
1 23

Psychometrika
 
ISSN 0033-3123
Volume 84
Number 1
 
Psychometrika (2019) 84:65-83
DOI 10.1007/s11336-018-9647-4

Tests of Matrix Structure for Construct
Validation

Brian D. Segal, Thomas Braun, Richard
Gonzalez & Michael R. Elliott



1 23

Your article is protected by copyright

and all rights are held exclusively by The

Psychometric Society. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



psychometrika—vol. 84, no. 1, 65–83
March 2019
https://doi.org/10.1007/s11336-018-9647-4

TESTS OF MATRIX STRUCTURE FOR CONSTRUCT VALIDATION

Brian D. Segal, Thomas Braun, Richard Gonzalez andMichael R. Elliott
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Psychologists and other behavioral scientists are frequently interested in whether a questionnaire
measures a latent construct. Attempts to address this issue are referred to as construct validation. We
describe and extend nonparametric hypothesis testing procedures to assess matrix structures, which can
be used for construct validation. These methods are based on a quadratic assignment framework and can
be used either by themselves or to check the robustness of other methods. We investigate the performance
of these matrix structure tests through simulations and demonstrate their use by analyzing a big five
personality traits questionnaire administered as part of the Health and Retirement Study. We also derive
rates of convergence for our overall test to better understand its behavior.
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1. Introduction

Psychologists and other behavioral scientists are frequently interested in whether a survey
or questionnaire measures the concepts it purports to measure. Attempts to address this issue are
referred to as construct validation. Since the construct cannot be directly observed, it is impos-
sible to assess its validity directly. Instead, researchers divide construct validity into different
aspects that can be addressed separately. These different aspects are called criterion-related valid-
ity, convergent validity, discriminant validity, and content validity. As Kline (2011) describes,
criterion-related validity concerns the consistency of the test with external measures, convergent
and discriminant validity refer to the magnitudes of correlations between test questions, and con-
tent validity is the degree to which the questions can be interpreted to represent the underlying
scientific construct. By considering these different aspects of validity together, researchers can
produce an overall body of evidence either in favor of or against validating a construct.

The statistical aspects of construct validation are covered by convergent and discriminant
validity. Convergent validity occurs when the magnitudes of the correlations are high between
items that are hypothesized to measure the same construct, and discriminant validity occurs
when the magnitudes of the correlations are low between items hypothesized to measure different
constructs (Kline 2011). In this paper, we describe and extend tests for matrix structure that can be
used to assess convergent and discriminant validity, and derive rates of convergence for the overall
test. These matrix structure tests can be used either by themselves or to check the robustness of
other methods, such as confirmatory factor analysis (CFA).

In Sect. 2, we provide a motivating example. In Sect. 3, we describe and extend methods
for testing matrix structure based on the quadratic assignment framework of Hubert and Schultz
(1976), and derive rates of convergence for the overall test. In Sect. 4, we discuss related methods,
including linear models, pattern hypothesis tests of correlation coefficients, and CFA. In Sect. 5,
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we investigate the behavior of these methods through simulations, and in Sect. 6, we demonstrate
these methods by analyzing the big five personality traits questionnaire conducted as part of the
2010Health andRetirement Survey (HRS 2016). In Sect. 7, we discuss the benefits and limitations
of using tests of matrix structure for construct validation, as well as potential extensions. As
noted in Sect. 8, we have implemented the methods described in this paper in the R package
(matrixTest).

2. Motivating Example

As a motivating example, we analyze the big five personality traits questionnaire that was
given as part of the 2010 Health and Retirement Study (HRS 2016). HRS is a “longitudinal panel
study that surveys a representative sample of approximately 20,000 Americans over the age of
50 every two years” (HRS 2016). The big five personality traits questionnaire is given as part of
the HRS Psychosocial and Lifestyle Questionnaire, which is administered to a rotating, random
selection of 50% of the HRS respondents. The HRS data are publicly available at http://hrsonline.
isr.umich.edu. The Psychosocial and Lifestyle Questionnaire is part of the core data release, in
the file labeled LB_R (leave-behind, respondent).

In 2010, 7215 respondents provided complete responses to the big five personality trait
questionnaire, and an additional 1050 subjects provided partial responses. The big five personality
traits questionnaire contains 31 items, each of which was recorded on a four-point Likert scale.
In what follows, we did a complete case analysis and did not incorporate sampling weights into
the estimation of correlation coefficients, though this could be done in future analyses.

To assess convergent and divergent validity, we were interested in the magnitude of the cor-
relations, but not the direction. Figure 1 shows the absolute values of Spearman’s rank correlation
matrix for the 31 items in the questionnaire, ordered by the hypothesized groups, which are out-
lined. From upper left to lower right, the outlined groups are: (1) neuroticism, (2) extroversion,
(3) agreeableness, (4) openness to experience, and (5) conscientiousness. The questionnaire items
are described in “Web Appendix C in Supplementary material”.

From a visual inspection of Fig. 1, the first block (neuroticism) appears to exhibit both
convergent validity (high within-block correlation) and divergent validity (low between-block
correlation). The second, third and fourth blocks (extroversion, agreeableness, and openness to
experience) appear to exhibit convergent validity, though the relatively high correlations between
these blocks makes it unclear whether they also exhibit divergent validity. The fifth block (consci-
entiousness) does not appear to exhibit either convergent or divergent validity. We next develop
methods to formally test convergent and divergent validity using nonparametric tests of matrix
structure.

3. Tests of Matrix Structure

Several authors have developed methods for testing matrix structure, including Bock and
Bargmann (1966), Srivastava (1966), McDonald (1974) and Jöoreskog (1978). The approach we
describe has a similar goal to these methods, but differs in the way hypothesized matrix structures
are assessed. Most notably, our approach sets up a traditional null hypothesis that researchers seek
to reject, and does not use a goodness of fit (GOF) test or index to evaluate model fit.

