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Ocean microbes drive biogeochemical cycling on a global scale1. 
However, this cycling is constrained by viruses that affect community 
composition, metabolic activity, and evolutionary trajectories2,3. 
Owing to challenges with the sampling and cultivation of viruses, 
genome-level viral diversity remains poorly described and grossly 
understudied, with less than 1% of observed surface-ocean viruses 
known4. Here we assemble complete genomes and large genomic 
fragments from both surface- and deep-ocean viruses sampled 
during the Tara Oceans and Malaspina research expeditions5,6, 
and analyse the resulting ‘global ocean virome’ dataset to present 
a global map of abundant, double-stranded DNA viruses complete 
with genomic and ecological contexts. A total of 15,222 epipelagic 
and mesopelagic viral populations were identified, comprising 867 
viral clusters (defined as approximately genus-level groups7,8). This 
roughly triples the number of known ocean viral populations4 and 
doubles the number of candidate bacterial and archaeal virus genera8, 
providing a near-complete sampling of epipelagic communities at 
both the population and viral-cluster level. We found that 38 of 
the 867 viral clusters were locally or globally abundant, together 
accounting for nearly half of the viral populations in any global 
ocean virome sample. While two-thirds of these clusters represent 
newly described viruses lacking any cultivated representative, most 
could be computationally linked to dominant, ecologically relevant 
microbial hosts. Moreover, we identified 243 viral-encoded auxiliary 
metabolic genes, of which only 95 were previously known. Deeper 
analyses of four of these auxiliary metabolic genes (dsrC, soxYZ,  
P-II (also known as glnB) and amoC) revealed that abundant viruses 
may directly manipulate sulfur and nitrogen cycling throughout the 
epipelagic ocean. This viral catalog and functional analyses provide a 
necessary foundation for the meaningful integration of viruses into 
ecosystem models where they act as key players in nutrient cycling 
and trophic networks.

The lack of host-contextualized quantitative surveys of the  diversity 
of microbe-specific viruses in nature is a fundamental block to 
the incorporation of these viruses into ecosystem models. This is 

because most naturally occurring microbes and viruses are not  
currently cultivated and viruses lack a universally conserved marker 
gene,  precluding PCR-based surveys of uncultivated diversity3. 
Although viral metagenomics (viromics) was intended to  circumvent 
these issues, early datasets were fragmented and only  suitable for 
descriptive gene-level analyses—studies that were  prohibitively lim-
ited by database biases3. Subsequent  experimental, technological and 
analytical advances enabled improved viral population ecology, aided 
by the availability of genomic  information3,9–11. The 1,148 large viral 
genome fragments captured in a fosmid library from Mediterranean 
Sea microbes revealed remarkable viral diversity, with some genomes 
appearing to be globally distributed based upon the analysis of 6 
available viral metagenomes9. Similarly, 69 viral reference genomes 
assembled from single-cell samples helped elucidate the ecological, evo-
lutionary and potential biogeochemical effects of uncultivated viruses 
infecting an uncultivated anaerobic chemoautotroph11. Technological 
advances mean that metagenomic approaches are now quantitative, at 
least for double-stranded DNA (dsDNA)  templates3, and can them-
selves provide genomic  information on uncultivated viruses. The 42 
surface-ocean viral metagenomes in the Tara Oceans Viromes (TOV) 
dataset is an example of this  progress. These data reveal the global 
underlying structure of these viral  communities and identified 5,476 
viral populations, of which only 39 were previously known4.

Here we further identify ocean viral populations, determine and 
characterize the most abundant and widespread dsDNA ocean viral 
types, and analyse viral-encoded auxiliary metabolic genes (AMGs) and 
their distributions to propose new means by which viruses are likely 
to modulate microbial biogeochemistry. We do so by analysing the 
Global Oceans Viromes (GOV) dataset, augmenting the TOV  dataset 
with a further 61 samples to represent better the surface and deep 
oceans. The GOV now totals 104 viromes, with 925 Gb of  sequencing 
data (Supplementary Table 1). Furthermore, our use of upgraded 
analytical approaches, including cross-assembly12 and genome- 
binning13, improved the genomic representation of sampled viruses 
(see Supplementary Information for details on the dataset generation 

1Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA. 2Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands. 3Centre for 
Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands. 4Department of Marine Biology, Federal University of Rio de Janeiro, Rio de 
Janeiro, CEP 21941-902, Brazil. 5Structural and Computational Biology, European Molecular Biology Laboratory, 69117 Heidelberg, Germany. 6Department of Ecology and Evolutionary Biology, 
University of Michigan, Ann Arbor, Michigan 48109, USA. 7Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, 
University of Vienna, A-1090 Vienna, Austria. 8Austrian Polar Research Institute, A-1090 Vienna, Austria. 9Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 
85721, USA. 10Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC Barcelona E0800, Spain. 11Institute of Marine Sciences (CNR-ISMAR), National Research 
Council, 30122 Venezia, Italy. 12CEA - Institut de Génomique, GENOSCOPE, 91057 Evry, France. 13PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, 28359 
Bremen, Germany. 14MARUM, Bremen University, 28359 Bremen, Germany. 15Directors’ Research, European Molecular Biology Laboratory, 69117 Heidelberg, Germany. 16CNRS, UMR 7144, 
EPEP, Station Biologique de Roscoff, 29680 Roscoff, France. 17Sorbonne Universités, UPMC Université Paris 06, UMR 7144, Station Biologique de Roscoff, 29680 Roscoff, France. 18Institut de 
Biologie de l’École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres Research University, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France. 19CNRS, UMR 7093, 
Laboratoire d'océanographie de Villefranche, Observatoire Océanologique, 06230 Villefranche-sur-mer, France. 20Sorbonne Universités, UPMC Université Paris 06, UMR 7093, Observatoire 
Océanologique, 06230 Villefranche-sur-mer, France. 21Mediterranean Institute of Advanced Studies, CSIC-UiB, 21-07190 Esporles, Mallorca, Spain. 22King Abdullah University of Science and 
Technology, Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia. 23Max-Delbrück-Centre for Molecular Medicine, 13092 Berlin, Germany. 24CNRS, UMR 8030, 91057 Evry, France. 
25Université d’Evry, UMR 8030, 91057 Evry, France. 26Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, USA. †Present address: 
Department of Biology, Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland. 
*A list of participants and their affiliations appears in the Supplementary Information.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://www.nature.com/doifinder/10.1038/nature19366


