what lines of code were not. This view of the report is helpful

for the tester to glance at and superficially evaluate the test suite without needing to

analyze large quantities of data.

Alternatively, if the tester wishes to analyze the report programmatically, there

is also an Extensible Markup Language (XML) report that contains the coverage data

in a format that is easier for a computer to understand.

I chose these formats for ease of use depending on the circumstances in which

the reports are being evaluated. The XML report makes it easy for another automated

script to process the report, while the HTML report makes it easy for a human user

to view and assess the results from the test suites. Even though I generate the reports

in XML and HTML formats, Clover’s ease of use and readily available documentation

makes it very straightforward to modify the Ant scripts to generate reports in different

formats, e.g., as a PDF or a JavaScript Object Notation (JSON) file.

4.2.3 Summary

This chapter highlighted my methodology for evaluating the test suites gener-

ated by the genetic algorithm framework, and discussed the implementation specifics

of the evaluation framework that I produced. The next chapter goes over the details of

my experimental study, including my research questions, my experimental procedure,

the analysis of my results, and conclusion of my findings.

27

Chapter 5

EXPERIMENTAL STUDY

In this chapter, I discuss the research questions I seek to answer experimentally,

and then delineate the experiments I use to verify my hypotheses. I then provide

an evaluation and analysis of the experimental results. I also provide any threats to

validity, as well as a brief conclusion of the results.

5.1 Research Questions

The overarching research question I seek to answer with my thesis is can I

generate cost-effective test suites using my genetic algorithm framework? To answer

this question, I need to first answer the following questions:

• Question 1: What parent selection algorithm provides the best results when
used in the genetic algorithm framework to generate test suites for web applica-
tions?

• Question 2: What genetic operators are most useful in this application of the
genetic algorithm? What parameters (e.g. genetic operator thresholds, maximum
number of generations, etc.) should be used to tune the framework for test suite
generation?

• Question 3: What is the effect of fitness weights on the quality of the final test
suite?

• Question 4: How well does the generated test suite perform on the evaluation
framework, when compared to the original user session set?

• Question 5: How does the genetic algorithm approach to generate test suites
for web applications compare to using the hill-climbing algorithm1 to generate
test suites?

1 The hill-climbing algorithm is an iterative algorithm that starts with an arbitrary
solution to a problem, and then makes iterative changes to the solution until a certain
maximum number of iterations is reached. (See Section 5.3.3 for the hill-climbing
implementation details.)

28

Table 5.1: Subject Application Characteristics

Subject Application Branches Statements Methods Classes Files NCLOC
Logic2 4,606 16,634 1,273 157 156 25,639
Logic5 5,722 20,330 1,438 177 174 30,977

Table 5.2: Subject User Session Set Characteristics

Subject Subject Application Test Cases Total Requests Unique Requests
logic fall2010 Logic2 485 49431 138

logic 2012 2013 Logic5 2839 122149 181
logic winter2016 Logic5 1460 63164 303

5.2 Subject Applications

The subject applications that I use to evaluate my approach are several versions

of an online symbolic logic tutorial, which I will refer to as Logic. The applications

are written in Java using servlets and JSPs. Logic2 is an earlier version of the Logic

application, while Logic5 is an updated version of the Logic application. Table 5.1

summarizes the subject applications’ characteristics. For the code metrics, NCLOC

refers to the non-comment lines of code (i.e., the number of lines of code that are not

documentation).

5.3 Methodology

This section discusses my experimentation process. To analyze the results from

the experiments, I examine the trends spanning across the entire population of genomes

for the entire iteration of the genetic algorithm evolutionary process. This allows me

to understand the general trends that the populations of genomes follow, making it

easier to verify hypotheses and draw conclusions.

5.3.1 Gathering User Sessions

The user accesses to the subject applications are converted into user sessions

using Sprenkle et al.’s framework [19]. Prior to processing the access logs, accesses from

IP addresses known to be bots or web crawlers are removed to reduce noise from non-

human users and to ensure that the parsed user sessions are better representations of

29

user behavior. The parsing process involves recording web server accesses, generating

user sessions from the access logs [18], removing static user sessions (i.e., user sessions

that only request static web pages, and therefore do not access application code), and

generating replayable user sessions.

The user sessions for Logic were collected during typical use of the application

in academic semesters in the years 2010, 2012-2013, and 2016. Table 5.2 shows the

characteristics of the sets of the collected user sessions. As indicated in the table, the

subject logic fall2010 were collected when the Logic2 version of the application was

deployed, while the subjects logic 2012 2013 and logic winter2016 were collected while

Logic5 was deployed.

5.3.2 Evaluation and Analysis Metrics

I use the two metrics discussed in Section 3.3.2 to evaluate the fitness of indi-

vidual genomes: RRN coverage and genome length. These metrics combine to form

the fitness of a genome as follows:

fitness = w1 ∗ coverage + w2 ∗
1

log(length)
,

where w1 and w2 are fitness weights.

To evaluate a genome population, I define a diversity metric as the number of

unique genomes in a population. Diversity is imperative to the success of a genetic

algorithm evolutionary run because it allows the genetic algorithm to explore an array

of different genetic compositions.

5.3.3 Generating Test Suites

After parsing the access logs into user sessions, the user sessions are encoded as

objects representing genes, chromosomes, and genomes, which are the input to test-

suite generation.

To answer my research questions about generating test suites, I varied certain

parameters while keeping others fixed. Due to the random nature of genetic algorithm

30

evolution processes, I ran each experiment twice. For both experiments, I calculated the

percentage difference between the fitness values—as defined by the fitness function—of

the fittest genomes at the end of the two experiments. If the percentage difference

was greater than 3%, indicating that the results from the two experiments differed

significantly, I re-ran the experiment a third time, ensuring that the third experiment

was consistent with one of the first two experiments.

I use the following as baseline measures:

• Tournament selection as the parent selection algorithm with a pool size of 5
genomes: across implementations of genetic algorithm applications, tournament
selection is regarded as a good default parent selection algorithm [11].

• Coverage and length fitness weights of 1 and 5 respectively: the results from
my preliminary experiments suggested these fitness weights serve as reasonable
default values.

• A population size of 50 genomes evolved for 200 generations : in having to choose
between (a) a large population of genomes evolved for a smaller number of gener-
ations and (b) a smaller population evolved over a large number of generations,
the latter option appears to better reap the benefits of evolution provided by the
genetic algorithm.

• Mutation and one-point genome-level crossover thresholds2 of 0.3 and 0.7 respec-
tively: these genetic operator thresholds often function as defaults for preliminary
implementations of genetic algorithm applications.

