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■ Abstract This article treats the analysis of “time-series–cross-section” (TSCS)
data, which has become popular in the empirical analysis of comparative politics and
international relations (IR). Such data consist of repeated observations on a series of
fixed (nonsampled) units, where the units are of interest in themselves. An example
of TSCS data is the post–World War II annual observations on the political economy
of OECD nations. TSCS data are also becoming more common in IR studies that
use the “dyad-year” design; such data are often complicated by a binary dependent
variable (the presence or absence of dyadic conflict). Among the issues considered
here are estimation and specification. I argue that treating TSCS issues as an estimation
nuisance is old-fashioned; those wishing to pursue this approach should use ordinary
least squares with panel correct standard errors rather than generalized least squares.
A modern approach models dynamics via a lagged dependent variable or a single
equation error correction model. Other modern issues involve the modeling of spatial
impacts (geography) and heterogeneity. The binary dependent variable common in IR
can be handled by treating the TSCS data as event history data.

1. INTRODUCTION

Time-series–cross-section (TSCS) data are commonly analyzed in political science
and related disciplines. TSCS data are characterized by repeated observations
(often annual) on the same fixed political units (usually states or countries). For
convenience, I refer to units and countries interchangeably, and similarly refer to
time period and years. Although I refer only to political science applications, there
are also many purely economic uses of TSCS data, particularly in the study of
economic growth (e.g. Grier & Tullock 1989).

Although there are myriad applications, the prototypical application is the study
of political economy, and in particular the impact of political arrangements on
economic performance in advanced industrial societies. Here I use an example
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drawn from Garrett (1998), who examines the political economy of government
economic policy and performance in 14 OECD nations from 1966 to 1990. In
particular, he is interested in whether labor organization and political partisanship
affect economic policy and/or performance, and whether the impacts of those
variables have changed over time (whether globalization has limited the impact of
domestic political arrangements).

Other applications rely on more or fewer repeated observations. Although there
is no strict lower limit to the number of repeated observations, there must be enough
for some averaging operations to make sense. Thus, for example, our1 simulations
use a minimum of 15 repeated observations. There is no reason in principle that
the observations need be annual, but they typically are. Although quarterly or
monthly data would increase the number of repeated observations, such data are
often not meaningful in the political economy context. There is no upper limit to
the number of repeated observations we can study, and more repeated observations
simply improve the performance of TSCS estimators.

Although the 14 units studied by Garrett is a typical number (for other
studies, see Hall & Franzese 1998, Hicks & Kenworthy 1998, Iversen 1999,
Radcliffe & Davis 2000), other researchers have studied the 50 American states
(e.g. Fiorina 1994, Fording 1997, Smith 1997, Su et al 1993) or the 100 or so
nations on which good data exist (e.g. Blanton 2000, Burkhart & Lewis-Beck
1994, Gasiorowski 2000, Poe et al 1999), or even the 654 parishes of Louisiana
(Giles & Hertz 1994). The critical issue, as Section 2 shows, is that the units
be fixed and not sampled, and that inference be conditional on the observed
units.

TSCS data has also become of interest in international relations (IR). Many
quantitative IR researchers use a “dyad-year” design (Maoz & Russett 1993), in
which pairs of nations are observed annually for long periods of time (ranging
from 40 to over 100 years). The dependent variable of interest in these studies
is often the binary indicator of whether a dyad was in conflict in a given year.
Binary dependent variables cause special problems. (Although binary dependent
variables are most common in the study of international conflict, they also arise
in studies of the diffusion of innovation, such as Berry & Berry 1990. The same
logic holds for such studies.)

I discuss the characteristics of TSCS data in Section 2 and use that charac-
terization to discuss estimation issues in Sections 3 and 4. Section 3 concerns
old-fashioned estimation issues, which center on generalized least squares. Gen-
eralized least squares methods treat the interesting properties of TSCS data as
nuisances that cause estimation difficulties. These methods have poor statistical
performance. Section 4 provides the current solution to the old-fashioned estima-
tion nuisance problem. Although the solution is also old-fashioned, it at least has
good statistical properties.

1This paper reports work done jointly with Jonathan N Katz, and the use of “our” or “we”
always denotes Katz and myself.
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The next sections consider a more modern approach, which treats the interesting
properties of TSCS data as something to be modeled. I begin with dynamics in
Section 5. I then turn to the modeling of spatial or geographic factors (Section 6),
followed by the modeling of heterogeneity (Section 7). Section 8 discusses the
binary dependent variable case of interest in IR.

2. CHARACTERIZING TSCS DATA

TSCS uses the following notation (assuming a “rectangular” structure for nota-
tional convenience but with no loss of generality):

yi,t = xi,tβ + εi,t ; i = 1, . . . , N; t = 1, . . . , T, 1.

wherexi,t is aK vector of exogenous variables and observations are indexed by
both unit (i) and time (t). AssumeÄ to be theNT× NT covariance matrix of the
errors with typical elementE(εi,tε j,s). I assume, until Section 8, that the dependent
variable,y, is continuous (at least in the sense of social science, where seven-point
scales and the like are treated as continuous). Given the nature of typical TSCS
data, I often refer to the units as countries and the time periods as years, but the
discussion generalizes to any data set that is TSCS.

Equation 1 hides as much as it reveals. In particular, it does not distinguish
“panel” data from TSCS data. Panel data are repeated cross-section data, but the
units are sampled (usually they are survey respondents obtained in some random
sampling scheme), and they are typically observed only a few times. TSCS units are
fixed; there is no sampling scheme for the units, and any “resampling” experiments
must keep the units fixed and only resample complete units (Freedman & Peters
1984). In panel data, the people observed are of no interest; all inferences of interest
concern the underlying population that was sampled, rather than being conditional
on the observed sample. TSCS data are exactly the opposite; all inferences of
interest are conditional on the observed units. For TSCS data, we cannot even
contemplate a thought experiment of resampling a new “Germany,” although we
can contemplate observing a new draw of German data for some year.

The difference between TSCS and panel data has both theoretical and practical
consequences, which go hand in hand. Theoretically, all asymptotics for TSCS data
are inT; the number of units is fixed and even an asymptotic argument must be
based on theN observed units. We can, however, contemplate what might happen
as T → ∞, and methods can be theoretically justified based on their large-T
behavior.