6 9 0  |  N A T U R E  |  V O L  5 3 7  |  2 9  S E P T E M B E R  2 0 1 6

LETTERRESEARCH

process). From 1,380,834 contigs, which recruited 67% of the reads, 
we identified 15,280 viral populations (Fig. 1a; Supplementary Fig. 1 
contains an explanation of viral population definition). This expands 
the number of known ocean viral populations nearly threefold over the 
prior TOV dataset4 and improves average contig lengths and genomic 
context 2.5-fold for populations known to the TOV (Supplementary 
Table 2). Rarefaction analyses show that, while mesopelagic viral 
 communities remain under-sampled, sampling of epipelagic viral 
communities now appears to be near-complete (Extended Data  
Fig. 1a). Because bathypelagic communities were underrepresented 
owing to cellular contamination, we focused the remaining analyses 
on 15,222 non-bathypelagic viral populations.

We first categorized viral populations into viral clusters using shared 
gene-content information and network analytics7 (see Supplementary 
Fig. 1 for viral cluster definition schematic). This method starts with 
genome fragments (those fragments ≥ 10 kb) and results in viral 
 clusters approximately equivalent to known viral genera7,8. Clustering 
of the 15,222 GOV viral populations with 15,929 publicly availa-
ble  bacterial and archaeal viruses revealed 1,259 viral clusters (see 
Extended Data Fig. 2, Supplementary Table 3 and Supplementary 
Information for comparisons with alternative classification methods).  
Of these viral clusters, 658 included sequences that were exclusive to 
GOV, approximately doubling the number of known bacterial and 
archaeal virus genera8, and another 209 contained at least one GOV 
sequence (Fig. 1b). As with viral populations, rarefaction analyses 
 suggested that viral-cluster diversity was under-sampled in mesopelagic 
waters, but near-completely sampled in epipelagic waters (Extended 
Data Fig. 1b).

We next identified the most abundant and widespread viral clusters 
based on read-recruitment of viral cluster members. In each sample, a 
fraction of the viral clusters was identified as abundant based on their 
cumulative contribution to sample diversity (Simpson index estimates 
state that abundant viral clusters represent 80% of the total sample 
diversity, Extended Data Fig. 1c). By these criteria, only 38 out of 867 
observed viral clusters were abundant in two or more stations, together 
recruiting an average of 50% and 35% of reads from viral populations 
for epipelagic and mesopelagic samples, respectively (Supplementary 
Table 3). Of these 38 abundant viral clusters, 4 were also relatively 
ubiquitous as they were abundant in more than 25 stations, and 62 
of the 91 non-bathypelagic samples were dominated by 1 of these 4 
viral clusters (Fig. 2a, b). Among the 38 abundant viral clusters, only 
2 corresponded to well-studied viruses from the T4 superfamily14,15 
(viral cluster VC_2, one of the four ubiquitous viral clusters) and the T7 
virus genus16 (VC_9). In total, eight viral clusters represented known 
but unclassified viral isolates, 10 included viruses known only from 

environmental sequencing9,10, and the remaining 18 viral clusters were 
previously unreported (Fig. 2c and Extended Data Fig. 3).

Once we developed this global map of the dominant dsDNA 
viral types in the oceans, we next sought to identify the range of 
hosts that these viruses infect. This is challenging, as culture-based 
 methods  insufficiently capture naturally occurring diversity, whereas 
 metagenomic approaches broadly survey viral diversity but often 
 without host information. Fortunately, sequence-based approaches are 
emerging that examine similarities between (i) viral genomes and host 
CRISPR spacers17, (ii) viral and microbial genomes due to integrated 
prophages or gene  transfers9 and (iii) viral and host genome  nucleotide 
 signatures (here, tetranucleotide frequencies8; see Supplementary  
Table 4 and Supplementary Information for discussion of the  accuracy 
and sensitivity of in silico host prediction methods). We applied all 
three methods to the GOV to predict hosts at the phylum level (or 
class level for Proteobacteria) (Supplementary Table 5) and then 
summarized these results at the viral cluster level. This led to host-
range  predictions for 392 out of 867 viral clusters—all with confidence 
assessed by  comparison to a null model (Supplementary Fig. 2 and 
Supplementary Table 3).