3.1. Block Diagonal Structure

Let A be a p × p symmetric matrix. In our applications, A is typically the covariance or
correlationmatrix, or the absolute values of the covariance or correlationmatrix.We are interested
in whether A is approximately block diagonal:
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BRIAN D. SEGAL ET AL. 67

Figure 1.
Absolute values of the Spearman rank correlation matrix for the HRS big five personality traits questionnaire ordered by
hypothesized groups. From upper left to lower right, the groups are: (1) neuroticism, (2) extroversion, (3) agreeableness,
(4) openness to experience, and (5) conscientiousness. Diagonal elements are all equal to 1, and are not included in the
color gradient. Item labels (d, h, l, …) are taken from the HRS questionnaire. The items are described in “Web Appendix
C in Supplementary material”.

A =

⎛
⎜⎜⎜⎜⎜⎝

A1
A2

. . .

AK

⎞
⎟⎟⎟⎟⎟⎠

where blocks A1 through AK have respective dimensions p1× p1, . . . , pK × pK , and
∑K

k=1 pk ≤
p. When A is the covariance matrix, this is the structure implied by a CFA model in which each
item loads onto no more than one latent variable. Throughout this paper, we use the terms group
and block interchangeably.

By approximately block diagonal, wemean that the elements in blocks A1, . . . , AK are larger
in absolute value than elements in the non-blocks. If A were perfectly block diagonal, all elements
in blocks A1, . . . , AK would be nonzero, and all other elements would be zero. Figure 1 is an
example where A is the element-wise absolute values of the correlation matrix, with p = 31
variables and a hypothesized K = 5 blocks of sizes p1 = 4, p2 = 5, p3 = 5, p4 = 7, and
p5 = 10. If we exclude the fifth block from Fig. 1, then

∑4
k=1 pk < p and the hypothesized

block diagonal structure would not extend all the way to the bottom right corner of the correlation
matrix.

3.2. Hubert’s �

Hubert’s � (Hubert and Schultz 1976) was originally proposed by Mantel (1967). Conse-
quently, some authors, including Good (2000), refer to the statistic as Mantel’s U . However, we
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follow most authors, including Jain and Dubes (1988), Halkidi et al. (2001) and Zaki and Meira
(2014) and refer to the statistic as Hubert’s �, especially since our methods are based on the
quadratic assignment framework of Hubert and Schultz (1976).

To define Hubert’s �, let vi be the label for the variable in row and column i of matrix A and
let � be a p × p matrix with element δi j in row i and column j , where

δi j =
{
1 if variables vi and v j are hypothesized to belong to the same block

0 otherwise.

Similarly, we denote the element in row i and column j of A as ai j . Let N = p(p − 1)/2 be
the number of upper triangular elements in A, where the upper triangular elements form the set
{ai j : i < j}. Let a = (a12, a13, a23, a14, a24, . . . , aN−1,N )T be the N × 1 vector of the upper
triangular elements of A, and let δ = (δ12, δ13, δ23, δ14, δ24, . . . , δN−1,N )T be the N ×1 vector of
the upper triangular elements of �. Since the A and � matrices are symmetric, we do not need to
consider the lower triangular elements. Hubert’s � is defined as the mean element-wise product
between the upper triangular elements of A and �, given by � = N−1 ∑

i< j ai jδi j = N−1aT δ.

Weuse the normalized�, which ismore interpretable. Let ā = N−1 ∑
i< j ai j and σ̂ 2

a = (N −
1)−1 ∑

i< j (ai j − ā)2 be the sample mean and variance of the elements in a, let δ̄ = N−1 ∑
i< j δi j

and σ̂ 2
δ = (N − 1)−1 ∑

i< j (δi j − δ̄)2 be the sample mean and variance of the elements in δ, and

let σ̂ 2
aδ = (N − 1)−1 ∑

i< j (ai j − ā)(δi j − δ̄) be the sample covariance between a and δ. Then
the normalized �, which we denote as �norm, is defined as the Pearson correlation between a and
δ, given by

�norm =
∑

i< j (ai j − ā)(δi j − δ̄)√∑
i< j (ai j − ā)2

∑
i< j (δi j − δ̄)2

= σ̂ 2
aδ

σ̂a σ̂δ

. (1)

Since �norm is a correlation, −1 ≤ �norm ≤ 1.
In general, the � matrix can be replaced by any conformable matrix in calculating � and

�norm depending on the hypothesis a researcher wants to test. As we show in Sect. 4.1, �norm
with � as defined above is related to the slope from a linear model that contrasts the within-block
elements with the between-block elements.

Large positive values of �norm (values near 1) indicate that overall, the clustering has a high
degree of convergent and discriminant validity. If �norm is near zero, then either the clusters have
low levels of convergent validity, discriminant validity, or both. If�norm is large and negative, then
we have likely flipped blocks with non-blocks, and would have reason to revisit the exploratory
analysis.

3.3. Permutation Test

The null hypothesis in our permutation test is that off-diagonal elements of A are exchange-
able. Rejecting the null is evidence in favor of the hypothesized latent structure.

Other authors, including Jain and Dubes (1988), have proposed permutation tests with
Hubert’s � to test overall null hypotheses. However, in most existing applications A is an n × n
matrix that measures proximity between subjects as opposed to a p × p matrix that measures
correlation between items on a questionnaire. Application of the permutation test to correlation
matrices requires additional considerations when defining the null hypothesis, as described in
Sect. 3.3.1, and also when defining and deriving rates of convergence, as described in Sect. 3.5
and “Web Appendix A in Supplementary material”.
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In addition to the overall test, we propose a block-specific test in Sect. 3.3.2. To the best
of our knowledge, the block-specific test has not been proposed previously, and we find it to be
highly informative in our simulations and application.

3.3.1. Overall Test As before, let vi be the label of the i th column and row of A, and let
v = (v1, . . . , vp) be the ordered sequence of labels. For example, if A is the matrix of correlations
among items on a questionnaire, then vi would be the i th item on the questionnaire. Also, let π

be a permutation of the indices of v, such that π(i) is the index to which i is mapped after
the permutation. For example, if the indices (1, 2, 3) are permuted to (3, 1, 2), then π(1) = 2.
Let v∗ = (v∗

1 , . . . , v
∗
p) be a permuted sequence of labels, where v∗

π(i) = vi , i = 1, . . . , p. For
example, in Sect. 2, the items in the Big Five questionnaire are labeled as v = (v1 = a, v2 =
b, . . . , v31 = z6), and under the hypothesized ordering shown along the rows and columns of
Fig. 1, v∗ = (v∗

1 = d, v∗
2 = h, v∗

3 = l, . . . , v∗
31 = z6).