Panel data have the opposite characteristic. However many waves a panel has,
that number is fixed by the design, and there can be no justification of methods by
an appeal to asymptotics inT. There are, however, reasonable asymptotics inN,
as sample sizes can be thought of as getting larger and larger.

Many common panel methods are justified by asymptotics inN. In particular,
the currently popular “general estimating equation” approach of Liang & Zeger
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(1986) is known to have good properties only asN becomes large. Thus, although
it might be a very useful method for panel data, there is no reason to believe that
the general estimating equation is a good approach for TSCS data.

The methods Katz and I propose require thatT be large enough that averages
over theT time periods for each unit make sense. We also use standard time-series
methods to model the dynamics of TSCS data; this is possible only whenT is not
tiny. Panel data methods, conversely, are constructed to deal with smallTs; one
would not attempt to use a lagged dependent variable when one has only three
repeated observations per unit!

Thus, TSCS methods are justified by asymptotics inT and typically require a
reasonably largeT to be useful. Again, there is no hard and fast minimumT for
TSCS methods to work, but one ought to be suspicious of TSCS methods used for,
say,T< 10. On the other hand, TSCS methods do not require a largeN, although
a largeN is typically not harmful. Thus, estimation on 14 OECD nations does
not violate any assumption that justifies a (correct) TSCS method, but estimation
on thousands of fixed units via TSCS methods is perfectly acceptable (though it
might be numerically difficult). In contrast, panel methods are designed for and
work well with very smallTs (three, or perhaps even two) but require a largeN
for the theoretical properties of the estimators to have any practical consequences.
Panel estimators are also designed to avoid practical issues that arise from the large
(and asymptotically infinitely large)N that characterizes panel data. Because much
of the econometric literature conflates the analysis of panel data with the analysis of
TSCS data, it is critical to keep in mind the distinction between the two types of data.

3. ESTIMATION ISSUES

Equation 1 can be estimated by ordinary least squares (OLS). OLS is optimal if
the error process for Equation 1 meets the Gauss-Markov assumptions. Several of
the Gauss-Markov assumptions are often suspect for TSCS data. An old fashioned
approach is to treat these violations as a nuisance and correct for them using
feasible generalized least squares (FGLS). I use the term old-fashioned because this
perspective views violations of the Gauss-Markov assumptions as an estimation
nuisance rather than something to be modeled. The modern perspective, at least
in time series, is to regard these “violations” as interesting features to be modeled
and not swept under the rug (Hendry & Mizon 1978). The situation for TSCS
data differs from that for single time series in that the FGLS approach can do
considerable harm with TSCS data; this is because it is possible to estimate some
error properties of TSCS data that cannot be estimated with either a single time
series or cross section. I therefore consider the old-fashioned methods primarily
as a warning of what can go wrong and for historical reasons. (Lest I be accused of
beating a dead horse, I note that the horse was quite alive only three or four years
ago, and that I can claim some credit for helping to kill it!)
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The Gauss-Markov assumption is that each of theεi,t is independent and iden-
tically distributed; that is,

E(εi,tε j,s) =
{

σ 2 if i = j ands = t
0 otherwise.

2.

It is well known that OLS will be inefficient, and its reported standard errors
may be incorrect, if the error process does not look like Equation 2. In particular,
the errors may show (a) panel heteroskedasticity, i.e. each country may have its
own error variance (Equation 4); (b) contemporaneous correlation of the errors,
i.e. the error for one country may be correlated with the errors for other countries
in the same year (Equation 3); or (c) serially correlated errors, i.e. the errors for a
given country are correlated with previous errors for that country (Equation 6). We
would expect the errors from TSCS models to often “violate” the Gauss-Markov
assumptions. If nations vary so that the error variance varies from nation to nation,
we expect to observe panel heteroskedasticity; alternatively, we may observe panel
heteroskedasticity because one or two units do not fit the basic specification well.
Panel heteroskedasticity is one type of interunit heterogeneity. As we shall see in
Section 7, there are many more interesting forms of unit heterogeneity to assess
and model.

We will observe contemporaneously correlated errors if unobserved features of
some countries are related to unobserved features in other countries. (Although we
use the term errors, these are only errors of the observer, i.e. omitted variables.)
Thus, if the Dutch and German economies are linked, then we would expect omitted
variables for each country also to be linked.

Finally, since TSCS data consist of a group of time series, we would expect
the data to show the usual features of time-series data, that is, temporally depen-
dent observations. In the old-fashioned approach, these are modeled as serially
correlated errors.

These are seen as nuisances in the old-fashioned approach. After discussing
the old-fashioned approach, I return to the modeling of each of these interesting
features of TSCS data. In this section and the next, however, I treat these problems
as nuisances that cause problems in estimation. For expository purposes, I assume
in this section and the next that observations are temporally independent, returning
to that issue in Section 5. As we shall see, the modern approach to dynamics fits
easily with our recommended estimation fix.

Feasible Generalized Least Squares

TSCS models with contemporaneously correlated and panel-heteroskedastic errors
haveÄ as anNT × NT matrix block diagonal matrix with anN × N matrix of
contemporaneous covariances,6 [having typical elementE(εi,tε j,t )], along the
block diagonal. This follows from the assumption that the error process can be

A
nn

u.
 R

ev
. P

ol
it.

 S
ci

. 2
00

1.
4:

27
1-

29
3.

 D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
M

ic
hi

ga
n 

on
 0

5/
24

/1
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



P1: FXY

April 11, 2001 13:52 Annual Reviews AR130-11

276 BECK

characterized by

E(εi,tε j,s) =
{

σ 2
i if i = j ands = t

σi, j if i 6= j ands = t
0 otherwise.

3.

Note that the data provideT sets of residuals to estimate6. Thus, FGLS could be
used to estimate Equation 1 with the panel heteroskedastic and contemporaneously
correlated error matrix. Such a procedure first does OLS, uses the OLS residuals
to estimate6, and uses the standard FGLS formulae to estimate model parameters
and standard errors. This procedure was first described by Parks (1967) and was
popularized by Kmenta (1986), so it is usually known as Parks or Parks-Kmenta.