The hosts of the 38 globally abundant viral clusters were largely 
restricted to abundant and widespread epipelagic-ocean microbes 
that were previously identified via miTAG-based operational  taxonomic 
unit (OTU) counts in Tara Oceans microbial metagenomes18. Notably, 
the four ubiquitous and abundant viral clusters were predicted to 
infect seven of the eight globally abundant microbial groups (these 
were Actinobacteria, Alpha-, Delta-, and Gammaproteobacteria, 
Bacteroidetes, Cyanobacteria, Deferribacteres) (Fig. 2c and Extended 
Data Fig. 4). The eighth abundant microbial group, Euryarchaeota, 
was not linked to these 4 viral clusters, but was predicted as a host for 
3 of the 34 other abundant viral clusters (VC_3, VC_27, and VC_63; 
Extended Data Fig. 3). Among the 38 abundant viral clusters, the 
 number of viral clusters that was predicted to infect a given  microbial 
host phylum (or Proteobacterial class) was positively correlated with the 
global richness of the host rather than its relative abundance (Extended 
Data Fig. 4b). This suggests that widespread and abundant hosts that 
are minimally diverse (for example, Cyanobacteria) provide few viral 
niches, whereas more diverse host groups, even at lower  abundance 
(for example, Betaproteobacteria), provide more opportunity for viral 
niche differentiation, probably because ocean viruses appear to be 
globally distributed4. Thus, these host associations provide critically 
needed empirical support for hypotheses derived from global virus–
host  network models19.

Having mapped viral diversity and predicted virus–host pairings, 
we next sought to identify the virus-encoded AMGs that could modify 

Figure 1 | Composition of the Global Ocean Viromes (GOV) dataset.  
a, The size of viral contigs (x axis) and their cumulative coverage across 
the GOV dataset (y axis). Contigs corresponding to complete (345 contigs) 
or near-complete (425 contigs) genomes are indicated. For clarity, only 
contigs associated with a viral population (24,412 contigs) are displayed.  
b, Distribution of all viral clusters according to the origin of their 

members. Viral genomes (or fragments) in a viral cluster can originate 
from isolated viral genomes, the VirSorter Curated Dataset8 (viral 
genomes identified in silico from microbial genomes), environmental viral 
genomes and genome fragments (from fosmid libraries, for example), or 
the GOV dataset. Viral clusters that include at least one GOV sequence 
and are further analysed in this study are highlighted in bold.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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host metabolism during infection, probably affecting  biogeochemistry. 
To maximize AMG detection, all 298,383 viral contigs > 1.5 kb 
were  examined, including small contigs not associated with a viral 
 population. This revealed 243 putative AMGs (Supplementary Table 6). 
While 95 of these AMGs were known20, others offer insights into how 
viruses may directly manipulate microbial metabolism. Here we focus 
on four, dsrC, soxYZ, P-II and amoC, because of their putative roles in 
sulfur or nitrogen cycling (see Extended Data Table 1, Supplementary 
Figs 3–6 and Supplementary Information for functional affiliation 
of these AMGs). Three of these are not characterized in viruses and 
one, dsrC, has only been observed in viruses from anoxic deep-sea 
environments11,21.

Sulfur oxidation in seawater involves two central microbial 
 pathways, dissimilatory sulfur reductase (Dsr) and sulfur oxidation 
(Sox)22. Analyses of GOV AMGs revealed that epipelagic viruses 
encode key genes for each of these pathways. First, 11 dsrC-like 
genes were  identified in viral contigs (Extended Data Fig. 5). The 
Dsr operon is used by sulfate/sulfite-reducing microbes in anoxic 
 environments, as well as sulfur-oxidizing bacteria in both oxic and 
anoxic  environments22 (Fig. 3a). DsrC, via its conserved C-terminal 

motif (CysBX10CysA), provides sulfur to the DsrAB sulfite reductase 
for processing, thus dictating sulfur metabolism rates23. Other DsrC-
like proteins (also known as TusE) lack CysB and instead participate in 
tRNA  modification24. In GOV, four clades of DsrC-like sequences were 
similar to TusE (DsrC-1 to DsrC-4), whereas the fifth (DsrC-5) was 
similar to bona fide DsrC (Extended Data Fig. 5, Extended Data Table 1,  
Supplementary Fig. 3, and Supplementary Information). Second, four 
soxYZ genes were identified on viral contigs (Extended Data Fig. 6).  
Like DsrC, SoxYZ is an important sulfur carrier that harbours a  
conserved functional motif identified in all GOV SoxYZ proteins25 
(Fig. 3a, Supplementary Fig. 4, and Supplementary text).

The presence of other AMGs suggests that marine viruses may 
manipulate nitrogen cycling. We found 10 GOV contigs that encoded 
P-II, a gene widespread across bacteria and archaea and central in 
 nitrogen metabolism regulation26 (Fig. 3b). There were three AMG 
clades (P-II-1, P-II-2, and P-II-4) that displayed P-II-conserved motifs 
and had predicted structures similar to bona fide P-II. The fourth clade 
(P-II-3) is, however, functionally ambiguous as it lacks a conserved 
motif (Supplementary Fig. 5, and Supplementary Information). There 
were two P-II AMG clades (P-II-1 and P-II-4) that were proximal to 

Figure 2 | Characterization of the dominant oceanic viral clusters.  
a, Distribution and abundance of the 38 recurrently abundant viral clusters 
(VCs) according to the total number of stations in which members of the 
viral cluster were detected (x axis) and the number of samples in which the 
viral cluster was detected in the abundant fraction (y axis). ‘Known viruses’ 
are viral clusters with International Committee on Taxonomy of Viruses 
(ICTV)-classified reference sequences, ‘unclassified reference(s)’ are viral 
clusters with isolate genomes lacking ICTV classification, and ‘New VCs’ 
are composed solely of environmental sequences. b, GOV samples with 
their most abundant viral cluster mapped to station locations. Samples are 
stacked vertically when multiple depths are available, with a horizontal 
line separating epipelagic from mesopelagic layers. Map modified with 
permission from N. Le Bescot, EPEP, CNRS Station Biologique Roscoff. 