For each experiment, I varied only one type of parameter to shed some light

over the research question in consideration.

Question 1: What parent selection algorithm provides the best results when

used in the genetic algorithm framework to generate test suites for web applications?

Across all subject user session sets, keeping other parameters at the baseline

measures, I ran experiments with tournament selection, Pareto selection, and roulette

(fitness-proportionate) selection as the parent selection algorithms. Note that while

2 A threshold of x, where 0 ≤ x ≤ 1, for a genetic operator denotes the probability of
the operator being selected to genetically modify a parent genome. The thresholds for
all genetic operators must sum to 1.

31

Table 5.3: Genetic Operator Thresholds

Experiment Mutation VLM One-point Two-point Genome Two-point Chromosome
1 0.30 0.00 0.70 0.00 0.00
2 0.15 0.15 0.70 0.00 0.00
3 0.30 0.20 0.50 0.00 0.00
4 0.30 0.00 0.50 0.20 0.00
5 0.30 0.00 0.50 0.00 0.20
6 0.15 0.15 0.40 0.15 0.15

tournament selection and roulette selection both employ the fitness function to select

parents, Pareto selection makes use of Pareto fronts (see Section 3.3.4) to select parents,

using the fitness function only in the last generation to output the fittest test suite.

Question 2: What genetic operators are most useful in this application of the

genetic algorithm? What parameters (e.g. genetic operator thresholds, maximum num-

ber of generations, etc.) should be used to tune the framework for test suite generation?

To find the effect of varying the genetic operator thresholds on the quality of the

resulting test suite, I experimented with numerous combinations of genetic operator

thresholds. Table 5.3 shows the sets of thresholds used for my experiments. Note that

for the genetic operators, VLM refers to Variable Length Mutation, One-point refers to

one-point genome-level crossover, Two-point Genome refers to two-point genome-level

crossover, and Two-point Chromosome refers to two-point chromosome-level crossover.

To investigate how varying the number of generations affects the quality of the

test suite, I ran experiments with limits of 100, 200, and 400 generations on each user

session set, with 50 genomes in the population. While it would be most beneficial to

run the genetic algorithm for more generations with more genomes in a population,

the choices between population size and number of generations are often limited by the

processing power and memory available. As such, to increase the number of genomes

in the population, the maximum number of generations would need to be decreased,

and vice versa.

To study the effect of changing the pool size for tournament selection on the

resulting test suites, I varied the pool size between 2, 5, and 10. Note that the selection

32

process’ pool size is only relevant when tournament selection is the parent selection

algorithm; Pareto selection and roulette selection processes do not depend on pools of

genomes for parent selection.

Question 3: What is the effect of fitness weights on the quality of the final test

suite?

To evaluate the effects of varying the fitness weights on the resulting test suites,

I ran experiments with the following pairs of fitness weights, keeping other parameters

at the baseline measure:

(cvg weight, len weight) ∈ {(1, 1), (1, 2), (2, 1), (1, 5), (0, 1), (1, 0)}.

Question 5: How does the genetic algorithm approach to generate test suites for

web applications compare to using the hill-climbing algorithm to generate test suites?

To compare the genetic algorithm and the hill-climbing approaches to generat-

ing test suites, I implemented a hill-climbing framework that, much like the genetic

algorithm framework, initializes a user session pool from parsed user sessions and then

creates a random parent genome from the user session pool. It then performs a muta-

tion to the genome at every iteration and calculates the fitness of the child genome—

using the same fitness function as the genetic algorithm framework. If the fitness of the

child genome is greater than the fitness of the parent genome, the child is appointed

as the new parent; otherwise, the parent remains the same for the next iteration.

For each subject user session set, I ran hill-climbing experiments with fitness

weights w1 : w2 of 1 : 5 for a maximum of 10,000 iterations. Assuming that a ge-

netic algorithm population of 50 genomes is run for 200 generations (i.e., the baseline

measures are used for the genetic algorithm framework experiments), an average of

50 × 200 = 10, 000 genetic operations will be performed on this population over the

course of the evolutionary run. This is computationally equivalent to performing one

mutation on one genome for 10,000 iterations, to allow for fair comparison between the

two approaches to generating test suites.

33

5.3.4 Analyzing the Resulting Test Suites

To analyze the test suites output from the genetic algorithm framework, I used

the metrics discussed in Section 5.3.2 to assess the quality of the test suites. For each

experiment:

1. I computed the length and RRN coverage values for each genome in a population
for each generation. These values are written to two their respective .csv files
and then subsequently used to generate graphs to analyze the results. I plot the
length and RRN coverage values against the corresponding generation number
to understand how the genetic algorithm framework prioritizes lower length over
higher RRN coverage values as the fitness weights change.

2. I computed the fitness value, as defined by the fitness function, for each genome
in a population for each generation. Like the RRN coverage and length values for
populations, the fitness values are also written out to a .csv file. I then generate
the graph of the overall fitness values of a population against the number of
generations. While the fitness graphs are less telling in terms of how the quality
of the genomes in a population changes as the evolutionary run proceeds, they
do provide a good visualization of the overall gains in fitness accomplished by
the genetic operators.

It is important to note that the magnitude of the fitness value is not significant

in its own right; it is only used to compare the fitness of one genome over another. For

example, using large values for the fitness function weights w1 and w2 results in a large

magnitude of the fitness values for each genome, but this magnitude does not imply

that the genomes are more fit than, say, the genomes whose fitness values are obtained

by using smaller values for the fitness weights. For this reason, the fitness graphs for

a population are less telling than the corresponding length and RRN coverage graphs

for the population.

5.3.5 Evaluating the Resulting Test Suites

I designed and implemented an evaluation framework (see Chapter 4) to assess

the quality of the resulting test suites. The evaluation framework executes a suite

of test cases on a locally deployed, instrumented version of the web application to

measure the code coverage of the test suite on the web application. The design and

34

implementation specifics of the evaluation framework are discussed in detail in sections

4.1 and 4.2.

For each experiment that I run, I output the best genome in the population–in

terms of fitness values, as selected by the fitness function–after the last generation as

a test suite for the web application. This is done by looping through the chromosomes

of the genome, and for each chromosome, every gene belonging to that chromosome

is written to a .tc file as a user request. As such, each chromosome is output as a

.tc file, and the collection of all .tc files output serves as the executable test suite for

evaluation purposes. This executable test suite is then executed on the instrumented

web application and the code coverage data are recorded. These code coverage data

can be reported in HTML or XML formats, depending on the user’s requirements.