Unlike many common FGLS applications, this procedure requires estimating
an enormous number of parameters for the error covariances. Note that FGLS
assumes that the parameters of6 are known, not estimated. We have shown (Beck
& Katz 1995) that the properties of the Parks estimator for typical TSCSTs are very
bad, and that, in particular, the estimated standard errors could be underestimating
variability by from 50% to 200%, depending onT. The FGLS standard errors
underestimate sampling variability because FGLS assumes that6 is known, not
estimated. Our conclusion is that the Parks-Kmenta estimator simply should not
be used.

Table 1 shows why many researchers liked Parks-Kmenta; it gives the nice
t-ratios that are so prized by journal editors. The Parks-Kmenta estimator of the
basic Garrett model is in the third set of columns of the table. Note that with
a T of 25, standard errors are anywhere between 50% and 100% smaller than
corresponding OLS standard errors. Although this may make one’s results easier
to publish, the simple fact is that the Parks-Kmenta standard errors are wrong, and
perhaps worse, they are wrong in the direction of being wildly optimistic.

Some researchers, noting this problem, avoided Parks-Kmenta but still used
FGLS to correct for panel heteroskedasticity. In this model, all error covariances
between different units are assumed to be zero, but each unit has its own error
variance,σ 2

i . Panel heteroskedastic errors thus yield

E(εi,tε j,s) =
{

σ 2
i if i = j ands = t

0 otherwise.
4.

Panel heteroskedasticity differs from simple heteroskedasticity in that error vari-
ances are constant within a unit.

This model appears to avoid the craziness of Parks-Kmenta, since onlyN error
parameters need be estimated (andN is typically not enormous for TSCS studies).
The FGLS correction for panel studies proceeds, as usual, by a first round of OLS
and a second round of weighted OLS, with weights being inversely proportional
to the estimatedσ i for each unit (and theseσ i estimated in the obvious manner).
This procedure can be called panel-weighted least squares (PWLS).

Although our simulations do not show that PWLS has horrible properties
(at least for reasonableN and T ), we do feel that it is very problematic. This
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TABLE 1 Comparison of ordinary least squares (OLS) and feasible
generalized least squares (FGLS) estimates of the Garrett model of economic
growth in 14 advanced industrial democracies, 1966–1990a

OLS/PCSEb Panel. Het.c Cont. Corr.d

Variable β̂ SE PCSE β̂ SE β̂ SE

GDP Lagged 0.13 0.05 0.07 0.10 0.05 0.08 0.05

OIL −6.62 6.26 6.42 −5.92 5.79 −4.71 3.12

DEMAND .064 0.11 0.16 0.60 0.10 0.72 0.07

LABOR −0.13 0.62 0.56 −0.44 0.52 −0.03 0.29

LEFT −0.68 0.42 0.31 −0.57 0.27 −0.65 0.13

LEFTxLABOR 0.23 0.16 0.12 0.23 0.14 0.23 0.06

PER6673 1.41 0.55 0.74 1.56 0.49 1.85 0.40

PER7479 0.04 0.56 0.77 0.29 0.49 0.52 0.40

PER8084 −0.54 0.58 0.80 −0.51 0.51 −0.18 0.42

PER8690 −0.14 0.55 0.76 −0.2 0.49 0.13 0.40

CONSTANT 2.39 1.36 1.36 2.90 1.19 1.84 0.79

aAll models estimated with fixed effects.
bOLS with OLS standard errors and panel correct standard errors (PCSE).
cFGLS estimates correcting for panel heteroskedasticity.
dFGLS correcting for both contemporaneous correlation of the errors and panel heteroskedasticity
(Parks-Kmenta).

is because the weights used in the procedure are simply how well the observations
for a unit fit the original OLS regression plane. The second round of FGLS simply
downweights the observations for a country if that country does not fit the OLS
regression plane well. Thus, on the second round, fit will be good! In other, non-
TSCS applications, the correction for heteroskedasticity is theoretical and does not
simply downweight poorly fitting observations. The closest analog to PWLS in the
cross-sectional world would be to run a cross-sectional regression and then weight
each observation by the inverse of its residual. That would yield niceR2,s andt ,s,
but it would be an odd procedure. We reanalyzed (Beck & Katz 1996) a PWLS
study of Burkhart & Lewis-Beck (1994) that analyzed economic growth in more
than 100 countries and found that three quarters of the weight in the second-round
regression came from only 20 advanced industrial societies that fit the first-round
regression well. PWLS does less harm in the Garrett example (the middle columns
of Table 1), but it does seem wrong to use a procedure that weights observations
by how well they fit a prior regression.

This is not to say that we should ignore heterogeneity across units; far from it.
As Section 7 demonstrates, the modern approach is to model this heterogeneity
directly, or at least to inquire whether all units are governed by the same regression
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equation. But given the choice between simply ignoring panel heteroskedasticity
(and hence using OLS) or using PWLS, the former seems less mischievous. It
is also easy, as we will see in the next section, to modify OLS to avoid incorrect
standard errors in the presence of panel heteroskedasticity; this modification comes
at almost no cost.

4. PANEL CORRECT STANDARD ERRORS

The results of the previous section are negative. Parks-Kmenta has very poor
properties and the FGLS correction for panel heteroskedasticity is, in my view,
inherently flawed. This does not mean, however, that OLS is a good estimator for
TSCS data; the errors are likely, after all, to show both panel heteroskedasticity
and contemporaneous correlation of the errors. Under these conditions, OLS is still
consistent, though inefficient, and the OLS standard errors may be wrong. Although
inefficiency may be an important issue, it is easy to at least compute panel correct
standard errors (PCSEs), which correctly measure the sampling variability of the
OLS estimates,̂β.

The usual OLS formula for the standard errors may be misleading for TSCS
data. The correct formula is given by the square roots of the diagonal terms of

Cov(β̂) = (X′X)−1{X′ÄX}(X′X)−1. 5.

The OLS standard errors are produced by assuming that theÄ matrix is just a
constant times an identity matrix; this assumption will often be incorrect for TSCS
data.