c, Summary of the four globally abundant viral cluster affiliations, origin 
of viral cluster members (Env: environmental viral sequences), estimated 
genome sizes, predicted host ranges and distributions (relative abundances 
are indicated as a percentage of the viral populations identified). 
The abundant epipelagic microbial groups (representing > 1% of the 
microbial OTU abundance of epipelagic samples) are highlighted in bold. 
Alphaproteob., Alphaproteobacteria; Betaproteob, Betaproteobacteria; 
Cand div OP1, Candidate division OP1; Deinococcus-Th, Deinococcus-
Thermus; Deltaproteob, Deltaproteobacteria; Gammaproteob, 
Gammaproteobacteria, Med. Sea, Mediterranean Sea. Oceanic basins are 
indicated for viral cluster distributions. SRF, Surface; DCM/MIX, Deep 
chlorophyll maximum/bottom of mixed layer when no deep chlorophyll 
maximum was observed (stations 123, 124, and 125); MES, Mesopelagic.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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the ammonium transporter gene amt in GOV contigs (Extended Data  
Fig. 7). In bacteria, such an arrangement is a signature of P-II-like 
genes that specifically activate alternative nitrogen-production and 
 ammonia-uptake pathways during nitrogen starvation26. There was also 
one GOV contig that included amoC, a gene encoding the C  subunit of 
ammonia monooxygenase, suggesting a role in ammonia  oxidation27. 
While functional annotation is challenging for these genes27 and 
 functional motifs are not yet known, the translated AMG was 94% 
identical to functional AmoC in the phylum Thaumarchaeota—a 
level of identity only observed among expressed and functional AMGs 
(Extended Data Fig. 8, Supplementary Fig. 6 and Supplementary 
Information).

Next, we investigated the origin, evolutionary history, and  diversity 
of these AMGs in epipelagic viruses (Supplementary Information 
 contains additional discussion about taxonomic affiliation and 
host-prediction for AMG-containing GOV sequences). The 15 GOV 
contigs that encoded dsrC or soxYZ genes were, when  affiliated, 
all associated with members of the abundant and  ubiquitous T4 
 superfamily-containing VC_2 (Extended Data Figs 5, 6 and Extended 
Data Table 1). Phylogenies suggested that these viruses obtained 
AMGs from  sulfur-oxidizing proteobacterial hosts,  probably in a 
single  transfer event in the case of soxYZ and in two events for dsrC 
(Extended Data Figs 5, 6). Among dsrC gene products, the bona 
fide sulfur- oxidizing DsrC-5 was most closely related to a clade of 
uncultivated sulfur- oxidizing Gammaproteobacteria (MED13k09, 
Supplementary Fig. 7). These bacteria are widespread in the epipelagic 
ocean28 and are suspected to degrade dimethyl sulfide, a key reduced 
sulfur  species involved in ocean-to-atmosphere sulfur transport and in 
cloud  formation. If confirmed, the infection of these bacteria by DsrC5-
encoding viruses would affect critical sulfur-cycling steps  throughout 
surface waters. By contrast, phylogenies suggest that P-II AMGs  

originated from diverse viruses (six viral clusters including the 
abundant VC_2 and VC_12), and were acquired independently at 
least four times from Bacteroidetes, Proteobacteria, and  possibly 
Verrucomicrobia (Extended Data Fig. 7 and Supplementary 
Information). Although a single amoC AMG offers only preliminary 
evaluation of its evolutionary history, this amoC-encoding contig 
appears to represent novel and rare archaeal dsDNA viruses (VC_623) 
that are predicted to infect ammonia-oxidizing Thaumarchaeota, a 
phylum known for its major role in global nitrification29 (Extended 
Data Fig. 8).

Finally, we investigated the ecology of viruses that encode these 
AMGs by mapping their distribution across GOVs. We found that 
seven AMG clades were geographically restricted (dsrC-unc, dsrC-1, 
dsrC-2, dsrC-4, P-II-2, P-II-3, and amoC), whereas five were widespread 
throughout epipelagic (dsrC-3, dsrC-5, soxYZ, P-II-1) or mesopelagic 
(P-II-4) waters (Fig. 3c). All widespread epipelagic AMGs were detected 
in waters of mid-range temperatures. In contrast, dsrC-5 and soxYZ 
were predominantly detected in low-nutrient conditions, while P-II-1  
was predominantly detected in high-nutrient conditions (Fig. 3d, 
Extended Data Fig. 9). Thus, we propose that viruses utilize DsrC-5  
or SoxYZ to boost sulfur oxidation rates when infecting sulfur  
oxidizers in low-nutrient conditions, and P-II under high-nutrient  
conditions. The latter could be useful to viruses through the activation 
of high-energy-cost alternative nitrogen-producing pathways typically 
used only under nitrogen-starvation conditions26. Consistent with this, 
metatranscriptomes from three low-nutrient stations (11_SRF in the 
Mediterranean Sea, 39_DCM in the Arabian Sea, and 151_SRF in the 
Atlantic Ocean) revealed expression of viral homologues of dsrC and 
soxYZ but not of P-II (Extended Data Table 1).