Since I run a number of experiments to generate test suites, varying a particular

parameter for each experiment, there were a large number of test suites that could be

evaluated on the evaluation framework. However, tuning the various parameters of the

genetic algorithm framework yields different results. Due to the numerous combinations

of parameters, I chose to focus on the subset of the experiments that yielded the best

test suites in terms of the RRN coverage and length metrics, and then evaluate this

subset of the test suites on the evaluation framework.

5.4 Threats to Validity

A potential source of threats to validity in my experimental results would be the

relatively small size of the subject applications. While the applications are not small

per se, they do not compare well to the size–both in terms of the code and the user

base–of the larger, more widely used web applications out there, e.g. Kelley Blue Book,

Ebay, etc. Additionally, the number of unique requests across the subject applications

was small, implying that there is a large amount of redundant code between the versions

of the application. To combat this threat, I will evaluate a larger web application with

a wider user base in my future work.

35

(a) Len-Cvg Graph for logic fall2010 (b) Fitness Graph for logic fall2010

(c) Len-Cvg Graph for logic 2012 2013 (d) Fitness Graph for logic 2012 2013

(e) Len-Cvg Graph for logic winter2016 (f) Fitness Graph for logic winter2016

Figure 5.1: Baseline Graphs for the Generated Test Suites. The x-axis is the generation
number. The y-axes for the graphs in the left column are test suite’s number of requests
(left y-axis) and percent RRN coverage (right y-axis), and the y-axis for the graphs in
the right column is the test suite’s fitness.

5.5 Results

5.5.1 Generating Test Suites

Figure 5.1 shows the graphs for the test suites generated using the baseline

values for the genetic algorithm framework parameters. Each graph uses box plots to

illustrate the distribution of genome length and the RRN coverage values across the

population for every generation. Each box represents the genomes between the 25th

36

(a) Tournament Selection (b) Pareto Selection

(c) Roulette Selection

Figure 5.2: A Comparison Parent Selection Algorithms for logic fall2010. The x-axis
is the generation number. The y-axes are test suite’s number of requests (left y-axis)
and percent RRN coverage (right y-axis).

and 75th percentile for each heuristic. The whiskers show the range of all the values

but the outliers, which are marked with circles. The left column of plots shows the

distribution of length (in orange) and RRN coverage (in green) for each genome in

a population for every generation. For each length and RRN coverage box plot, the

x-axis represents the number of generations. For the graphs in the left column, the

left and right y-axes represent the genome length and RRN coverage as a percentage,

respectively. These graphs provide a template for comparing with the resultant test

suites of other generation techniques.

5.5.1.1 Comparing Parent Selection Algorithms

To answer Question 1, I analyze the results from different parent selection algo-

rithms, depicted in figures 5.2 through 5.4.

37

(a) Tournament Selection (b) Pareto Selection

(c) Roulette Selection

Figure 5.3: A Comparison Parent Selection Algorithms for logic 2012 2013. The x-axis
is the generation number. The y-axes are test suite’s number of requests (left y-axis)
and percent RRN coverage (right y-axis).

As illustrated by the trends in the graphs, tournament selection generally per-

formed better than Pareto and roulette selection, reaching a higher RRN coverage and

a lower length when compared to the other parent selection algorithms. For instance,

for the logic 2012 2013 user session set, tournament selection got close to 96% RRN

coverage on average, while Pareto selection and roulette selection got approximately

82% and 76% on average respectively. Similar trends were observed across the other

user session sets. Roulette selection also had the worst performance across all subject

user session sets when it comes to the lengths of the genomes across populations.

The box plots show a tendency of Pareto selection to result in populations

with a higher spread of RRN coverage values, and a tendency of roulette selection to

result in populations with a higher spread of length values. These higher spreads can

be attributed to the selection algorithms’ contributions towards maintaining a higher

genetic diversity among populations.

38

(a) Tournament Selection (b) Pareto Selection

(c) Roulette Selection

Figure 5.4: A Comparison Parent Selection Algorithms for logic winter2016. The x-
axis is the generation number. The y-axes are test suite’s number of requests (left
y-axis) and percent RRN coverage (right y-axis).

5.5.1.2 Comparing Genetic Operators and Genetic Algorithm Parameters

To answer question 2, I analyze the results from the experiments varying the

genetic operator thresholds (see table 5.3).

Figure 5.5 shows the resulting graphs for logic 2012 2013. The other subject

user session sets followed similar trends.

As indicated by figures 5.5b, 5.5c, and 5.5f, the use of variable length mutation

significantly increases the spread of the RRN coverage and length values across pop-

ulations. This increase in spread shows up as red and green dots on the box plots as

“outliers” to the data. These results are consistent with my initial hypothesis: that

variable length mutation provides greater potential to increase genetic diversity that

regular mutataion. The lack of large spreads of data for experiments corresponding to

figures 5.5a, 5.5d, and 5.5e could be attributed to the use of genetic operators that do

little to maintain genetic diversity.

39

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

(e) Experiment 5 (f) Experiment 6

Figure 5.5: A Comparison Genetic Operator Thresholds for logic 2012 2013. The x-
axis is the generation number. The y-axes are test suite’s number of requests (left
y-axis) and percent RRN coverage (right y-axis).

Figure 5.5d shows that using two-point genome level crossover generally results

in slightly smaller values of genome length across the populations. This is because the

fitness function will naturally favor genomes in which the crossover replaces a large

chromosome with a slightly smaller one, ideally not at the expense of losing RRN

coverage. However, it is likely that in the process of replacing larger chromosomes

with smaller ones, chromosomes that access a certain resource not accessed by other

chromosomes might be replaced. As such, it was often observed that the use of two-

point chromosome-level crossover resulted in test suites with smaller lengths at the

40

(a) 100 generations (b) 200 generations

(c) 400 generations

Figure 5.6: A Comparison the Maximum Number of Generations for logic 2012 2013.
The x-axis is the generation number. The y-axes are test suite’s number of requests
(left y-axis) and percent RRN coverage (right y-axis).

expense of slightly lower RRN coverage. Figure 5.5e shows that the use of two-point

chromosome-level crossover does not do much to produce a test suite with better RRN

coverage compared to a test suite produced using the baseline measures. It should be

noted that the key idea behind the use of two-point chromosome-level crossover is to

create new gene sequences, i.e. chromosomes, not already present in the user session

pool. This introduces the potential for greater code coverage when the resulting test

suite is evaluated on the evaluation framework.

I also analyze the results from the experiments varying the maximum number of

generations. Figure 5.6 displays the results for these experiments on logic 2012 2013;

the other subject user session sets exhibited similar trends.