Fortunately, it is easy, given the repeated time structure of TSCS data, to estimate
Ä by Ä̂ and then usêÄ in place ofÄ in Equation 5 to produce PCSEs. The PCSEs
are simply the square roots of the diagonal terms of Equation 5, usingÄ̂. Although
the details are a bit complicated (see Beck & Katz 1995), the basic idea is quite
simple.Ä is a block diagonal matrix, where each block is identical. We thus have
T replications of the error that can be used to estimate this block; for largeT, this
estimate is quite good. Simulations reported by Beck & Katz (1995) indicate that
PCSEs are very accurate (to within a few percent) forT> 15. This is true even
when the errors meet the Gauss-Markov assumptions. Thus, there is no cost, and
some potential gain, to using PCSEs in place of the usual OLS standard errors.
They are, in addition, easy to compute and are implemented in standard software
(such as Stata and LIMDEP). We therefore recommend that researchers who are
worried about using OLS because of the complicated errors found in TSCS data
use the OLS estimates ofβ combined with PCSEs. This approach, though still
old-fashioned, works much better than the FGLS “fix” of the previous section.

The third column of Table 1 shows the PCSEs for the Garrett model. The
reported PCSEs differ from their OLS counterparts by about one third. Thus, for
example, the OLS standard errors understate our uncertainty about the critical
political interaction term; with correct standard errors, we can clearly reject the
null hypothesis that this interaction has no effect on economic growth. Since the
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PCSEs are always as good as (and usually better than) their OLS counterparts, this
leads to the correct inference that nations with powerful left parties and centralized
bargaining grow faster than nations with only one of those attributes.

5. MODELS WITH TEMPORALLY
DEPENDENT OBSERVATIONS

So far I have dealt only with cross-sectional issues. I now turn to problems caused
by dynamics. Obviously TSCS data will often show dynamics. The old-fashioned
treatment is to think of these dynamics as a nuisance, that is, to model them as
serially correlated errors so that

εi,t = ρεi,t−1 + νi,t , 6.

where theνs are independent and identically distributed. Models with such an error
process must be estimated by FGLS (Prais-Winsten or the like).2 This correction
requires the estimation of only one serial correlation parameter, so it does not have
bad statistical properties. But it is not consistent with modern time-series analysis.

Modern time-series analysts model the dynamics directly as part of the specifica-
tion. The simplest form of this is the use of lagged dependent variables, but depend-
ing on the data, other forms, such as single equation error correction (Davidson
et al 1978), may be tried. Whatever we can do for time series we can do for TSCS
data. Because typical TSCS data are annual, it is often the case that a single lagged
dependent variable is all that the data warrant; it is easy to test for more complicated
dynamics via standard Lagrange multiplier tests described below.

Following the identical argument for time series, we can usually replace serially
correlated error models with models involving a lagged dependent variable. This
simplifies other estimation issues so long as the error process, conditional on the
lagged dependent variable being in the specification, is temporally independent. It
is easy to test for this independence via a standard Lagrange multiplier test.3 The

2FGLS here consists of running OLS, then estimating the autoregressive parameter in a
regression of the residuals on their lags, and then transforming the data by subtracting the
estimated autoregressive parameter times the prior observation from the current observa-
tion. This is identical to the single time-series correction of serially correlated errors; see
Beck & Katz (1996) for more details.
3This test regresses the OLS residuals on their lags, as well as all other independent variables,
including the lagged dependent variable. The advantage of this test over others is that all
estimation is done under the null hypothesis of no serial correlation of the errors, so all
estimation can be done using OLS. A similar regression, but with higher-order lagged
residuals, tests whether the data indicate the need for a more complex dynamic structure,
involving higher order lags. Tests on the Garrett model indicate that the single lag of the
dependent variable is adequate, and that there is no remaining serial correlation of the errors.
As in the single time-series case, the use of a lagged dependent variable with temporally
dependent errors makes OLS inconsistent. As in that case, this is seldom a problem in
practice.
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modeling of dynamics via a lagged dependent variable allows researchers to esti-
mate their specification using the same methodology recommended in Section 4,
OLS with PCSEs.

The Garrett data appear to be well modeled by stationary time-series methods,
so no attempt was made to investigate error correction models of the growth
of gross domestic product. But this need not have been the case. Had Garrett
modeled the level of GDP, rather than its rate of growth, we might well have
observed nonstationary data (“unit roots”). Issues of nonstationary data have been
extensively studied for single time series; they are also analyzed for large-N panel
studies. But we know little about nonstationary TSCS data. One solution that should
work well is the TSCS variant of the single equation error correction model. As
in the single time-series case, this models the change in a dependent variable of
interest as a function of changes in the relevant independent variables and the
amount by which the variables are out of equilibrium. We thus have

1yi,t = 1xi,tβ + ρ(yi,t−1 − xi,t−1γ ) + εi,t ;
i = 1, . . . , N; t = 2, . . . , T, 7.

which could then be estimated by OLS with PCSEs. Both Iversen (1999) and
Franzese (2001) have used error correction models for studying OECD political
economy with some success.

6. SPATIAL MODELING

The Parks FGLS method was designed to correct for OLS problems caused by
relationships between the various units. Although the correction has bad properties,
we would expect the observations of the various countries in a TSCS study to be
interrelated. It is better, however, to try to model this relationship than to leave it as
an unspecified nuisance. Such modeling is standard among economic geographers
and spatial econometricians (Anselin 1988). These ideas are hard to implement in
simple cross-sectional models, but they are easy to implement in TSCS models if
we are willing to assume that spatial effects operate with a temporal lag.

The Parks approach simply allowed for an unspecified contemporaneous cor-
relation of the errors that varied by unit but not by time. The inordinate number
of parameters in this model is the cause of its terrible performance. Spatial econo-
metricians, on the other hand, assume that there are a few parameters that describe
the relationship among units. Geographers typically assume that units are related
in proportion to their closeness. Although closeness is often defined in a purely
geographic manner, there is no reason it cannot be defined by the degree of eco-
nomic relationship between nations.

Spatial econometricians allow for two types of spatial dependence. The errors of
nearby units may be correlated (spatial autocorrelation), with the degree of correla-
tion inversely related to the closeness of the two units. Alternatively, a “spatial lag,”
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that is, the weighted sum of the dependent variable of all other units, may be added
to the specification. The weights in this sum are again proportional to the close-
ness of the units. If one has only cross-sectional data, spatial econometrics presents
formidable technical challenges. But with TSCS data, one can assume that neigh-
bors have an effect only with a temporal lag. Then, so long as the remaining errors
are temporally independent, one can use spatial econometric methods quite easily.

