Things to know Backwards and Forwards

a smattering of topics from chapter 16

- Writing double integrals
 - e.g., For D, the triangle with vertices (0,0), (2,1) and (2,-1):
 - 1. Write double integrals for the area of D in rectangular and polar coordinates.
 - 2. Rewrite the rectangular integral with the variables of integration in the opposite order.
 - 3. If the density of the triangle is $\delta = x + |y|$ (g/cm²), find the mass and center of mass of the triangle.
 - 4. If a three-dimensional solid is bounded below by D and above by $z = \sqrt{x^2 + y^2}$, write a double integral for its volume.
- Writing triple integrals
 - e.g., For E, the 3D solid bounded by $z = x^2$, $y = x^2$, y = 1 and z = 0:
 - 5. Set up a triple integral for the volume of E.
 - 6. Rewrite it with the five other orders of integration.
 - 7. If the density of the solid is $\delta = y$, write integrals for the mass and center of mass of the solid.
 - 8. Find the mass and center of mass.
- Similar, in cylindrical and spherical coordinates:
 - 9. For G bounded by $z = 9 x^2 y^2$ and z = 1, repeat (5)–(8) (use $\delta = z$ instead of $\delta = y$, however).
 - 10. For H given as the eighth of a sphere in the 2nd octant (that is, x < 0, y > 0, z > 0) with radius 2, similarly repeat (5)–(8) (but use $\delta = \sqrt{x^2 + y^2 + z^2}$).