As is evident in the graphs, running the genetic algorithm for a greater number

of generations results in test suites that not only have higher RRN coverage but also

have a significantly smaller length.

41

(a) Tournament Size = 2 (b) Tournament Size = 5

(c) Tournament Size = 10

Figure 5.7: A Comparison the Tournament Sizes for logic 2012 2013. The x-axis is the
generation number. The y-axes are test suite’s number of requests (left y-axis) and
percent RRN coverage (right y-axis).

Furthermore, the results from the experiments varying the tournament size for

tournament selection were analyzed. Figure 5.7 shows the results for these experiments

on logic 2012 2013. Other subject user session sets followed similar trends. Figures

5.7a and 5.7c show that as the tournament size gets larger, the spread of the length and

RRN coverage values across populations decreases. With a large tournament pool for

parent selection, the likelihood for selecting the same parent multiple times increases,

since the chances of this parent’s presence in the pool are higher. This in turn decreases

the genetic diversity of the populations since the same parents are allowed to produce

multiple children. Since a tournament pool size of 2 increases this spread of values too

much, while a pool size of 10 decreases this spread too much, a pool size of 5 appears

to be a reasonable compromise.

42

(a) w1 : w2 = 1 : 5 for logic 2012 2013 (b) w1 : w2 = 1 : 1 for logic 2012 2013

(c) w1 : w2 = 0 : 1 for logic 2012 2013 (d) w1 : w2 = 1 : 0 for logic 2012 2013

(e) w1 : w2 = 2 : 1 for logic 2012 2013 (f) w1 : w2 = 1 : 2 for logic 2012 2013

Figure 5.8: A Comparison Fitness Weights for logic 2012 2013. The x-axis is the
generation number. The y-axes are test suite’s number of requests (left y-axis) and
percent RRN coverage (right y-axis).

5.5.1.3 Comparing Fitness Weights

To answer question 3, I analyze the results from different experiments varying

the fitness weights. Figure 5.8 shows the box plot graphs for these experiments. Similar

trends were observed for the experiments for logic fall2010 and logic winter2016.

Figure 5.8c exhibits the length and RRN coverage trends for w1 : w2 = 0 : 1.

As is evident in the graph, using a fitness weight w1 = 0, which is equivalent to not

considering the RRN coverage of a genome when calculating its fitness, results in a

43

final test suite that, while having a small length, does little to cover the resources of

the application. As such, the test suite would be fairly ineffective when it comes to

testing capabilities and exposing faults, since a large proportion of the application’s

resources would be left untested. Similarly, Figure 5.8d, which exhibits the length and

RRN coverage trends for w1 : w2 = 1 : 0, shows that not considering the genome length

when calculating fitness values results in a final test suite that, while having a high

RRN coverage, also has a large number of test cases.

Figures 5.8b, 5.8e, and 5.8f exhibit the length and RRN coverage trends for

w1 : w2 values of 1 : 1, 2 : 1, and 1 : 2 respectively. As is evident in the box plot

graphs, trying to balance w1 : w2 such that slightly higher emphasis is put on length

results in test suites that have smaller length with little to no compromise on the RRN

coverage.

5.5.1.4 Comparing the Genetic Algorithm to the Hill Climbing Algorithm

for Generating Cost-Effective Test Suites

To answer question 5, for each subject user session set, I compare the results from

the experiments corresponding to the baseline parameters for the genetic algorithm

to the results from running the hill-climbing algorithm for 10,000 iterations. Since

the baseline parameters run the genetic algorithm on a population of 50 genomes for

200 generation, this approximately results in 10,000 genetic operations made on the

genomes. In contrast, the hill-climbing algorithm is allowed to run for 10,000 iterations

to allow for computational fairness.

Figure 5.9 compares the length and RRN coverage graphs for test suite genera-

tion by the genetic algorithm and the hill-climbing algorithm approaches. The graphs

corresponding to the hill-climbing framework are line graphs, and not box plots, since

the hill-climbing algorithm on only one genome per iteration, and not a population of

genomes. Figures 5.9b, 5.9d, and 5.9f indicate that the hill-climbing algorithm rapidly

converges to a genome with a small length, and then works around this genome to get

a higher RRN coverage by performing mutations. By contrast, the genetic algorithm

44

(a) GA Framework for logic fall2010 (b) HC Framework for logic fall2010

(c) GA Framework for logic 2012 2013 (d) HC Framework for logic 2012 2013

(e) GA Framework for logic winter2016 (f) HC Framework for logic winter2016

Figure 5.9: A Comparison of Test Suite Generation by the Genetic and the Hill-
Climbing Algorithms. The x-axis is the generation number. The y-axes are test suite’s
number of requests (left y-axis) and percent RRN coverage (right y-axis).

converges to a population with smaller length genomes gradually, as indicated by fig-

ures 5.9a, 5.9c, and 5.9e. The biggest drawback of the hill-climbing algorithm is its

likelihood of getting stuck in local optima and not being able to guide the solution

space towards a global optimum. This is consistent with the results that I observe

for hill-climbing experiments, where once the algorithm converges to a genome with a

small length, it is unable to reverse this change in search of a genome that would allow

for 100% RRN coverage. As a result, I did not observe any hill-climbing experiments

45

attain 100% RRN coverage across all subject user session sets. On the other hand,

with the genetic algorithm, getting 100% RRN coverage was possible for each subject,

provided that the parameters were tuned.

46

Table 5.4: Original Test Suite Coverage

Subject RRN Coverage Length Code Coverage
logic fall2010 100% 49431 51.9%

logic 2012 2013 100% 122149 58.0%

5.5.2 Evaluating Test Suites

To answer question 4, I assess the performance of a range of the test suites from

the generation phase worth evaluating on the evaluation framework. As mentioned in

section 5.3.5, I chose to not execute all generate test suites on the evaluation framework

due to time constraints. This evaluation approach suffices to answer the research ques-

tion adequately: it provides a comparison between the code coverage results obtained

from lower quality test suites, average quality test suites, and high quality test suites.

Note that the generated test suites with a low RRN coverage were not evaluated on the

framework, since they fail to even access a majority of the resources of the application,

and as such, would not make for good test suites.

I first executed the entire user session sets separately on the evaluation frame-

work to get a benchmark for the code coverage metric. Table 5.4 shows the overall

code coverage obtained by executing all test cases present in the user session for each

user session set. The generated test suites are then evaluated and the resulting code

coverage compared with the benchmark values. To answer the research question, for

each test suite being evaluated, I consider the RRN coverage, length, and code cover-

age of the test suite. I use these values to subsequently calculate the length reduction,

the percentage decrease in the length of the test suite when compared to the original

user session set, and the code coverage reduction, the percentage decrease in the code

coverage of the test suite when compared to the benchmark coverage, of the test suite.