Overall, this systematically collected and processed GOV dataset 
provides a critical resource for marine microbiology. This map of global 

Figure 3 | Characterization and distribution of viral AMGs involved in 
sulfur and nitrogen cycles. a, b, Schematics for microbial sulfur oxidation 
pathways involving dsr and sox, the two main gene clusters (a), and the 
central role of the P-II protein in cell regulation (b, adapted from images 
in refs 26, 31). AMG colour outlines indicate viral taxonomic affiliation. 
Ammonium transporters detected next to viral P-II are highlighted with 
a dashed outline. c, Distribution of viral AMG clades with mesopelagic 
samples highlighted in green and geographically restricted clades outlined. 
d, Temperature and nutrient conditions in which widespread epipelagic 

AMGs tend to be most abundant. For each environmental parameter, the 
range across all epipelagic samples is displayed alongside distributions 
representing the range of values in which each AMG clade was detected, 
weighted by the AMG coverage across these samples (see Extended Data 
Fig. 9 for underlying coverage data). Distributions that differ significantly 
from the ‘all samples’ distribution (by two-sided Kolmogorov–Smirnov 
test) are indicated with asterisks, * P <  0.05, * * P <  0.001, * * * P <  0.00001; 
boxes represent the first and third quartiles around the median.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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dsDNA ocean viral diversity at the level of population and viral cluster 
and within viral-encoded AMGs brings global ecological context to 
abundant surface- and deep-ocean viruses. It will also help to interpret 
future genomic and metagenomic datasets and help select experimental 
systems to develop. Together with recent experimental, bioinformatic 
and theoretical advances3,12,30, this fundamental resource will accelerate 
the understanding and prediction of the roles and planetary impacts 
of viruses in nature.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
No statistical methods were used to predetermine sample size. These experiments 
were not randomized and the investigators were not blinded to allocation during 
experiments and outcome assessment.
Tara Oceans expedition sample collection and processing. Between 10 October 
2009 and 12 December 2011, 90 samples were collected at 45 locations throughout 
the world’s oceans (Supplementary Table 1) through the Tara Oceans expedition32. 
These included samples from the following range of depths: surface, deep chloro-
phyll maximum, bottom of mixed layer when no deep chlorophyll maximum was 
observed (stations 123, 124, and 125), and mesopelagic samples. The sampling 
stations were located in 7 oceans and seas, 4 different biomes and 14 Longhurst  
oceanographic provinces (Supplementary Table 1). For Tara station 100, two  
different peaks of chlorophyll were observed, so two samples were taken at the 
shallow (100_DCM) and deep (100_dDCM) chlorophyll maximum. For each 
sample, 20 l of seawater was 0.22 μ m-filtered and viruses were concentrated from 
the filtrate using iron chloride flocculation33 followed by storage at 4 °C. After 
resuspension in ascorbic-EDTA buffer (0.1 M EDTA, 0.2 M Mg, 0.2 M ascorbic 
acid, pH 6.0), viral particles were concentrated using Amicon Ultra 100 kDa  
centrifugal devices (Millipore), treated with DNase I (100 U ml−1) followed by the 
addition of 0.1 M EDTA and 0.1 M EGTA to halt enzyme activity and extracted as 
previously described34. In brief, viral particle suspensions were treated with Wizard 
PCR Preps DNA Purification Resin (Promega) at a ratio of 0.5 ml sample to 1 ml 
resin, and eluted with Tris-EDTA buffer (10 mM Tris, pH 7.5, 1 mM EDTA) using 
Wizard Minicolumns. Extracted DNA was Covaris-sheared and size-selected to 
160–180 bp sequence lengths, followed by amplification and ligation according to 
standard Illumina protocol. Sequencing was performed with a HiSeq 2000 system 
(101 bp, paired end reads).