Although it is easy to add spatially autocorrelated errors to the model using
FGLS methods, it seems more natural to use spatial lags. Remember that the
“errors” are errors of the observer, that is, omitted variables that the researcher
either could not or did not choose to include in the model. Thus, if we assume
that only the errors show autocorrelation, then we are assuming that only the
unmeasured variables are spatially related and that there is no relationship between
measured variables. This is, however, far from the ideal way to think about spatial
independence, at least for models of open economies (Alt 1985, Franzese 2001,
Garrett 1998).4 We would expect that the economies of trading partners are linked,
so that if the economies of a nation’s trading partners are doing well, that nation’s
economy also should be doing well. If we assume that this spatial effect also
operates with a temporal lag (so that it takes some time, say a year, for an improving
German economy to be reflected in an improving Dutch economy), then we simply
add to Equation 1 a termSi,t−1, which is a weighted average of the lagged dependent
variable for all units except uniti.

This average is a weighted average, with prespecified (not estimated!) weights.
Geographers often use a weighting scheme in which abutting units are given a
weight of one and all others are weighted zero. This scheme might make sense
in some cases, and it is used in Berry & Berry’s (1990) study of the adoption of
state lotteries. But for political economy models, the right weighting is almost
certainly the importance of trade between uniti and the other units; the German
economy, lagged one year, will have a strong effect on the Dutch economy in
proportion to the importance of Dutch-German trade in the Dutch economy (that
is, as a proportion of Dutch GDP). Thus, for each nation and each year, a researcher
must compute the weighted average of the economic performance of all trading
partners, weighted by the importance of that trade.

Many researchers use a spatial lag of the dependent variable in their models
without explicitly noting the geographic interconnection of their data. Thus, for
example, the lagged spatial lag has already been included in the Garrett specifi-
cation I have been estimating. HisDEMANDvariable is a trade weighted average
(for each country) of the growth of GDP in all other OECD countries. Its inclusion
in the model reflects two obvious ideas: (a) When the world’s economy improves,
nationX’s economy will probably improve, and (b) how much better nationX is

4I focus here on political economy models, but the same logic holds for models of the
adoption of innovations by states, such as those of Berry & Berry (1990). In those models,
it is the spatial lag of the innovations of other states that has an effect; states are more likely
to adopt a lottery, for example, if geographically nearby states have done so.
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doing reflects how much better other nations are doing, weighted by the impor-
tance of those others nations toX’s economy. As the tables show, the performance
of one’s trading partners has an important impact on one’s own economic perfor-
mance. Omitting this variable will yield either inefficient or biased estimates of
the impact of domestic variables on economic performance.

As long as the performance of one’s partners operates with a temporal lag, it is
easy to estimate a model that contains a spatial lag by OLS. One must ensure that
the errors show no temporal correlation, but the lagged dependent variable will
usually do so. Any remaining contemporaneous correlation of the errors, or panel
heteroskedasticity, can be handled by the use of PCSEs. For this methodology to
work, care must be taken that no independent variable is correlated with its own
error term. Since the temporal lag of the spatial lag is clearly correlated with the
temporal lag of all other unit error terms, it is critical that the temporally lagged
dependent variable sop up all, or almost all, of the dynamics so there is no (or almost
no) remaining temporal serial correlation of the errors. This is easy to test for by
using the Lagrange multiplier test described in the previous section. Although
my own experience indicates that the lagged dependent variable eliminates serial
correlation of the errors, clearly this will not always be the case, and so a strict
adherence to testing is required.

7. HETEROGENEITY

Equation 1 assumes that the countries are completely homogeneous, differing only
in the levels of their explanatory variables. The FGLS approach was designed to
guard against one type of heterogeneity, unequal unit error variances. A more
modern approach would presume that heterogeneity is an interesting feature of
TSCS data and attempt to model that heterogeneity. That approach would allow
for heterogeneity in the parameters of interest, theβ in Equation 1.

TSCS researchers never assume a completely homogeneous universe. Instead,
they typically assert that some subset of countries is homogeneous and include
those countries in the analysis, excluding all others. It would be interesting to
allow for a more nuanced view of heterogeneity. Before discussing the modeling
of heterogeneity, it is first relevant to discuss tests for homogeneity.

Assessing Heterogeneity via Cross Validation

The standard test for homogeneity is a normalF-test. We estimate the two models

H0 : yi,t = xi,tβ + εi,t 8.

H1 : yi,t = xi,tβi + εi,t 9.

and test the null hypothesesH0 : βi = β. This is done by the usualF-statistic, which
compares the difference in sums of squares residuals from estimating Equations 8
and 9, divided by the appropriate number of degrees of freedom and then divided
by the mean square error of Equation 9.
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We might reject the null of pooling either because of slight variations in all the
β i or because one particular country is not well fit by Equation 8. We also might
fail to notice an “outlying” country because theF-test averages variation over all
units. Finally, we might reject the null of pooling when there is little parameter
variation because of the large sample sizes common in TSCS data sets. In any
event, great care must be taken in interpreting the result of theF-test.5

We can assess whether theF-test rejected homogeneity because one or two
countries were outliers by using cross validation (Stone 1974). For the Garrett
data, this procedure also assesses whether the smallF-statistic resulted from aver-
aging many homogeneous units with one outlying unit. The simplest form of cross
validation is to leave out one observation, fit a regression with all the others, and
“predict” the left-out observation. For all but very small data sets, this procedure is
useless. But for TSCS data, it makes perfect sense, except that instead of leaving
out one observation at a time, we leave out one unit at a time. We can then compare
specifications by seeing how they perform in terms of mean absolute (or square)
“prediction” error, or we can see if any units are predicted less well than the others.
Table 2 demonstrates such an exercise.

In that table, we see that typical mean absolute forecast errors range from 1.2%
to 2% (the unit is percent growth in GDP), except for Japan, which has a forecast
error of 3.2%. Thus, Japan fits the basic specification much less well than any other
OECD nation. A researcher might be well advised to drop the Japanese data from
the Garrett specification.6 Dropping Japan from the analysis increases the impact
of the criticalLEFTxLABORinteraction term by about 20%.

Fixed Effects Models

Having checked for unit heterogeneity, how do we proceed? The old-fashioned
approach was to eliminate the estimation problems caused by the nuisance of
heterogeneity. The modern approach is to model this heterogeneity. The simplest
way of doing so is to assume that each unit has its own intercept, thus changing
Equation 1 to

yi,t = xi,tβ + fi + εi,t , 10.