Table 5.5 shows the evaluation results for the test suites generated by the genetic al-

gorithm, while table 5.6 shows the evaluation results for the test suites generated by

the hill climbing algorithm run for 10,000 iterations with fitness weights of 1 : 5.

For the logic fall2010 user session set:

47

Experiment RRN Coverage Length Code Coverage Length Reduction Code Coverage Reduction
1 91.30% 11473 45.0% 76.79% 13.29%
2 98.55% 5729 45.6% 88.41% 12.14%
3 99.27% 1459 49.3% 97.00% 5.00%
4 100% 2187 50.5% 95.57% 2.70%

(a) logic fall2010 on Logic2
Experiment RRN Coverage Length Code Coverage Length Reduction Code Coverage Reduction

1 89.50% 5449 44.9% 95.54% 22.58%
2 93.92% 7318 48.3% 94.01% 16.72%
3 100% 5144 53.0% 95.79% 8.62%

(b) logic 2013 2013 on Logic5

Table 5.5: Coverage for Test Suites Generated by the Genetic Algorithm

Table 5.6: Coverage for Test Suites Generated by the Hill Climbing Algorithm

Subject RRN Coverage Length Code Coverage Length Reduction Code Coverage Reduction
logic fall2010 99.27% 1377 49.1% 97.21% 5.39%

logic 2012 2013 98.34% 4085 47.5% 96.66% 18.10%

• Experiment 1 corresponds to the test suite generated using the baseline parame-
ters with roulette selection as the parent selection algorithm. These parameters
result in a test suite with both a relatively lower RRN coverage and a relatively
larger length.

• Experiment 2 corresponds to the test suite generated using the baseline parame-
ters with a maximum of 50 allowed generations for the evolutionary run. While
these parameters result in a final test suite with a relatively higher RRN coverage,
the test suite also has a moderately large length.

• Experiment 3 corresponds to the test suite generated using the baseline parame-
ters with a maximum of 400 allowed generations for the evolutionary run. These
parameters not only result in a final test suite with a very high RRN coverage,
but also a test suite with a very small length.

• Experiment 4 corresponds to the test suite generated using the baseline parame-
ters with fitness weights of 1 : 1 for the evolutionary run. These parameters result
in a final test suite with the highest possible RRN coverage and a relatively small
length.

For the logic 2012 2013 user session set:

• Experiment 1 corresponds to the test suite generated by running the genetic
algorithm for 100 generations, with fitness weights w1 : w2 = 1 : 1, and the other
parameters at the baseline measure. While these parameters result in a test suite
with a small length, the test suite also has a relatively poor RRN coverage.

48

• Experiment 2 corresponds to the test suite generated using the baseline parame-
ters with a maximum of 50 allowed generations for the evolutionary run. These
parameters result in a test suite with a relatively high RRN coverage but a rela-
tively larger length.

• Experiment 3 corresponds to the test suite generated using the baseline parame-
ters with a maximum of 400 allowed generations for the evolutionary run. These
parameters result in a final test suite with the highest possible RRN coverage of
100% and a very small length.

As is evident by the results shown in tables 5.5 and 5.6, both approaches to

generating test suites for web applications are effective in terms of reducing the number

of test cases while keeping most of the testing functionality. For instance, table 5.5a

shows that for experiment 4, the length of the test suite was reduced to 2,187 down from

49,431 while the code coverage obtained by the two test suites went down from 51.9%

on the larger test suite (i.e., the entire user session set) to 50.5% on the generated test

suite. Similarly, table 5.5b shows that for experiment 3, the length of the test suite was

reduced to 5,144 down from 122,149 while the code coverage obtained by the two test

suites went down from 58.0% on the larger test suite to 53.0% on the generated test

suite. Both of these results small losses in code coverage–and hence, testing efficacy–for

enormous decreases in the number of test cases.

Test suites generated using the hill-climbing approach tended to get lower code

coverage when compared to test suites generated using the genetic algorithm. This

difference can be attributed to the hill-climbing algorithm’s tendency to converge on

a genome with a small length, and failing to ever achieve 100% RRN coverage in the

process. The genetic algorithm, by contrast, was able to get 100% RRN coverage for

all subject user session sets.

5.6 Discussion

The overarching question that I hoped to answer with my experimental study

was: can the genetic algorithm be used to generate cost-effective test suites for web

applications? Due to the nature of the genetic algorithm, any output from a genetic

algorithm application is subject to randomness–much like the output from hill-climbing

49

algorithm applications. However, which the hill-climbing algorithm ensures that the

fitness of a genome never gets worse from one iteration to the next, the genetic al-

gorithm has no such checks in place. With a genetic algorithm framework, it is very

much possible that the fitness of the genomes in a population gets progressively worse.

Therefore, it is imperative that the right combination of genetic operator thresholds

and genetic algorithm parameters (including fitness weights) be used to encourage the

fitness of genomes in a population to increase, or at worst, stays the same. Note that

even then, there is no guarantee that the genetic algorithm with lead the populations

towards a higher average fitness.

However, during my experimental study, I discovered that it was never the case

that the average fitness of a population of genomes, for experiments run on a subject

user session set, always decreases as the evolution proceeds. If certain combinations of

the genetic algorithm parameters failed to yield desirable results, it was invariably the

case that changing the parameters resulted in better results that were comparable to,

if not better than, the results obtained from the hill-climbing approach.

5.6.1 Comparing Parent Selection Algorithms

My experimental results indicate that roulette selection tends to have the worst

performance across all subject user session sets. While it is the case that roulette

selection–much like Pareto selection–significantly increased the genetic diversity across

populations, it generally resulted in both lower RRN coverage and larger lengths in

the resulting test suites. On the other hand, Pareto selection performed significantly

better in terms of the length of the genomes across populations, often outperforming

tournament selection in the length metric. Tournament selection, however, was un-

doubtedly the best in getting higher RRN coverage–a trait that is the most desirable

in a good quality test suite. Pareto selection will likely outperform tournament selection

if more than two objectives are being optimized, since Pareto selection is inherently

a multi-objective optimization parent selection algorithm. However, for the current

50

implementation of the genetic algorithm framework, tournament selection seems to

exhibit the most promising results.