Temperature, salinity, and oxygen data were collected from each station using 
an SBE 911plus CTD with Searam recorder and an SBE 43 dissolved oxygen sensor 
(Sea-Bird Electronics). Nutrient concentrations were determined using segmented 
flow analysis35 and included nitrite, phosphate, nitrite-plus-nitrate, and silica. 
Nutrient concentrations below the detection limit (0.02 μ mol kg−1) are reported 
as 0.02 μ mol kg−1. All data from the Tara Oceans expedition are available from the 
European Nucleotide Archive (ENA) (for nucleotide data) and from PANGAEA 
(for environmental, biogeochemical, taxonomic and morphological data)36–38.
Malaspina expedition sample collection and processing. Thirteen bathypelagic 
samples and one mesopelagic sample were collected between 19 April 2011 and  
11 July 2011 during the Malaspina 2010 global circumnavigation expedition  covering 
the Pacific and the North Atlantic Oceans. All samples were taken at 4,000 m depth 
with the exception of two samples from stations 81 and 82, which were  collected 
at 3,500 m and 2,150 m, respectively (Supplementary Table 1). Additionally,  
station M114 was sampled at the OMZ region at 294 m depth. For each sample, 80 l 
of seawater was 0.22 μ m-filtered and viruses were concentrated from the filtrate 
using iron chloride flocculation33, followed by storage at 4 °C. More details about 
sampling and additional variables used in the Malaspina expedition can be found 
in ref. 39. Further processing was performed as for the Tara Oceans samples other 
than Illumina sequencing (151 bp, paired end reads).
Contigs assembly. An overview of the contig-generation process is provided in 
Supplementary Fig. 8. The first step involved the generation of a set of contigs using 
as many reads as possible from the 104 oceanic viromes. These viromes including 
74 epipelagic and 16 mesopelagic samples from the Tara Oceans expedition5 and 
1 mesopelagic and 13 bathypelagic samples from the Malaspina expedition6. This 
set of contigs was generated through an iterative cross-assembly12, using MOCAT40 
and Idba_ud41, (Supplementary Fig. 8) as follows: (i) high-quality reads were first 
assembled sample-by-sample with the MOCAT pipeline as described previously18; 
(ii) all reads not mapping (Bowtie 2 (ref. 42), options: -sensitive, -X 2000, -non- 
deterministic, other parameters at default) to a MOCAT contig (by which we 
denote ‘scaftigs’, that is, contigs that were extended and linked using the paired-end 
information of sequencing read42) were assembled sample-by-sample with Idba_ud 
(iterative k-mer assembly, with k-mer length increasing from 20 to 100 bp in steps 
of 20); (iii) all reads that remained unmapped to any contig were then pooled by 
Longhurst province (that is, unmapped reads from samples corresponding to the 
same Longhurst province were gathered) and assembled with Idba_ud (with the 
same parameters as above); and (iv) all remaining reads unmapped from every 
sample were gathered for a final cross-assembly (using Idba_ud). This resulted in 
10,845,515 contigs (Supplementary Fig. 8b).
Genome binning and re-assembly. As the contigs assembled from the marine 
viral metagenomes could still contain redundant sequences derived from the 
same (or closely related) populations, we set out to merge contigs derived from 
the same population into clusters representing population genomes. To this end, 
contig sequences were first clustered at 95% global average nucleotide identity 
(ANI) with cd-hit-est43 (options: -c 0.95 -G 1 -n 10 -mask NX) (Supplementary 
Fig. 8b),  resulting in 10,578,271 non-redundant genome fragments. Next, we used 

co-abundance (that is, the correlation between abundance profiles estimated by 
reads mapping) and nucleotide-usage profiles of the non-redundant contigs to  
further identify contigs derived from the same populations using Metabat44. In 
brief, Metabat uses Pearson correlation between coverage profiles (determined from 
the mapping of high-quality reads of each sample to the contigs with Bowtie 2  
(ref. 42), options: -sensitive, -X 2000, -non-deterministic, other parameters at 
default) and tetranucleotide frequencies to identify contigs originating from the 
same genome (Metabat parameters: 98% minimum correlation, mode ‘sensitive’; 
see Supplementary Text for more detail about the selection of these parameters).  
The 8,744 bins generated, including 3,376,683 contigs, were further analysed, along-
side 623,665 contigs that were not included in any genome bin but were ≥ 1.5 kb.

In an attempt to better assemble these genome bins, two additional sets of  contigs 
were generated for each genome bin (beyond the set of initial contigs binned by 
Metabat44). These were based on the de novo assembly of: (i) all reads mapping 
to the contigs in the genome bin, and (ii) only reads from the sample  displaying 
the highest coverage for the genome bin (both assemblies with Idba_ud41;  
Supplementary Fig. 8c). The latter assembly might be expected to lead to the ‘cleanest’  
genome assembly because it includes the minimum between-sample sequence 
variation, lowering the probability of generating a chimaeric contig45. The  former 
assembly may be necessary if the virus is locally rare, so that sequences from 
 multiple metagenomes are needed to achieve complete genome coverage. Thus, if 
the assembly from the single ‘highest-coverage’ sample was improved or equivalent 
to the initial assembly (that is, the longest contig in the new assembly representing 
≥ 95% of the longest contig in the initial assembly), this set of contigs was selected 
as the sequence for this bin (n =  6,423). This optimal single-sample assembly was 
thus privileged compared to a cross-assembly (either based on the initial contigs 
or on the re-assembly of all sequences aligned to that bin). Otherwise, the ‘all 
samples’ bin re-assembly was selected if it was equivalent to or better than the 
initial assembly (longest contig representing ≥ 95% of the longest initial contig, 
n =  999). The assumption that cross-assembly would be needed for locally rare 
viruses without a high-coverage sample was confirmed by the comparison between 
the highest coverage of these two types of bins. On average, bins for which the 
‘optimal’ assembly was selected displayed a maximum coverage of 5.47×  per Gb of 
metagenome, while the bins for which the ‘cross-assembly’ was selected displayed 
a maximum coverage of 1.37×  per Gb of metagenome (Supplementary Table 2). 
Finally, if both re-assemblies yielded a longest contig smaller (< 95%) than the one 
in the initial assembly, the bin was considered to be a false-positive (that is, binning 
of contigs from multiple genomes, n =  1,356), and contigs from the initial  assembly 
were considered as ‘unbinned’ (263,006 contigs, added to the 623,665 contigs  
≥ 1.5 kb initially retained as ‘unbinned’).
Identification of viral contigs and delineation of viral populations. Despite 
efforts to remove cellular DNA completely during sample preparation, the  resulting 
viral metagenomic datasets can only ever be enriched for viruses46. Thus,  assembled 
sequences in the GOV dataset were in silico filtered a posteriori to  identify and 
remove any clearly non-viral signal. In this way, our purification  methods should 
have greatly enriched for viruses, but the in silico  decontamination step served as 
a back-up for problematic samples. Together these two  filters mean that  virtually 
no known cellular signal should have been considered in our analyses. For the  
in silico cleaning step, VirSorter47 was used to identify and remove  microbial 
 contigs using the ‘virome decontamination’ mode, with every  contig ≥ 10 kb that 
was not  identified as viral considered to be a microbial contig. Sequences  predicted 
to be from prophages were manually curated to distinguish actual prophages 
(that is, viral regions within a microbial contig) from contigs that belonged to 
a viral genome and were wrongly predicted as a prophage. Contigs originating 
from a eukaryotic virus were identified based on best BLAST hit affiliation of 
the  contig-predicted genes against NCBI RefseqVirus (see Supplementary Text).