In the permutation test, we keep the � matrix constant, permute the order of the labels in
A, and recompute the test statistic �norm. In keeping � constant, we are conditioning on the
hypothesized number of blocks K and block sizes pk, k = 1, . . . , K . This conditioning is an
important constraint needed in the permutation test.

If we randomly sample B permutations π1, . . . πB with replacement, then the Monte Carlo
(MC) approximation to the two-sided permutation p-value is (Lehmann and Romano 2005)

p̃ = 1

B + 1

[
B∑

b=1

1
(∣∣∣�b

norm

∣∣∣ ≥
∣∣∣�0

norm

∣∣∣
)

+ 1

]
,

where 1 is an indicator function, �0
norm is the test statistic under the hypothesized clustering, and

�b
norm is the test statistic from the bth randomly sampled permutation πb. That is, p̃ represents

the proportion of MC resamples with test statistics that exceed the observed test statistic under
the hypothesized clustering.

Exchangeable off-diagonal elements implies a variety ofmatrix structures, including constant
off-diagonal elements (referred to by Steiger (1980a) as equicorrelation in the case where A is
the correlation matrix) and white noise. Under constant off-diagonal elements, A is of the form
A = a11′ + (b − a1)′ I for some a ∈ R and b ∈ R

p, where 1 is a column vector of 1’s and I is
the identity matrix (for correlation matrices, b = 1 and a ∈ [−1, 1]):

A =

⎛
⎜⎜⎜⎝

b1 a
b2

. . .

a bp

⎞
⎟⎟⎟⎠ .

More generally, under white noise we assume the off-diagonal elements ai j ∼ P, i < j for some
common distribution P . If A is a covariance or correlation matrix, then we have the additional
constraint that A is symmetric and positive semi-definite. If P has zero variance, we obtain
constant off-diagonals.

3.3.2. Block-Specific Test In addition to the overall test, we can test each block individu-
ally to see if the magnitude of the within-block elements are larger than the magnitude of the
corresponding between-block elements. To this end, let �norm,k be the same as above, except
that the sum is restricted to (i, j) such that at least one of vi , v j is in block k. As before,
we remove variance terms from the sum. To be precise, let Vk be the set of labels assigned
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70 PSYCHOMETRIKA

to block k, and let Ik = {(i, j) : vi ∈ Vk or v j ∈ Vk, i < j} be the set of ordered index
pairs with at least one index in block k. Let Nk = |Vk | be the number of elements in Vk ,
and let āk = N−1

k

∑
(i, j)∈Ik

ai j and σ̂ 2
a,k = (Nk − 1)−1 ∑

(i, j)∈Ik
(ai j − āk)

2 be the sample

mean and variance of elements in the set {ai j : (i, j) ∈ Ik}, and δ̄k = N−1
k

∑
(i, j)∈Ik

δi j and

σ̂ 2
δ,k = (Nk − 1)−1 ∑

(i, j)∈Ik
(δi j − δ̄k)

2 be the sample mean and variance of elements in the set

{δi j : (i, j) ∈ Ik}. Also, let σ̂ 2
aδ,k = (Nk − 1)−1 ∑

(i, j)∈Ik
(ai j − āk)(δi j − δ̄k) be the sample

covariance. Then we define

�norm,k =
∑

(i, j)∈Ik
(ai j − āk)(δi j − δ̄k)√∑

(i, j)∈Ik
(ai j − āk)2

∑
(i, j)∈Ik

(δi j − δ̄k)2
= σ̂ 2

aδ,k

σ̂a,k σ̂δ,k
.

When testing multiple blocks, to control the family-wise error rate we followWestfall and Young
(1993) and for each permutation πb set �

max,b
norm = maxk∈{1,...,K } |�b

norm,k |, where �b
norm,k is the

computed statistic for block k under permutation πb. We then compute the MC estimate of the
two-sided permutation p-value for block k as

p̃k = 1

B + 1

[
B∑

b=1

1
(
�max,b
norm ≥

∣∣∣�0
norm,k

∣∣∣
)

+ 1

]
.

3.4. Recommendations for Choosing Matrix A

In construct validation, the primary question concerns the magnitude of association, as
opposed to the direction. Furthermore, in most questionnaires, the direction of correlation is
arbitrary. For example, in the HRS big five personality questionnaire, some items are reverse
coded to preserve positive correlations among items hypothesized to measure the same latent
construct. Consequently, in some applications A could be set to the element-wise absolute corre-
lations, as in the motivating example in Sect. 2. By using the absolute values of the correlations,
we avoid potentially overlooking associations between items that are coded in such a way that
their correlations are negative.

We use Spearman’s rho so that our test is robust to non-normal data and nonlinear associ-
ations. However, we speculate that other nonparametric correlation coefficients would also be
reasonable, such as Kendall’s tau and Goodman and Kruskal’s gamma. Ultimately, we recom-
mend that researchers use a matrix A that best measures the phenomenon of interest, which may
differ across applications.

3.5. Convergence Rates

In this section, we denote the estimated quantities obtained with n observations as an =
(an

1 , . . . , an
N )T , and describe the convergence rate as n → ∞. In data analyses, we use Monte

Carlo methods to approximate the permutation p value obtained with the estimated quantities an .
We denote the permutation p value with the estimated quantities as p̂(an). However, we would
ideally approximate the permutation p value obtained with the true population values, which we
denote as p̂(ρ), where ρ are the true population values. Assuming an is a consistent estimator
of ρ, an → ρ as n → ∞. In this section, we address the rate at which the overall permutation
p value computed with the estimated values p̂(an) converges to the overall permutation p value
computed with the true values p̂(ρ). These results hold for the overall test.

As stated in Theorem 1, under fairly general conditions, the permutation p value for the
overall test has the same rate of convergence as the elements of an .
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Theorem 1. Let an
j be the sample estimates of ρ j , j = 1, . . . , N, and suppose that for all j ,

|an
j − ρ j | = Op(g(n)) for some strictly decreasing function g, such that g(n) → 0 as n → ∞.