5.6.2 Comparing Genetic Operators and Genetic Algorithm Parameters

My experimental results indicate that, while there is no singleton set of genetic

operator threshold values that works to generate the best quality cost-effective test

suite across all subject user session sets, there are trends that can be extrapolated. For

example, the use of variable length mutation significantly increases the spread of RRN

coverage and length values across populations, i.e., increases the genetic diversity of

the populations in an evolutionary run. The greater the threshold of variable length

mutation, the greater the increase in genetic diversity of populations. Every other

genetic operator does little to diversify the population in an evolutionary run. The

use of two-point genome-level crossover generally decreases the genome lengths across

populations by swapping larger chromosomes in a genome with smaller ones—often

at the expense of losing RRN coverage slightly. The use of two-point chromosome-

level crossover does little to produce a test suite with either a greater RRN coverage

or a shorter length, compared to the baseline measures. However, its potential of

introducing new gene sequences not present in the user session pool is reason enough

to not discard two-point chromosome-level crossover from being considered a worthy

genetic operator. It just means that smaller threshold values for two-point chromosome

level crossover should be used in an evolutionary run.

On the contrary, my experimental study demonstrates that there are certain

genetic algorithm parameters that appear to yield remarkable results across all subject

user session sets. For instance, from my experiments varying the maximum number of

generations while keeping the other parameters at the baseline measure, it was evident

that running the genetic algorithm for a larger number of generations invariably in-

creases the quality–both in terms of RRN coverage and genome length–of the resulting

test suite (Figure 5.6). Furthermore, my experiments varying the tournament pool

51

size3 clearly indicated that as the tournament size gets larger, the spread of the length

and RRN coverage values decreases (Figure 5.7). This is because with larger tourna-

ment pools, the likelihood of the same parent’s being selected for reproduction multiple

times increases, and this in turn decreases the diversity among the populations. The

tournament size should be considered in conjunction to the number of genomes in a

population. If a larger number of genomes are present in a population, a larger tourna-

ment pool size can be used. However, I observed that with 50 genomes per population,

a tournament pool size of 5 resulted in the best quality test suites.

5.6.3 Comparing Fitness Weights

Based on the results from my experiments varying the fitness weights while

keeping the other genetic algorithm parameters at the baseline measure, it appears

that using a fitness weight w1 = 0, i.e. not considering the RRN coverage of genomes,

when running the genetic algorithm results in test suites that, while having small

lengths, have very poor RRN coverage. Such test suites would be fairly ineffective at

exposing faults in the web application, because they would fail to even access most of

the resources of the web application. On the contrary, using a fitness weight w2 = 0, i.e.

not considering the length of the genomes, when running the genetic algorithm results

in test suites that have high RRN coverage values but large length values. Across all

of my experiments, I found out that trying to balance w1 : w2 such that a slightly

higher emphasis is put on length results in test suites that have smaller length with

often no compromise on the RRN coverage (Figure 5.8). As such, fitness weights of

w1 : w2 = 1 : 5 appear to have the best performance across all subject user session sets.

5.6.4 Evaluating the Performance of the Generated Test Suites

The results from my evaluation experiments were instrumental in answering the

question of whether the genetic algorithm can be used to generate cost-effective test

3 Tournament sizes are only applicable to evolutionary runs where tournament selec-
tion is the parent selection algorithm.

52

suites for web applications. My experimental results from the evaluation phase clearly

indicate that while both approaches to generating test suites for web applications are

very effective when it comes to reducing the number of test cases while minimizing

losses in testing functionality, the best test suites generated using the genetic algorithm

outperformed the best test suites generated using the hill-climbing algorithm. This

difference could be attributed to the hill-climbing algorithm’s failure to ever achieve

100% RRN for a subject user session set. I was able to substantially reduce the number

of test cases in a test suite using the two approaches with minimal decreases in code

coverage, indicating that both approaches can successfully generate cost-effect test

suites. Furthermore, it can easily be concluded that the genetic algorithm produces test

suites that perform better at code coverage when executed on the subject application.

5.6.5 Comparing the Genetic Algorithm to the Hill Climbing Algorithm

for Generating Cost-Effective Test Suites

My experimental results indicate that hill-climbing algorithm rapidly converges

to a genome with a small length, and then works around this genome with mutations

to get a higher RRN coverage. On the other hand, the genetic algorithm gradually

explores the search space and converges to populations with a small length. These

results indicate that the hill-climbing algorithm is very prone to getting stuck in local

optima and failing to reach a global optimum while exploring a variety of genetic

compositions. Once the hill-climbing algorithm has fallen into a local optimum, it is

impossible to recover from this change, since previous genomes–along with their genetic

information–are discarded from one iteration to the next. As a result, the hill-climbing

algorithm failed to achieve 100% RRN coverage across all subject user session sets. This

was also reflected in the relatively poorer performance of hill-climbing generated test

suites when the test suites were evaluated on the evaluation framework. In contrast,

the genetic algorithm succeeded in achieving 100% RRN coverage for every subject for

particular combinations of the genetic algorithm parameters.

53

5.7 Recommendations for Testers

An analysis of the results from my experiments allows me to understand the gen-

eral trends across genetic algorithm populations and recommend the best parameters

to tune the genetic algorithm for cost-effective test suite generation. For future testers

using this framework to generate and evaluate test suites for a subject application, I

have the following recommendations:

• If you value high RRN coverage in your resulting test suite more than a small
length, use tournament selection as the parent selection algorithm, since it out-
performs both Pareto and roulette selection. If you value a small length in your
resulting test suite more than high RRN coverage, use Pareto selection as the
parent selection algorithm. Furthermore, if tournament selection is used, use a
tournament pool size that is approximately 1

10
times the size of the population,

as this allows for the ideal amount of genetic diversity across populations.

• Allowing the evolutionary process to run for a large number of generations al-
most always results in a higher-quality test suite, both in terms of length and
RRN coverage. However, you must exercise caution when increasing the number
of generations, as each increase of 100 generations on a population size of 50
results in 50 × 100 = 5, 000 additional genetic operations. There is a practical
limit to the number of generations allowed, depending on the machine executing
the genetic algorithm, because these genetic operations can be processing- and
memory-intensive. Since an increase in the number of generations by a factor of 2
requires a decrease in the population size by a factor of 2, the right balance needs
to be maintained between the number of generations and the population size.
My experimental results suggest that a population of 50 genomes be allowed to
evolve for 200 generations to produce a good quality test suite and for 400 gener-
ations to produce an exceptional quality test suite. Since test suite generation is
often not time-sensitive, running the genetic algorithm for 400 generations with
a population of 50 genomes is recommended.