5A test for pooling in the Garrett model, taking fixed effects as given, yields anF-statistic of
1.29 with 130 and 196 degrees of freedom. This just misses being statistically significant at
the conventional level (P< 0.06). But the statistic is very small and is only nearly significant
because of the huge number of degrees of freedom in the numerator. Thus, given a choice
between a fully pooled and a completely unpooled model, I would simply estimate the
pooled model, with fixed effects, for these data. To pursue the issue further, one would do
anF-test for pooling on interesting subsets of the coefficients.
6This makes sense particularly because the Japanese political economy differs in many
ways from other OECD political economies. I would be less sanguine if a country such
as the Netherlands had the worst forecast errors. It is important to make sure one is not
achieving good fits simply by dropping units that fit poorly. But in this case, both cross
validation and knowledge of the OECD nations leads me to argue that Japan should not be
included in the analysis.
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TABLE 2 Out of sample forecast errors
(ordinary least squares) by country for Garrett
model of economic growth in 14 advanced
industrial democracies, 1966–1990a

Country Mean Absolute Error (%)

United States 1.9

Canada 1.7

United Kingdom 1.7

Netherlands 1.6

Belgium 1.6

France 1.2

Germany 1.4

Austria 1.3

Italy 1.7

Finland 2.0

Sweden 1.2

Norway 1.5

Denmark 1.7

Japan 3.2

aNo effects in model.

where fi is a dummy variable marking uniti. Note that this model introduces
very little heterogeneity. The effect of the independent variables does not vary by
country; each country simply has its own intercept.

The panel literature contains great debates about how to model the effects, and
in particular, whether we should treat them as fixed or random. That argument,
however, is for panel data; for TSCS data, it is clear that fixed effects are appro-
priate (Hsaio 1986: 41–43). Hsaio shows that fixed effects are appropriate if one
wants to make inferences to the observed units, whereas the random effects model
(which assumes that the effects are drawn from some distribution) is appropriate
if one thinks of the observed units as a sample from a larger population and if
one wants to make inferences about the larger population. In TSCS data, the units
(countries) are fixed and we are not interested in extending inference to a larger, hy-
pothetical, population of similar countries. Furthermore, with a largeT, fixed and
random effects converge. As is well known (see e.g. Greene 1999: 568–70), fixed
effects and random effects differ by σε2

σ 2
ε + Tσ 2

α
. As T gets large, this term goes

to zero, so that the random-effects and fixed-effects estimators become identical.
It is easy to test whether the fixed effects are required via a simpleF-test

comparing the sums of squared errors from Equations 1 and 10. Obviously, fixed
effects are not theoretical variables; to say that Germany grew faster because it was
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Germany is hardly a satisfying explanation. But if we cannot otherwise explain unit
variations in growth, and theF-test indicates we need fixed effects, then estimating
Equation 1 without fixed effects means that we are estimating a misspecified model
(Green et al 2001).7

We should note that the use of fixed effects comes with its own costs. Fixed ef-
fects are clearly collinear with any independent variables that are unchanging at-
tributes of the units, so they force us to drop such unchanging variables from the
specification. These variables (perhaps characteristics such as democracy) might be
of interest. And although we can estimate Equation 10 with slowly changing inde-
pendent variables, the fixed effects will soak up most of the explanatory power of
those slowly changing variables. Thus, if a variable such as type of bargaining sys-
tem changes over time, but slowly, the fixed effects will make it hard for such vari-
ables to appear either substantively or statistically significant (Beck & Katz 2001).

TSCS analysts should test to see whether fixed effects are needed in the speci-
fication. If not, then there is no problem. If anF-test indicates that fixed effects are
required, then researchers should make sure they are not losing the explanatory
power of slowly changing or stable variables of interest. (Sometimes we use stable
variables of no substantive interest, and it is not harmful to eliminate these from
the specification.) If variables of interest are being lost because of the inclusion
of fixed effects, the researcher must weigh the gains from including fixed effects
against their costs. If the gains, in terms of decreased sum of squared errors, are
slight, albeit statistically significant, then it might be better to omit the fixed effects
and suffer slight omitted-variable bias. Like most interesting issues, this is a matter
of judgment, not slavish adherence to some 0.05 test level (see Beck & Katz 2001
for a fuller discussion).

The Random Coefficients Model

The random coefficients model (RCM) is an interesting compromise between as-
suming complete homogeneity and assuming complete heterogeneity. This model
is the same as the Bayesian hierarchical model. Western (1998) provides a full
discussion of this model in the context of TSCS data.

The RCM is a compromise between estimating the fully pooled Equation 1
and a fully unpooled estimate, that is, a separate OLS for each unit. There are
not enough data for the latter (that is, separate OLS estimations will have huge
standard errors), but the former requires the very strong assumption of complete
pooling. The RCM uses the idea of “borrowing strength” (Gelman et al 1995).
This Bayesian notion shrinks each of the individual unit OLS estimates back to
the overall (pooled) estimate. RCMs simply generalize random effects from the
intercept to all parameters of interest.

7The F-statistic on the null hypothesis that fixed effects are not needed in the Garrett
specification is 4.88 with 13 and 326 degrees of freedom. We can therefore reject the null
hypothesis that fixed effects are not needed in the specification with aP value of zero to
many decimal places.
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The RCM is

yi,t = xi,tβi + zi,tγ εi,t , 11.

where theβi ∼ N(β, σ 2
β ) and theγ represent fixed coefficients. Note that if we

allow only the intercept to be random, the RCM reduces to the usual random
effects model. This is a complex model, but it can be estimated by either classical
maximum likelihood (Pinheiro & Bates 2000) or Bayesian methods, typically with
diffuse priors (Western 1998).8

The RCM can be made more useful, as Western showed (1998), by allowing
theβ is to be functions of other unit variables,zi. This step allows for modeling
differential effects as a function of differing institutions. (Thezis are time invariant,
so they only measure properties of units.) This is particularly important in com-
parative politics, where we might expect that the effect of somex on the dependent
variable is contingent on structural features that vary from country to country. For
example, the Garrett model asserts that the effect of having a left government is
contingent on the type of labor bargaining in each country. We can then write:

βi = zi γ + β + αi . 12.

Substituting Equation 12 into Equation 11, we see that this model is simply an
interactive model with random coefficients on the linear terms only.