Also suppose that the permutation distribution R̂N (t) has limiting distribution R(t) such that
the density of R(t), denoted as f (t), exists and supt f (t) < ∞. Then for N sufficiently large,
| p̂(an) − p̂(ρ)| = Op(g(n)).

Furthermore, as described in Corollary 1, when an are Pearson’s or Spearman’s correlations,
| p̂(an) − p̂(ρ)| = Op(1/

√
n). As described in Corollary 2, the same rate holds when using the

absolute values of Pearson’s or Spearman’s correlations.

Corollary 1. Let an be Pearson’s or Spearman’s correlation coefficients estimated from n inde-
pendent and identically distributed (i.i.d.) observations. Let τ 2j = Var(an

j ) and assume τ 2j < ∞
for j = 1, . . . , N. Also suppose that the permutation distribution R̂N (t) has limiting distribu-
tion R(t) such that the density of R(t), denoted as f (t), exists and supt f (t) < ∞. Then for N
sufficiently large, | p̂(an) − p̂(ρ)| = Op(1/

√
n).

Corollary 2. Under the same conditions as Corollary 1, but with an and ρ replaced with absolute
values of Pearson’s or Spearman’s correlations, we also have | p̂(an) − p̂(ρ)| = Op(1/

√
n).

For details and proofs, please see “Web Appendix A in Supplementary material”.

4. Comparison to Related Methods

4.1. Linear Model and t test

To better understand and interpret �norm, we note that because �norm is a correlation, it is
permutationally equivalent to the ordinary least squares coefficient from a simple linear regres-
sion model where the outcomes are the absolute values of the correlation coefficients a and the
covariates are the indicators δ.

To see this, we write the linear model as

E[a] = β01 + β1δ (2)

where 1 is an N × 1 vector. The ordinary least squares estimate for (2) is β̂1 = (σ̂a/σ̂δ)�norm.

Let Wk = {(i, j) : vi ∈ Vk, v j ∈ Vk, i < j} be the set of ordered index pairs for upper
triangular elements such that both indices are in block k, let Nin,k = |Wk | be the number of
elements in Wk , and Nin = ∑

k Nin,k be the total number of upper triangular within-block
elements. Also, letWout = {(i, j) : (i, j) �∈ Wk, k = 1, . . . , K , i < j} be the set of ordered index
pairs for upper triangular elements not in blocks, and Nout = |Wout| be the number of non-block
elements. Then, because � is a matrix of zeros and ones, we have β̂1 = āin − āout, where āin =
N−1
in

∑
k
∑

(i, j)∈Wk
ai j and āout = N−

out1
∑

(i, j)∈Wout
ai j are the mean within-block and between-

block elements, respectively. In the overall test, σ̂ 2
a and σ̂ 2

δ are constant across permutations.
Therefore, there is a one-to-one relationship between �norm and β̂1, and they are permutationaly
equivalent. In other words, β̂1 could be substituted for �norm in the permutation test to obtain the
same permutation p-value. When restricting to subsets of the matrix to evaluate �norm,k , σ̂ 2

a,k is no

longer constant across permutations, so �norm,k and β̂1,k are no longer permutationaly equivalent.
We also note that the t-statistic with unequal variance has potential advantages over the

statistics �norm and β̂1. In particular, the t-statistic with unequal variance controls the type I error
rate in permutation tests under the null H0 : āin = āout versus H1 : āin �= āout even if the variance

Author's personal copy



72 PSYCHOMETRIKA

of the within-block and between-block correlations are different (Chung and Romano, 2013). The
t-statistic with unequal variance is given by

t = āin − āout√
σ̂ 2
in/Nin + σ̂ 2

out/Nout

(3)

where σ̂ 2
in = (Nin − 1)−1 ∑

k
∑

(i, j)∈Wk
(ai j − āin)2 and σ̂ 2

out = (Nout − 1)−1 ∑
(i, j)∈Wout

(ai j −
āout)2 are the sample variances of the within-block and between-block upper triangular elements
of A, respectively.

Due to the results of Chung and Romano (2013), it may be beneficial to use the studentized
statistic t given by (3) in future work in place of Hubert’s �, as it leads to permutation tests that
are valid under a wider range of scenarios than those we examined in our simulations. However,
in our simulations, the use of (3) in the permutation test gave nearly identical results to those
obtained with �norm.

4.2. Goodness of Fit (GOF) Tests

Several statistical methods used in construct validation rely on a goodness of fit (GOF) test,
including CFA and pattern hypothesis tests (Steiger 2007). Frequently, GOF tests are based on
χ2 statistics. In general terms, the null hypothesis in GOF tests is H0: “the model fits" and
the alternative is H1: “the model does not fit." Under this framework, failure to reject the null
is evidence in favor of the scientific theory. This is in contrast to the tests of matrix structure
described in Sect. 3.3, for which rejection of the null is evidence in favor of the scientific theory.

SinceGOF tests reverse the usual role of the null and alternative hypotheses, the interpretation
of type I and II errors is also reversed. To guard against making false scientific claims, one needs
to avoid accepting the null when the alternative is true—a type II error. Similarly, to increase the
chances of finding evidence in favor of a scientific theory, one needs to avoid rejecting the null
when the null is true. Given the analogy with statistical power, we refer to this as type I power.
Since this is not a standard term, we define it in Definition 1.

Definition 1. (Type I power) Type I power is the probability of failing to reject the null hypothesis
when the null hypothesis is true: Pr(fail to reject H0|H0 true).

The reversal in GOF tests of the standard scientific interpretation of Type I and II errors may
have several implications for the reliability of GOF tests in evaluating scientific hypotheses. In
particular, failure to control type II errors in GOF tests could lead to higher than expected rates of
false scientific claims, and low type I power would make it difficult to find evidence in favor of a
scientific claim. Table 1 shows these differing interpretations, and proposes the terms “GOF false
alarms" and “GOF missed opportunities" to describe the potential errors when conducting a GOF
test. We are unaware of work aimed at controlling type II error rates in GOF tests, but several
researchers have suggested ways to address low type I power. Contrary to standard statistical
power, type I power decreases as sample size increases, making low Type I power a pervasive
problem.