• Unfortunately, there are no universal values of genetic operator thresholds that
perform well across all subjects. I recommend trying several different combi-
nations until a combination that produces a good quality test suite is found.
Often, a mutation threshold of 0.3 and a crossover threshold of 0.7 is a good
starting point and will result in a decent test suite. If the initial evolutionary
run does not result in a test suite with high RRN coverage, I recommend in-
creasing the threshold for variable length mutation to allow for greater genetic
diversity among populations. If the initial evolutionary run results in a test suite
with a large length, I recommend increasing the threshold of two-point genome-
level crossover. Keep in mind, however, that too large a value of the two-point

54

genome-level crossover threshold, while producing a shorter test suite, can hurt
the RRN coverage of the test suite.

• For the fitness weights, I recommend using a ratio of 0.1 ≤ w1 : w2 ≤ 1. In other
words, use fitness weights that provide less emphasis on RRN coverage compared
to length. While this may seem counter-intuitive at first—a high RRN value is
arguably of utmost importance in a test suite—my experimental results suggest
that using a higher value of w2 than w1 results in test suites that have smaller
length with little to no compromise on RRN coverage. You must be careful not
to make w2 too large with respect to w1 because that could indeed result in a
test suite with a short length but a poor RRN coverage. I recommend using
w1 : w2 = 1 : 5 to get the optimal performance out of the genetic algorithm.

• For evaluating test suites, I recommend finding parameters to the genetic algo-
rithm that provide approximately 100% RRN coverage, even if that is at the
expense of a slightly larger test suite. A good test suite should at least cover
most, if not all, of the resources of an application. It is usually not worth eval-
uating test suites with a low RRN coverage, since such test suites will almost
definitely perform poorly in terms of code coverage.

• If you are getting poor code coverage on test suites that have relatively high
RRN coverage, the web application might be experiencing persistent state errors.
Check the log files for the web application server to see if any exceptions that
indicate persistent state (e.g., database) errors are reported. Additionally, for
database errors, if the evaluation framework indicates that a certain request in
a test case involving an entry in the database resulted in an error page, you
could manually navigate the database to ensure that the entry being referenced
is present in the database. Provided that the persistent state of the application
is initialized correctly, a generated test suite with a high RRN coverage should
result in code coverage that is comparable to the original set of user sessions used
by the genetic algorithm to produce the test suite.

55

Chapter 6

CONTRIBUTIONS AND FUTURE WORK

In this chapter, I outline my contributions in the work I have presented and

recommend future research directions.

6.1 Contributions

The primary goal of my thesis was to empirically evaluate genetic algorithms to

generate cost-effective test suites for web applications. The contributions of my work

are:

1. explored test-suite generation by leveraging the genetic algorithm:
Chapter 3 highlights how I apply the genetic algorithm to generate test suites us-
ing logged user sessions from web applications, including an outline of the model
that I use (Figure 3.2), and the implementation details of the framework that
I propose. Chapter 5 delineates my experimental study procedure and analyzes
and discusses the results that I obtain, comparing the genetic algorithm based
approach to generating test suites with a hill-climbing algorithm based approach.

2. modeled test suites for web applications as components for the genetic
algorithm: genes, chromosomes, and genomes: Section 3.2 highlights how
I model test suites to be used within a genetic algorithm framework (Figure 3.1).
Sections 5.2 and 5.3.1 outline how I convert user accesses to web applications into
user sessions before parsing them into an input suitable for the genetic algorithm.

3. implemented several genetic operators and parent selection algorithms
to manipulate the genetic information of the test suites modeled as
genomes: Section 3.3.3 discusses my implementation of five genetic operators
applied by the genetic algorithm to explore a variety of genetic compositions.
Section 3.3.4 outlines my implementation of three parent selection algorithms
used to select parent(s) for each genetic operator.

4. produced an extensible evaluation framework that can be used to em-
pirically evaluate testing approaches, and plan on making the evalu-
ation framework available on GitHub for straightforward installation

56

and easy use: Chapter 4 outlines the design and the implementation details
of the evaluation framework that I produce to assess the cost-effectiveness of
generated test suites.

5. empirically evaluated the test suites generated by the genetic algo-
rithm, using code coverage as evaluation metrics, to assess their cost-
effectiveness: Section 5.5.2 discusses the results of replaying the entire subject
user session sets on the evaluation framework to obtain code coverage baseline
measures, and then replaying the generated test suites on the evaluation frame-
work. It assess the cost-effectiveness of the generated test suites by comparing
their lengths and code coverage values with the original baseline measures ob-
tained.

6. recommended the best parameters to tune the genetic algorithm for
cost-effective test suite generation based on the results of my experi-
mental study: Section 5.7 provides recommendations to testers using my frame-
work to generate test suites for web applications. It highlights the recommended
parent selection algorithm to use, suggests certain values for the genetic algo-
rithm parameters, and provides guidelines to finding a good set of genetic oper-
ator thresholds, to assist testers in producing high-quality test suites from the
genetic algorithm framework.

6.2 Future Work

The approach that I propose in this work can be further developed in the fol-

lowing ways:

1. Implementing more sophisticated multi-objective parent selection algorithms:

The fitness function for the GA currently attempts to optimize multiple objec-
tives, including resource coverage, genome length, length-two resource coverage,
and length-three resource coverage. Certain parent selection algorithms have
proved to work well with multi-objective optimizations, including the NSGA-II
algorithm and Lexicase selection [5]. The framework that I propose could benefit
from such parent selection algorithms.

2. Using additional subjects to verify the scalability of the approach:

Larger subject applications accessed by more users may have different results
with respect to the generated test suite’s length and resource and code coverage.

3. Accounting for persistent state when genetic operators change the genetic infor-
mation of genomes:

Currently, a number of requests currently might result in error pages due to issues
with persistent state, e.g., accessing a resource before logging on to the appli-
cation or accessing data that does not exist yet. Test cases that take persistent

57

state into account may decrease the number of error pages accessed because of
this limitation, thereby increasing the testing efficacy of test suites.

58

BIBLIOGRAPHY

[1] J. T. Alander, T. Mantere, and P. Turunen. Genetic algorithm based software
testing. In Artificial Neural Nets and Genetic Algorithms, pages 325–328, Vienna,
1998. Springer Vienna.

[2] Mohammadreza Mollahoseini Ardakani and Mohammad Morovvati. A multi-agent
system apporach for user-session-based testing of web applications. In Proceedings
of the 7th WSEAS International Conference on Distance Learning and Web Engi-
neering, DIWEB’07, pages 326–331, Stevens Point, Wisconsin, USA, 2007. World
Scientific and Engineering Academy and Society (WSEAS).

[3] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher II. Leveraging user-session data
to support web application testing. IEEE Transactions on Software Engineering,
31(3):187–202, March 2005.