The genome bins were affiliated as microbial (if 1 or more contigs were 
 identified as microbial, n =  1,763), eukaryotic virus (if contigs affiliated as 
 eukaryotic virus comprised more than 10 kb or more than 25% of the genome bin 
total length, n =  962) or viral (that is, archaean and bacterial viruses, n =  4,341), 
with the 356 remaining bins that lacked a contig long enough for an accurate 
affiliation considered as ‘unknown’ (see Supplementary Text).

Viral bins were then refined to evaluate whether they corresponded to a single 
viral population or to a mix. To that end, the Pearson correlation and Euclidean 
distance between abundance profiles (that is, the profile of the average coverage 
depth of a contig across the 104 samples) of bin members and the bin seed (that is, 
the largest contig) were computed, and a single-copy viral marker gene (terL) was 
identified in binned contigs (Supplementary Fig. 8e). Thresholds were chosen to 
maximize the number of bins with exactly one terL gene and minimize the number 
of bins with multiple terL genes (Supplementary Fig. 8g). For each bin, contigs 
with a Pearson correlation coefficient to the bin seed of < 0.96 or a Euclidean 
distance to the seed of > 1.05 were removed from the bin, and added to the pool of 
unbinned contigs. Eventually, every bin still displaying multiple terL genes after 
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this refinement step were split and all corresponding contigs added to the pool of 
‘unbinned’ contigs (Supplementary Fig. 8e).

The final set of contigs was formed by compiling: (i) all contigs belonging 
to a viral bin, (ii) ‘unbinned’ viral contigs (that is, contigs affiliated to archaeal 
and bacterial virus and not part of any genome bin), and (iii) viral contigs 
 identified in microbial or eukaryote virus bins (considered as ‘unbinned’ contigs, 
Supplementary Fig. 8f). Within this set of contigs, all viral bins were considered 
as viral populations, as well as every unbinned viral contig of ≥ 10 kb, leading 
to a total of 15,222 epipelagic and mesopelagic populations, and 58 bathypelagic 
populations (Supplementary Fig. 1, Supplementary Table 2 and Supplementary 
Information). In this study, we focus only on the 15,222 epipelagic and mesopelagic 
populations, totaling 24,353 contigs. For the detection of AMGs, we added to these 
populations all short epipelagic and mesopelagic unbinned viral contigs (< 10 kb), 
totalling 298,383 contigs.
Dataset of publicly available viral genomes and genome fragments. Genomes 
of viruses associated with a bacterial or archaeal host were downloaded from 
NCBI RefSeq (1,680 sequences, v70, 05-26-2015; http://www.ncbi.nlm.nih.gov/
refseq/). To complete this dataset of reference genomes, viral genomes and genome 
 fragments available in GenBank (http://www.ncbi.nlm.nih.gov/genbank/) but 
not in RefSeq were downloaded (July 2015) and manually curated to select only 
 bacterial and archaeal viruses (1,017 sequences). These included viral genomes not 
yet added to RefSeq, as well as genome fragments from fosmid libraries  generated 
from seawater samples9,10. Mycophage sequences (available at http://phagesdb.
org48) were downloaded in July 2015 and included as well if not already in RefSeq 
(734 sequences). Finally, 12,498 viral genome fragments from the VirSorter 
Curated Dataset, identified in publicly available microbial genome sequencing 
projects, were added to the database8.
Genome (fragments) clustering through gene-content based network  analysis. 
Proteins predicted from 14,650 large GOV contigs (≥ 10 kb and ≥ 10 genes), were 
added to all proteins from the publicly available viral genomes and genomes 
 fragments gathered, and compared through all-vs-all blastp, with a threshold of 
10−5 for E-value and 50 for bit score. Protein clusters were then defined using MCL 
(Markov Cluster Algorithm, using default parameters for clustering of proteins, 
similarity scores as log-transformed E-value, and 2 for MCL inflation49). We then 
used vContact (https://bitbucket.org/MAVERICLab/ vcontact) to first calculate a 
similarity score between every pair of genomes and/or contigs based on the  number 
of protein clusters shared between the two sequences (as in refs 7, 8), and then  
compute an MCL clustering of the genomes/contigs based on these similarity scores 
(thresholds of 1 for similarity score, MCL inflation of 2). The resulting viral clusters 
(clusters including ≥ 2 contigs and/or genomes), consistent with a clustering based 
on whole-genome BLAST comparison, corresponded  approximately to genus-level 
taxonomy, with rare cases closer to subfamily-level taxonomy (Extended Data Fig. 2 
and Supplementary Information). A total of 1,259 viral clusters were obtained, with 
867 including at least one GOV sequence. Notably, however, automatically defined 
viral clusters serve only as a starting point for assigning viral taxonomy. Current 
ICTV convention for formal taxonomic consideration of these viral clusters would 
require the manual comparison of genomes and genome fragments to identify 
signature genes, compare phylogenetic signals and, ideally, observe morphological 
features of corresponding viruses, although this process is currently being reviewed 
as advanced computational analytics and genome datasets, such as those presented 
here, are being developed.
Viral contig annotation. A functional annotation of all GOV-predicted proteins 
was based on a comparison to the PFAM domain database v.27 (ref. 50) with 
HmmSearch51 (threshold of 30 for bit score and 10−3 for E-value). Additional 
putative structural proteins were identified through a BLAST  comparison 
to the protein clusters detected in the viral metaproteomics dataset52. This 
 metaproteomics dataset led to the annotation of 13,547 hypothetical proteins 
lacking a PFAM annotation. A taxonomic annotation of the predicted proteins 
was performed based on a blastp against proteins from archaeal and bacterial 
viruses from NCBI RefSeq and GenBank (threshold of 50 for bit score and an  
E-value of 10−3).