4.2.1. GOF Tests in Structural Equation Models (SEMs) To address low type I power in
structural equation models (SEMs), including CFA, researchers have developed alternative fit
indices, many of which adjust the χ2 GOF statistic based on the degrees of freedom, such as the
comparative fit index (CFI) (Bentler 1990) and Tucker–Lewis Index (TLI) (Tucker and Lewis
1973). The root mean squared error of approximation (RMSEA) (Steiger and Lind 1980, Steiger
1990) is another commonly used fit index. However, as shown in Sect. 5.1, the type I power of
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Table 1.
Comparison of interpretation of errors under traditional and GOF frameworks.

Truth

Decision H0 H1

H0 (p − val ≥ c) Correct failure to reject H0 Type II error (missed opportunity)
Type I power GOF false alarm

H1 (p − val < c) Type I error (false alarm) Power
GOF missed opportunity Correct rejection of H0

Within each cell, the traditional interpretation is on the first line, and the GOF interpretation is on the second
line in bold. H0 is the null hypothesis and H1 is the alternative hypothesis (H0 rejected if p value < c for
cutoff value c).

CLI, TLI, and RMSEA decreases as sample size increases, though not as dramatically as for
unadjusted χ2 GOF statistics.

Many of the rules of thumb for interpreting fit indices have roots in thework of Hu andBentler
(1999). For CFI and TLI, values above 0.95 are commonly considered to indicate acceptable fit
(Hu and Bentler 1999). However, Hooper et al. (2008) notes that some researchers have suggested
a cutoff value of 0.9 for CFI and 0.8 for TLI. We show simulation results with all three cutoffs in
Sect. 5.

ForRMSEA, values less than 0.06 (HuandBentler 1999) or 0.07 (Steiger 2007) are commonly
considered to indicate acceptable fit, though recommendations vary. For example, Browne and
Cudeck (1992) suggest that a value less than 0.05 indicates close fit, that values as large as 0.08
may show reasonable fit, and that values greater than 0.1 indicate a lack of fit. We show simulation
results with cutoffs of 0.05, 0.07, and 0.1 in Sect. 5.

As Barrett (2007) notes, some simulation studies, including Marsh et al. (2004), Beauducel
and Wittmann (2005), Yuan (2005), and Fan and Sivo (2005), have cast doubt on the reliability
of these rules of thumb for CFI, TLI, and RMSEA. We note that the criticism of Barrett (2007) is
controversial, and Steiger (2007) offers a rebuttal. Kline (2011) and Hu and Bentler (1999) offer
discussions on fit statistics and indices for SEMs, and we refer the reader to these sources for
details.

4.2.2. Pattern Hypothesis GOF Tests As Steiger (1980b) describes, a pattern hypothesis is
“any hypothesis that states that some of its elements are equal to each other and/or to specified
numerical values." Using the same notation as before, let a be the N ×1 vector of upper triangular
elements of A. Pattern hypotheses are of the form (Steiger 1980b)

H0 : a = Lβ + a∗, (4)

where β is a q × 1 vector of parameters to be estimated, a∗ is q × 1 vector of constants, and L is
an N × q matrix of zeros and ones, with

Li j =
{
1 if the i th element of a is hypothesized to equal β j

0 otherwise,

In the case where A is a covariance matrix, pattern hypothesis tests are related to the analysis of
covariance structures (Bock and Bargmann 1966).
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If we set q = 2, then (4) would be a re-parameterization of (2). In this case, to recover (2)
from (4), we would set a∗ to zero and reparameterize L as L = [1, δ]. This changes L from being
a cell-means coding to a reference cell coding.

For the rest of this section, we assume A is the Pearson correlation matrix for underlying data
yl = (yl1, . . . , ylp)

T , l = 1, . . . , n, in which we have n observations of p variables. In particular,
let ȳi = n−1 ∑n

l=1 yli , σ̂ 2
i = (n − 1)−1 ∑n

l=1(yli − ȳi )
2 and σ̂ 2

i j = (n − 1)−1 ∑n
l=1(yli −

ȳi )(yl j − ȳ j ). Then ai j = σ̂ 2
i j/(σ̂i σ̂ j ). In this case, we set r = a to use more familiar notation. If

the underlying data are i.i.d. multivariate normal, then we can induce normality on the correlation
coefficients by taking the Fisher r -to-z variance stabilizing transformation, denoted as z(r), where
(Fisher 1921)

z(r) = 1

2
log

(
1 + r

1 − r

)
= arctanh(r).

The Fisher transformation improves the normal approximation to the distribution of the correlation
coefficients, even if the underlying data are not normal, though the form of the N × N covariance
matrix Var(z(r)) may not be the same as for normal data (Hawkins, 1989).

Following Steiger (1980b), we test the null hypothesis (4) with the GOF χ2 statistic

X2 = (n − 3)
[
z(r) − z(r̂GLS)

]T
S−1

L S

[
z(r) − z(r̂GLS)

]
, (5)

where r̂GLS = L(LT �̂−1
LS L)−1LT �̂−1

LS r , �̂LS is the covariance matrix with elements given by
Steiger (1980b) with r̂LS = L(LT L)−1LT r substituted for r , and SLS is the covariance matrix
with elements also given by Steiger (1980b). Asymptotically, X2 follows a χ2 distribution with
N − 2 degrees of freedom (Steiger 1980b).

The permutation test with �norm and the GOF χ2 test with (5) are similar, but with important
differences. In (4), and assuming q = 2, let β = (β0, β1)

T . Then the permutation test is similar
to obtaining a p value for the null hypothesis H0 : β1 = 0, whereas (5) gives a p value for the
GOF null hypothesis H0 : “the model fits." In addition, the permutation test is nonparametric and
relies only on the exchangeability of off-diagonal elements, as opposed to the GOF test with (5),
which relies on asymptotic approximations to obtain the reference distribution. The permutation
test is also applicable for a variety of matrices A, whereas the asymptotic reference distribution
for (5) is valid only for certain types of matrices.