This model is difficult to estimate. In its most general form, with many ran-
dom coefficients, it requires the estimation of a huge number of parameters in the
variance covariance of the random terms. Researchers can ask less of the data by
allowing as many as possible of the coefficients to be fixed. It also makes sense
to assume, as Western does, that the random coefficients are independently dis-
tributed, so no covariance terms need be estimated. This simplifies the estimation
problem dramatically.

The RCM is seldom used in TSCS applications. One reason is that the RCM
estimates of theβ will be similar to the OLS estimates, in that OLS is still consistent,
albeit inefficient if the coefficients really are random. Given the large sample sizes
of typical TSCS data, this inefficiency may not be important. The OLS standard
errors will of course be wrong. But, as Western (1998) shows, the RCM is of greater
interest if we care about the estimated unit coefficients, theβ is. These are of great
interest in the study of comparative politics. In what countries does politics have
the greatest, or least, impact on economic performance?

All RCMs work by estimating the individual OLS estimates of theβ i, esti-
mated one country at a time, and then shrinking them back to the overall pooled
estimate ofβ. The degree of shrinkage is proportional to both how homogeneous

8In econometrics, the RCM dates back to Swamy (1971), who proposed a two-step estimator.
Madalla & Hu (1996) report the inferior performance of the two-step estimator. Katz and
I also have unpublished simulations showing that the two-step estimator performs poorly,
even for very simple models. A variety of technical reasons for this poor performance are
detailed by Beck (2000).
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the units appear to be and how confident we are in our unit-by-unit estimates. This
confidence is determined byT. In panel data, with smallT, the RCM (known in
that context as the hierarchical model) has been of great use. The issue is much
less clear for TSCS data, especially asT gets large. It is also the case that we will
observe the least shrinkage (that is, the least “borrowing of strength”) when we
most need it (i.e. when the units are heterogeneous) and the greatest shrinkage
when we least need it (i.e. when the units are relatively homogeneous).9 Thus,
although RCMs appear to be an interesting way of modeling heterogeneity, the
verdict on their utility for comparative politics is not yet clear.

8. BINARY DEPENDENT VARIABLES

So far we have assumed a continuous dependent variable, but what if we have
binary TSCS (BTSCS) data?10 Such data are particularly common in IR, where
the dependent variable is whether a pair of nations was involved in a dispute in a
given year and the independent variables are characteristics of the dyad (such as
how democratic each nation is, or the level of dyadic trade). IR BTSCS analysts
typically use the dyad-year design, where the variables are observed on pairs of
nations annually over a long period (Maoz & Russett 1993). Observations on pairs
of nations can produce a largeN (4000 or so in the largest studies); theT in these
studies ranges from∼50 to 100. These data sets present interesting problems that
were usually ignored until very recently. My own current efforts deal with some
BTSCS issues using an old-fashioned “treat the nuisance” approach, but some
recent work attempts to model the interesting features of BTSCS data (see Beck
& Tucker 1997 for further discussion).

Binary-dependent-variable panel studies are of great interest in biostatistics
and econometrics. Many medical trials involve observing a large number of sub-
jects a few times, with each observation recording a binary dependent variable
(e.g. whether the subject showed a particular symptom). Although these studies
are interesting, their relevance to BTSCS data is unclear; all of them are justified
by asymptotics inN, and all were designed to work for smallTs. To give but one ex-
ample, it is hard to allow for fixed effects in binary panel data, but fixed effects are
as good (or as bad!) in BTSCS data as in TSCS data. Other popular BTSCS panel

9See Madalla & Hu (1996) for a computation of the shrinkage as a function of sample
size and heterogeneity. Using his formula, I find that the RCM would shrink the unit OLS
coefficients by only about 25%, back to the overall pooled estimates for the Garrett model
we have been using. We have already seen that the pooled estimates for this model are quite
acceptable. Thus, the RCM results for the Garrett model I have been using are not very
interesting, and I do not report them here. This is not to say that RCM estimates of theβ i
might not be more interesting in other data sets, such as that used by Western (1998).
10We could complicate matters further by allowing the data to be polychotomous or cen-
sored, but I restrict myself to the simple binary dependent variable case. Little is known
about the more complex cases.
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approaches, such as Liang & Zeger’s (1986) “general estimating equation,” may
possibly work with BTSCS data, but all that has been proved about this method is
that it works well for panel data.

Until 1999 or so, most analysts working with BTSCS data used ordinary logit
(all results hold for probit also). This approach ignores both temporal and spatial
dependencies in the data, which leads to inefficient estimation and incorrect stan-
dard errors. A modern approach attempts to model these features of the data. (See
Gleditsch & Ward 2000 for a discussion of spatial issues.)

Dynamics: An Old-Fashioned Fix

Although it may seem odd to admit that an article I published two years ago
has an old-fashioned solution, the fix for dynamic issues recommended in Beck
et al (1998) treats dynamic issues as a nuisance that impedes estimation. The best
solution would obviously be to directly model the dynamics; unfortunately this
is very difficult. But failing to deal with the dynamics, either by old-fashioned or
modern methods, can cause serious problems.11

Our old-fashioned solution for BTSCS data in IR is to think of them as event
history data. Thus, the conflict data sets really contain information on the length of
time between conflicts. This approach works if conflict is rare, so that most dyads
manifest a long period of peace followed by an interlude of conflict.12

The advantage of thinking of BTSCS data as event history data is that event
historians always allow for the possibility that the observations are temporally
linked. For an event historian, the probability that a dyad will be in conflict, given
that it is currently at peace, is a function of the past history of the dyad and not
simply a function of current conditions.

To be more specific, it is easy to view BTSCS dyad-year data as grouped
duration data suitable for a grouped Cox (1972) proportional hazards semipara-
metric estimation. The discrete version of the grouped duration Cox model is a
complementary log-log model with a series of time dummy variables added to
the specification. It is hard to see much difference in practice between the com-
plementary log-log specification and the more common logit or probit. We thus
recommend that researchers with data similar to the IR dyad-year conflict data do
logit or probit but add the temporal dummies to their specifications.

Table 3 compares a discrete grouped time logit analysis (from Beck et al 1998)
with an ordinary logit analysis (from Oneal & Russett 1997). The major conse-
quence of including the temporal variables is that the pacific effects of international
trade disappear.