[4] Sebastian Elbaum, Srikanth Karre, and Gregg Rothermel. Improving web appli-
cation testing with user session data. In Proceedings of the 25th International
Conference on Software Engineering, ICSE ’03, pages 49–59, Washington, DC,
USA, 2003. IEEE Computer Society.

[5] T. Helmuth, L. Spector, and J. Matheson. Solving uncompromising problems with
lexicase selection. IEEE Transactions on Evolutionary Computation, 19(5):630–
643, Oct 2015.

[6] Thomas Helmuth, Nicholas Freitag McPhee, and Lee Spector. Program synthesis
using uniform mutation by addition and deletion. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO ’18, pages 1127–1134, New
York, NY, USA, 2018. ACM.

[7] Torsten Kempf, Kingshuk Karuri, and Lei Gao. Software Instrumentation. Wiley,
September 2008.

[8] Rizwan Khan and Mohd Amjad. Performance testing (load) of web applications
based on test case management. Perspectives in Science, 8, 04 2016.

[9] Bogdan Korel and Ali M. Al-Yami. Automated regression test generation. In
Proceedings of the 1998 ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA ’98, pages 143–152, New York, NY, USA, 1998.
ACM.

59

[10] Giuseppe A. Di Lucca and Anna Rita Fasolino. Testing web-based applications:
The state of the art and future trends. Information and Software Technology,
48(12):1172 – 1186, 2006. Quality Assurance and Testing of Web-Based Applica-
tions.

[11] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro-
grams (3rd Ed.). Springer-Verlag, Berlin, Heidelberg, 1996.

[12] Xuan Peng and Lu Lu. User-session-based automatic test case generation using
GA. International Journal of Physical Sciences, 6(13):3232–3245, July 2011.

[13] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A field guide
to genetic programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza).

[14] Shikha Raina and Arun Prakash Agarwal. An automated tool for regression testing
in web applications. SIGSOFT Softw. Eng. Notes, 38(4):1–4, July 2013.

[15] Je rey Horn, Nicholas Nafpliotis, and David E Goldberg. A niched pareto ge-
netic algorithm for multiobjective optimization. In Proceedings of the first IEEE
conference on evolutionary computation, IEEE world congress on computational
intelligence, volume 1, pages 82–87. Citeseer, 1994.

[16] Sreedevi Sampath, Valentin Mihaylov, Amie Souter, and Lori Pollock. A scal-
able approach to user-session based testing of web applications through concept
analysis. In Proceedings of the 19th IEEE International Conference on Automated
Software Engineering, ASE ’04, pages 132–141, Washington, DC, USA, 2004. IEEE
Computer Society.

[17] S Sharmila and E Ramadevi. Analysis of performance testing on web applications.
International Journal of Advanced Research in Computer and Communication En-
gineering, 2014.

[18] Sara Sprenkle, Emily Gibson, Sreedevi Sampath, and Lori Pollock. Automated
replay and fault detection for web applications. In International Conference on
Automated Software Engineering (ASE), pages 253–262, New York, NY, USA,
November 2005. ACM Press.

[19] Sara Sprenkle, Lori Pollock, and Lucy Simko. A study of usage-based navigation
models and generated abstract test cases for web applications. In International
Conference on Software Testing, Verification and Validation (ICST), ICST ’11,
pages 230–239, Washington, DC, USA, Mar 2011. IEEE Computer Society.

[20] Dr. Praveen Srivastava and Tai-Hoon Kim. Application of genetic algorithm in
software testing. International Journal of Software Engineering and Its Applica-
tions, 3(4):87–95, November 2009.

60

[21] Shkodran Zogaj, Ulrich Bretschneider, and Jan Marco Leimeister. Managing
crowdsourced software testing: a case study based insight on the challenges of
a crowdsourcing intermediary. Journal of Business Economics, 84(3):375–405,
2014.

61

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	2 Background
	2.1 Web Applications
	2.2 Testing Web Applications
	2.3 Genetic Algorithms
	2.3.1 Model
	2.3.2 Fitness Functions
	2.3.3 Parent Selection Algorithms
	2.3.4 Genetic Operators
	2.3.5 Applying the Genetic Algorithm to Software Testing

	2.4 Open Problems
	2.4.1 Problems in Testing Web Applications
	2.4.2 Evaluating Web Application Testing Approaches

	3 Generating Test Suites for Web Applications Using the Genetic Algorithm
	3.1 Motivation
	3.2 Model
	3.3 Implementation
	3.3.1 Initialization
	3.3.2 Fitness Function
	3.3.3 Genetic Operators
	3.3.4 Parent Selection Algorithms
	3.3.5 Summary

	4 The Evaluation Framework
	4.1 Design
	4.1.1 Configuring the Application
	4.1.2 Initializing the Persistent State
	4.1.3 Instrumenting the Source Code
	4.1.4 Executing the Test Suites

	4.2 Implementation
	4.2.1 Automating the Execution of Test Suites
	4.2.1.1 Instrumenting the Source Code
	4.2.1.2 Initializing the Persistent State
	4.2.1.3 Running the Web Applications Server
	4.2.1.4 Executing the Test Suites

	4.2.2 Evaluating the Results
	4.2.3 Summary

	5 Experimental Study
	5.1 Research Questions
	5.2 Subject Applications
	5.3 Methodology
	5.3.1 Gathering User Sessions
	5.3.2 Evaluation and Analysis Metrics
	5.3.3 Generating Test Suites
	5.3.4 Analyzing the Resulting Test Suites
	5.3.5 Evaluating the Resulting Test Suites

	5.4 Threats to Validity
	5.5 Results
	5.5.1 Generating Test Suites
	5.5.1.1 Comparing Parent Selection Algorithms
	5.5.1.2 Comparing Genetic Operators and Genetic Algorithm Parameters
	5.5.1.3 Comparing Fitness Weights
	5.5.1.4 Comparing the Genetic Algorithm to the Hill Climbing Algorithm for Generating Cost-Effective Test Suites

	5.5.2 Evaluating Test Suites

	5.6 Discussion
	5.6.1 Comparing Parent Selection Algorithms
	5.6.2 Comparing Genetic Operators and Genetic Algorithm Parameters
	5.6.3 Comparing Fitness Weights
	5.6.4 Evaluating the Performance of the Generated Test Suites
	5.6.5 Comparing the Genetic Algorithm to the Hill Climbing Algorithm for Generating Cost-Effective Test Suites

	5.7 Recommendations for Testers

	6 Contributions and Future Work
	6.1 Contributions
	6.2 Future Work

	Bibliography