5. Simulations

In this section, we simulated data under two scenarios: (1) block diagonal structure, and
(2) random off-diagonal values (white noise). For each scenario, we generated 1000 datasets for
each sample size. For simulations under the permutation null hypothesis, we used sample sizes
of n = 10, 100, and 1000 with B = 1000 resamples. For simulations under the permutation
alternative hypothesis, we used samples sizes of n = 10, 50, 100, and 1000 with B = 10,000
resamples to better approximate small p values and statistical power. For all simulations, we used
K = 4 blocks of sizes p1 = 5, p2 = 7, p3 = 9, p4 = 11, so that the total number of variables
was p = ∑

k pk = 32. In all figures, the block numbers begin in the upper left and end in the
lower right, i.e., block k = 1 is in the top left corner, and block k = 4 is in the bottom right corner.

In the matrix structure testing framework, Sect. 5.1 is under the alternative hypothesis (H1 is
true) and Sect. 5.2 is under the null hypothesis (H0 is true). In the GOF framework, the model is
correctly specified in Sect. 5.1 (H0 is true) and misspecified in Sect. 5.2 (H1 is true).
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We followed our recommendations in Sect. 3.4 and used absolute Spearman correlation
coefficients when computing �norm, though we acknowledge that other choices for the matrix A
are possible. For the pattern hypothesis test, we used Pearson’s correlation and Fisher’s r -to-z
transform to compute X2, as described in Sect. 4.2.2. To obtain CFI, TLI, and RMSEA, we fit
CFA models with K = 4 latent factors and pk items loading onto the kth factor, with pk given
above. In the CFA models, each item loaded onto exactly one factor. The tables in this section
do not directly compare the results with the permutation test against those from CFI, TLI, and
RMSEA, because different types of errors are relevant for the two approaches.

In “Web Appendix B in Supplementary material”, we also show simulations under four
additional scenarios: (1) constant off-diagonal values, (2) block diagonal structure on a subset of
the matrix and white noise on the rest of the matrix (partial block diagonal structure), (3) a true
CFA generating process, and (4) a true CFA generating process followed by the discretization of
the outcome. For the GOF tests, the first two scenarios are under the alternative and the third and
fourth are under the null. CFI, TLI, and RMSEA gave high GOF false alarm rates in the white
noise scenario, low GOF false alarm rates in the partial block diagonal scenario, and moderate to
high type I power for sample sizes of n = 100 and 1000 under the true CFA generating process
with both continuous and discretized outcomes. In neither of the first two scenarios did the GOF
indices identify the source of poor fit.

For the permutation test, the constant off-diagonal scenario is under the null, and simula-
tion results show that the permutation test controls the type I error rate at the nominal level, as
expected. The partial block diagonal and CFA generating scenarios are under the alternative for
the permutation test, and simulation results show that the permutation test has high power.

5.1. Block Diagonal Structure

To simulate data under the scenario of a block diagonal correlation matrix, we began by
generating the square root of the variance matrix �1/2 such that variables within groups would
be correlated with each other, and variables across groups would have minimal but nonzero
correlations. In particular, we set �

1/2
i j = ∑

k 1[vi ∈ Vk, v j ∈ Vk]rk + ui j , where r1 = 0.25,
r2 = 0.2, r3 = 0.23, r4 = 0.15, and ui j ∼ N (0, 0.01).

For each sample size, we simulated 1000 n × p datasets, Yt , t = 1, . . . , 1000, where

Yt =
⎡
⎢⎣
yT
1
...

yT
n

⎤
⎥⎦ ,

and yl = (yl1, . . . , ylp)
T , l = 1, . . . , n, were generated independently as N (0, �t ) random

vectors with �t generated as described above. We then created corresponding n × p datasets
Zt , t = 1, . . ., 1000, of ordinal variables where for each dataset, zli = 1 if yli < −2, zli =
2 if − 2 ≤ yli < −1, zli = 3 if − 1 ≤ yli < 0, zli = 4 if 0 ≤ yli < 1, zli = 5 if 1 ≤ yli < 2,
and zli = 6 if 2 ≤ yli .

For each dataset, we estimated Spearman’s correlationmatrix,whichwe denote asC = C(Z),
and conducted a permutation test with Hubert’s � on A = abs(C) where the absolute values are
taken element-wise. We used B = 10, 000 MC resamples for the permutation tests. We also
computed X2 with the Pearson correlation matrix of Z (treating the ordinal data as numeric), and
fit a CFAmodel with the data Z (treating the data as ordinal) using the lavaan package (Rosseel
2012) for R (R Core Team 2017).

Figure 2 shows the estimated Spearman’s absolute correlation matrices A from a single
simulation for sample sizes of n = 10, 100, and 1000.
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Figure 2.
Block diagonal: estimated Spearman’s correlation coefficient (absolute values) from a single simulation at sample sizes
of n = 10, 100, and 1000. a n = 10. b n = 100. c n = 1000.

Figure 3.
Overall test for block diagonal scenario: permutation p-values with �norm and B = 10,000 MC resamples, p values from
the X2 pattern hypothesis test, and CFI values from a CFAmodel. For each sample size, we did 1000 simulations. Results
with TLI are similar to those for CFI and are not shown.

Figure 3 shows the distribution of p values fromapermutation testwith�norm and B = 10,000
resamples,pvalues from the X2 pattern hypothesis test, andCFI values fromaCFAmodel. Figure 4
shows the distribution of RMSEA values. As seen in Figs. 3 and 4, the distribution of p values
from �norm is heavily left-skewed, which is as expected under the alternative hypothesis. The p
values from the X2 statistic quickly move from close to 1 to close to 0 as the sample size increases,
and the CFI values cluster around 0.8 to 0.9 for all sample sizes. However, as shown in Table 3, the
distribution of CFI values shifts downward as sample size increases, though not as dramatically as
for p values from X2. The RMSEA values tend to cluster around 0 for the sample size of n = 10,
but have a central tendency around 0.13 to 0.16 for the larger sample sizes.

Table 2 shows the power with �norm and the permutation test under the alternative hypothesis
of block diagonal structure for statistical significance levels of α = 0.01 and 0.05. As seen in
Table 2, the statistical power was 1 for all tests with sample sizes of 100 and 1000.
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Figure 4.
Overall test for block diagonal scenario: RMSEA. For each sample size, we did 1000 simulations.