11The problems are most severe when the errors are correlated and the independent variables
trend. We have presented (Beck & Katz 1997) simulation results showing that, in the
presence of severe trending and autocorrelation, standard errors can be off by 50% or more.
12The event history approach also sensitizes us to many other features of IR BTSCS data
[see Beck et al (1998) and Beck & Katz (2001) for other insights we can reach by thinking
like event historians].
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TABLE 3 Comparison of ordinary logit and grouped duration analyses (N = 20,990)

Ordinary Logit Grouped Duration Logit a

Variable β̂ SE β̂ SE

Democracy −0.50 0.07 −0.55 0.08

Economic growth −2.23 0.85 −1.15 0.92

Alliance −0.82 0.08 −0.47 0.09

Contiguous 1.31 0.08 0.70 0.09

Capability ratio −0.31 0.04 −0.30 0.04

Trade −66.13 13.44 −12.67 10.50

Constant −3.29 0.07 −0.94 0.09

Log likelihood −3477.6 −2554.7

Degrees of freedom 20983 20036b

a34 temporal dummy variables in specification not shown.
b Three dummy variables and 916 observations dropped.

Dynamics: A Modern Approach

A modern approach would, as we saw in Section 5, explicitly model the dynamics.
Although this has not been done, I can sketch a reasonable approach. It starts with
the latent variable setup for a logit model:

y∗
i,t = xi,tβ + ρy∗

i,t−1 + εi,t

yi,t = 1 if y∗
i,t > 0

yi,t = 0 if y∗
i,t ≤ 0.

13.

This model looks like the standard dynamic setup, with the underlying latent
variable for conflict, the propensity to be in conflict, being a function of its lagged
value. This model is difficult to estimate by standard methods, but is estimable
using Markov Chain Monte Carlo methods (see Jackman 2000a,b for political
science applications). This appears to be a promising approach for future research.

The explicit model in Equation 13 also helps us to think about alternative
dynamic specification. Some have suggested using the realization of the lagged
dependent variable,yi,t−1, in place of the latent lag in Equation 13. Looking at the
specification, we see this is equivalent to asserting that a current conflict increases
the propensity for a future conflict, but a current pacific year decreases that future
propensity. Such a model is very easy to estimate (simply addyi,t −1 to the logit),
but is it sensible to do this? If a dyad has a high propensity for conflict but fails to
engage in conflict during a given year, does this increase or decrease the likelihood
of future conflict? A more sensible model, which might be called “strain relief,”
replaces the lagged latent variable in Equation 13 with the strain in the dyad,
i.e. the lagged difference between the propensity for conflict and whether a conflict
actually occurred (yi,t−1

∗ −γ yi,t −1). This strain relief model is akin to the continuous
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dependent variable error correction model that is so appealing. This model can also
be estimated by Markov Chain Monte Carlo methods. Although this has not yet
been done, the approach is promising.

Heterogeneity

BTSCS researchers have recognized the issue of heterogeneity. Thus, many ana-
lysts (Maoz & Russett 1993) limit their analysis to the so-called politically relevant
dyads (involving major powers or contiguous states), assuming that other dyads
are unlikely to be in conflict. Assuming two types of homogeneous dyads, those
never in conflict and those that are politically relevant, is of course a very strong
assumption. Beck et al (2000) argued that a more flexible way to handle this type of
heterogeneity is to allow for massive interactions in a neural network model. These
massive interactions allow for an independent variable of interest, say democracy,
to have almost no effect in most dyads but a large effect in a few “conflict prone”
dyads. More work is required before we can be confident about the utility of this
approach.

A much simpler approach has been suggested by Green et al (2001). They
suggest simply adding fixed effects (basically a dyadic-specific dummy variable)
to the logit. Although fixed effects cannot be used in panel models, they may
perhaps be useful for BTSCS data. However, the use of fixed effects in the IR
conflict data causes us to believe that dyads that are never in conflict can give us no
information about the impact of variables such as democracy on conflict. Because
90% of dyads are never in conflict, and since these dyads are more likely to be
democratic, this is a very serious problem. For this reason, fixed effects are almost
never a good idea for BTSCS data (Beck & Katz 2001). This is not to say that
modeling heterogeneity is not important; far from it. But at present we do not have
a good method for modeling heterogeneity in BTSCS data.

9. CONCLUSION

Katz and I became interested in TSCS data in about 1993. TSCS models were
becoming of great interest in political science because they appeared to allow stu-
dents of comparative politics (broadly defined) to use powerful statistical methods
that had been the province of students of American politics (typically studying
voting behavior via large-N surveys). Most studies either ignored TSCS issues
or treated those issues as a nuisance, using an FGLS estimation method. In the
early 1990s, researchers were using some procedures that, to my mind, had poor
statistical properties or seemed otherwise dangerous. One reason that TSCS data
is of interest is that the richness of the data allows us to do many things; but many
of those things should not be done.

By now, most political science articles appear to use our recommended method-
ology of OLS estimates ofβ coupled with PCSEs, with dynamics modeled via a
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lagged dependent variable. Of course this seems to me like a reasonable way to
estimate the fully pooled TSCS model. My hope is that researchers will take the
error correction dynamic model seriously, although in practice stationary models
have appeared to perform adequately. The use of (single equation) error correction
models does not require researchers to leave the simple OLS world. This is not to
imply that error correction models are easy to estimate or that there are no issues
in using them. But a full discussion of these issues would take this essay too far
afield.

Now that estimation issues have been dealt with, interest should focus on spec-
ification. Presumably political scientists have a comparative advantage in specifi-
cation, not estimation! One current area of research is modeling TSCS data with
a binary dependent variable; this is a particularly hot topic in the study of interna-
tional conflict. Although this can be thought of as an arena of high technique, the
important issues have to do with specification—that is, do the BTSCS data look
like event history data, or should they be modeled with a lagged latent variable in
a dynamic probit setup? Two other pressing issues are the incorporation of spatial
effects and the modeling of heterogeneity. The former seems straightforward, and
many researchers might take pleasure in noting that they have been estimating
spatial models all along. Heterogeneity appears to be a more difficult problem,
although “high-tech” approaches such as Bayesian RCMs should not detract from
the use of simpler ideas, such as cross validation. In the end, all these issues are
primarily issues of specification, not (difficult) estimation. Thus, we can begin to
return the modeling of phenomena in comparative politics and IR back to political
scientists, rather than leaving it in the hands of econometricians or biometricians.
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