Table 2.
Statistical power in block diagonal scenario using �norm in a permutation test for significance levels of α = 0.01 and
0.05. 1000 simulations were run for each sample size.

Block

n Overall k = 1 k = 2 k = 3 k = 4

α = 0.01
10 0.97 0.31 0.34 0.69 0.34
50 1.0 0.94 0.97 1.0 0.98
100 1.0 0.99 0.99 1.0 1.0
1000 1.0 1.0 1.0 1.0 1.0

α = 0.05
10 0.98 0.47 0.49 0.81 0.51
50 1.0 0.97 0.99 1.0 1.0
100 1.0 1.0 1.0 1.0 1.0
1000 1.0 1.0 1.0 1.0 1.0

Table 3 shows the percent of simulations with CFI and TLI above the cutoff value recom-
mended by Hu and Bentler (1999) (0.95) as well as more liberal cutoff values noted by Hooper et
al. (2008) (0.9 and 0.8). As can be seen in Table 3, the statistical power of TLI and CFI decreases
as sample size increases, similar to the X2 GOF test. Notably, the Type I power is at or near zero
for both CFI and TLI for large sample sizes and cutoffs of 0.9 and 0.95.

Table 4 shows the percent of simulations with RMSEA below the cutoff values recommended
by Steiger (2007) (0.07), as well as the alternative cutoff values recommended by Browne and
Cudeck (1992) (0.05, 0.1). As can be seen in Table 4, the statistical power of RMSEA is low for
all sample sizes, and is zero for all cutoffs at n = 100 and n = 1000.

We note that Steiger (1990) recommends using confidence intervals for RMSEA and con-
cluding that the model fits if the lower bound is near zero and the upper bound is not too far above
the cutoff (e.g., 0.07). In this simulation, because the point estimates are mostly above 0.07, the
upper limits must also be above 0.07, so considering the confidence intervals would not be likely
to change our conclusions.

We also note that the absolute correlation matrices shown in Fig. 2 are visually very similar
to the matrices generated under a true CFA model shown in Figure S6 (with continuous outcome)
and S8 (with discretized outcome) of “Web Appendix B in Supplementary material”. However,
in the simulations of this section, CFI, TLI, and RMSEA have low type I power, whereas under
the true CFA generating process of “Web Appendix B in Supplementary material”, CFI, TLI,
and RMSEA have high type I power, even after discretization of the outcome. This indicates the
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Table 3.
Type I power for block diagonal scenario with CFI and TLI: percent of simulation results above the cutoff value (CFI and
TLI above the cutoff indicate good model fit).

Cutoff

Fit index n 0.95 0.9 0.8

CFI 10 0.89 0.92 0.96
50 0.016 0.30 0.97
100 0.0 0.25 0.98
1000 0.0 0.14 0.99

TLI 10 0.89 0.92 0.96
50 0.0084 0.23 0.94
100 0.0 0.16 0.96
1000 0.0 0.073 0.98

Table 4.
Type I power for block diagonal scenario with RMSEA: percent of simulation results below the cutoff value (RMSEA
below the cutoff indicates good model fit).

Cutoff

Fit index n 0.05 0.07 0.1

RMSEA 10 0.51 0.51 0.51
50 0.0 0.0 0.0021
100 0.0 0.0 0.0
1000 0.0 0.0 0.0

performance of CFI, TLI, and RMSEA may be robust to continuous versus discrete outcomes,
but sensitive to other distributional assumptions of the CFA model. These other distributional
assumptions are typically not of primary interest in construct validation.

5.2. White Noise

For this scenario, we generated the square root of the covariance matrix as �
1/2
t,i j ∼ N (0, 1)

and set the covariance matrix to �t =
(
�

1/2
t

)T
�

1/2
t . The rest of the simulation is as described

in Sect. 5.1.
Figure 5 shows the estimated Spearman’s absolute correlation matrices A from a single

simulation for sample sizes of n = 10, 100, and 1000.
Figure 6 shows the distribution of p values from a permutation test with �norm and B = 1000

MC resamples, p values from the X2 pattern hypothesis test, and CFI values from a CFA model.
Figure 7 shows the distribution of RMSEA values. As seen in Figs. 6 and 7, the distribution of p
values from �norm is uniform, which is as expected under the null hypothesis. The p values from
the X2 statistic move from close to one to close to zero as the sample size increases, though some
simulates gave p values close to 1 even for n = 100 and 1000. The CFI values cluster close to
1 for n = 10 and around 0.25 to 0.5 for n = 100 and n = 1000. The RMSEA values are near
zero for n = 10, but center around 0.13 to 0.14 for n = 100 and n = 1000. In this scenario, the
CFA model is misspecified, so small CFI values and large RMSEA values for n = 100 and 1000
indicate a low GOF false alarm rate.
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Figure 5.
White noise: estimated Spearman’s correlation coefficient (absolute values) from a single simulation at sample sizes of
n = 10, 100, and 1000. a n = 10. b n = 100. c n = 1000.

Figure 6.
Overall test in white noise scenario: permutation p values using �norm and B = 1000 MC resamples, p values from the
X2 pattern hypothesis test, and CFI values from a CFA model. For each sample size, we did 1000 simulations. Results
with TLI are similar to those for CFI and are not shown.

Figure 7.
Overall test in white noise scenario: RMSEA. For each sample size, we did 1000 simulations.
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Table 5.
Type I error rates for white noise scenario using �norm in a permutation test for significance levels of α = 0.01 and 0.05.
1000 simulations were run for each sample size.

n Overall Block-specific FWER

α = 0.01 10 0.006 0.009
100 0.008 0.007
1000 0.006 0.015

α = 0.05 10 0.046 0.047
100 0.063 0.047
1000 0.041 0.042

Table 6.
GOF false alarm rate for white noise scenario: Percent of simulation results above the cutoff value (CFI and TLI above
the cutoff indicate good model fit).

Cutoff

Fit index n 0.95 0.9 0.8

CFI 10 0.88 0.90 0.93
100 0.0 0.0 0.0
1000 0.0 0.0 0.0

TLI 10 0.88 0.90 0.93
100 0.0 0.0 0.0
1000 0.0 0.0 0.0

Table 7.
GOF false alarm rate for white noise scenario: percent of simulation results below the cutoff value (RMSEA below the
cutoff indicates good model fit).

Cutoff

Fit index n 0.05 0.07 0.1

RMSEA 10 0.061 0.061 0.061
100 0.0 0.0 0.0
1000 0.0 0.0 0.0

Table 5 shows the type I error rates for�norm and thepermutation test for statistical significance
levels of α = 0.01 and 0.05. As seen in Table 5, the error rates are near their nominal level for all
sample sizes.

Table 6 shows the percent of simulations with CFI and TLI above the cutoff value recom-
mended byHu andBentler (1999) (0.95), as well as themore liberal cutoff values noted byHooper
et al. (2008) (0.9 and 0.8). As seen in Table 6, the GOF false alarm rate is zero for all sample sizes
larger than n = 10.

Table 7 shows the percent of simulations with RMSEA below the cutoff values recommended
by Steiger (2007) (0.07), as well as the alternative cutoff values recommended by Browne and
Cudeck (1992) (0.05, 0.1). As can be seen in Table 7, the GOF false alarm rate is zero for all
cutoffs at n = 100 and n = 1, 000.
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Table 8.
Overall and block-specific tests with B = 10,000 MC resamples for the HRS big five personality traits questionnaire,
controlling for family-wise error rate.

Block k Interpretation �0
norm,k p-value

– Overall 0.40 < 0.0001
1 Neuroticism 0.55 0.0002
2 Extroversion 0.37 0.0025
3 Agreeableness 0.49 0.0003
4 Openness to experience 0.50 0.0002
5 Conscientiousness 0.21 0.11

6. Application

In this section, we continue our analysis of the HRS big five personality traits questionnaire
described in Sect. 2.

Table 8 shows the results from a permutation test with B = 10, 000 MC resamples.
As seen in Table 8, the permutation test provides evidence in favor of validating the extro-

version, agreeableness, neuroticism, and openness blocks, but not the conscientiousness block.
However, based on Fig. 1, the agreeableness, conscientiousness, and neuroticism blocks appear to
be highly correlated with each other. In this case, we would recommend further discussions based
on content area knowledge to better understand whether these blocks measure distinct underly-
ing constructs in the HRS population. These results could potentially also help to inform future
versions of the questionnaire.

6.1. Pattern Hypothesis Test and CFA

The p value from the pattern hypothesis test with X2 gave a p value of < 10−16, providing
evidence against validating the construct. However, the large sample size in the HRS study leads
to low type I power, making it unlikely that the pattern hypothesis test would provide evidence in
favor of validating the big five personality traits.

Using the lavaan package (Rosseel 2012) for R (R Core Team 2017), we fit a CFA model
with five latent factors (one for each of the five constructs, with each item loading onto its
hypothesized factor). This gave a CFI of 0.91, a TLI of 0.90, and a RMSEA of 0.101 (90%
confidence interval: 0.101, 0.102). Based on the recommendations of Hu and Bentler (1999) and
Hooper et al. (2008), it is unclear whether the CFI and TLI values provide evidence for validating
the construct. If we strictly followed the 0.95 cutoff recommended by Hu and Bentler (1999) for
CFI and TLI, then neither metric would provide evidence in support of the constructs. Similarly,
the RMSEA is larger than the cutoffs recommended by both Steiger (2007) and Browne and
Cudeck (1992), so RMSEA also does not provide evidence in support of the constructs. However,
as we found with �norm and the permutation test, we likely have evidence in support of validating
the constructs with the possible exception of the “conscientiousness" block.

7. Discussion

Directly testing hypotheses concerning the structure of A with the methods described in this
paper, as opposed to implicitly testing the structure of A through a model-based approach, such
as CFA, has both advantages and disadvantages. The tests of matrix structure presented in this
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paper allow for greater variety of matrices (e.g., A can be correlations or absolute correlations,
in addition to covariances), have null hypotheses that are aligned with the scientific question, and
make it possible to test each block separately in addition to the overall test. These nonparametric
tests also address the challenge in CFA of determining whether poor fit (small GOF index) is
due to incorrect assumptions on the distributions of the random variables (secondary interest), or
an inaccurate attribution of test questions to latent variables (primary interest). This last benefit
might be particularly important, as our simulations show that the performance of CLI, TLI, and
RMSEA can be sensitive to the distributional assumptions of CFA (see discussion in Sect. 5.1).

However, CFA, and more generally, SEMs, allow for more flexible latent variable structures
and can be used in subsequent analyses to study associations between latent variables and addi-
tional covariates. With this in mind, we view methods for directly testing the structure of A as
being useful either by themselves when appropriate or to check the robustness of model-based
approaches.

The simulation results suggest that the permutation test with �norm maintains high power
while controlling the type I error rate. In particular, the p values are uniformly distributed under
the null hypothesis, so type I error rates can be estimated theoretically. In contrast, CLI, TLI,
and RMSEA behave differently depending on the scenario, so it is not possible to theoretically
estimate error rates, such as the GOF false alarm rate (type II errors, see Table (1)). This has
the consequence that the known behavior of CLI, TLI, and RMSEA are restricted to simulation
results and may not generalize to other settings.

In this paper, we focused on scenarios in which each observed variable loads onto no more
than one latent factor, which implies a block diagonal structure in the covariance and correlation
matrices. This constraint is commonly imposed on CFA models as well. However, the �norm
statistic and permutation test are not restricted to these scenarios, and in future work it could be
beneficial to study the performance of these methods when testing more general matrix structures.

In future work, it may also be beneficial to investigate the use of the studentized difference in
means (3) in place of �norm in the permutation test. In our simulations, (3) gave nearly identical
results as �norm (results not shown), but due to the results of Chung and Romano (2013), we
speculate that there may be scenarios in which (3) controls the type I error rate better than �norm.

Finally, we note that we view these tests as single pieces of information that can be used
in a larger decision-making process. This approach is consistent with the American Statistical
Association’s statement on p values (Wasserstein and Lazar 2016).

8. Supplementary Material

AnR packagematrixTest that implements themethods described in this paper is available
at https://github.com/bdsegal/matrixTest, and code for reproducing all results in this paper is
available at https://github.com/bdsegal/code-for-matrixTest-paper.
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