Viral clusters were affiliated based on isolate genome members, where  available. 
When multiple isolates were included in the viral cluster, the viral cluster was 
affiliated to the corresponding subfamily or genus of these isolates (excluding all 
‘unclassified’ cases). This was the case for VC_2 (T4 superfamily14,15), and VC_9 
(T7 virus16). When only one, or a handful of, affiliated isolate genomes were 
included in the viral cluster and lacked genus-level classification, a candidate name 
was derived from the isolate (if there were several isolates it was derived from the 
first one isolated). This was the case for VC_5 (Cbaphi381virus; ref. 53), VC_12 
(P12024virus; ref. 54), VC_14 (MED4-117virus), VC_19 (HMO-2011virus; ref. 55), 
VC_31 (RM378virus; ref. 56), VC_36 (GBK2virus; ref. 57), VC_47 (Cbaphi142virus; 
ref. 53) and VC_277 (vB_RglS_P106Bvirus; ref. 58). Otherwise, viral clusters were 
considered as ‘new viral clusters’.

Phage proteomic tree computation and visualization. All publicly  available 
 complete genomes (see above), all complete (circular) and near-complete 
 (extrachromosomal genome fragment > 50 kb with a terminase) from the VirSorter 
Curated Dataset and all complete and near-complete GOV contigs were compared 
to generate a phage proteomic tree, as previously described9,59. In brief, a proteomic 
similarity score was calculated for each pair of genome based on an all-versus-all 
tblastx similarity as the sum of bit scores of significant hits between two genomes 
(E ≤  0.001, bit score ≥  30, identity percentage ≥  30). To normalize for different 
genome sizes, each genome was also compared to itself to generate a self-score, and 
the distance between two different genomes was calculated as a Dice coefficient as 
previously9. That is, for two genomes A and B with a proteomic similarity score of 
AB, the corresponding distance d would be: d =  1 −  (2 ×  AB)/(AA +  BB); with AA 
and BB being the self-score of genomes A and B respectively. For clarity, the tree 
displayed in Extended Data Fig. 2 includes only non-GOV sequences found in a 
viral cluster with GOV sequence(s) or within a distance d <  0.5 to a GOV sequence, 
totalling 1,522 reference sequences. iTOL60,61 was used to visualize and display 
the tree. Detection and estimation of abundance for viral contigs and populations

The presence and relative abundance of a viral contig in a sample was 
 determined based on the mapping of high-quality reads to the contig sequences, 
computed with Bowtie 2 (options: -sensitive, -X 2000, -non-deterministic, default 
parameters otherwise62), as previously described4. A contig was considered to be 
detected in a metagenome if more than 75% of its length was covered by aligned 
reads derived from the corresponding sample. A normalized coverage for the 
contig was then computed as the average contig coverage (that is, the number of 
nucleotides mapped to the contig divided by the contig length) normalized by the 
total number of base pairs sequenced in this sample. The detection and relative 
abundance of a viral population was based on the coverage of its contigs; that 
is, a population was considered as detected in a sample if more than 75% of its 
cumulated length was covered, and its normalized coverage was computed as the 
average normalized coverage of its contigs.
Relative abundance of viral clusters. The relative abundance of viral clusters was 
calculated based on the coverage of its members within the 15,222 viral  populations 
identified. If a population included contigs that were all linked to the same viral 
cluster, or that were linked to a single viral cluster (except for  unclustered contigs 
owing to short length), this population coverage was added to the total of the 
 corresponding viral cluster. In the rare cases where the link between population 
and viral cluster was ambiguous because different contigs within a population 
pointed towards different viral clusters (n =  475, that is, 3.1% of the populations), 
the  population coverage was equally split between these viral clusters. Finally, if 
no contig in the population belonged to any viral cluster (n =  2,605, 17% of the 
 populations), the population coverage was added to the ‘unclustered’  category. 
Eventually, for each sample, the cumulative coverage of a viral cluster was 
 normalized by the total coverage of all populations to calculate a relative  abundance 
of the viral cluster among viral populations.

The selection of abundant viral clusters within a sample was based on the 
 contribution of the viral cluster to the sample diversity as measured by the Simpson 
index. For each sample, the overall Simpson index was first calculated with all viral 
clusters. Following this, viral clusters were sorted by decreasing relative abundance 
and progressively added to a new calculation of the Simpson index. Viral clusters 
considered as abundant were the ones which, once cumulated, represented 80% of 
the sample diversity (that is, a Simpson index ≥ 80% of the sample total Simpson 
index; Extended Data Fig. 1c). The 38 viral clusters that were identified as abundant 
in at least 2 different stations were selected as ‘recurrently abundant viral clusters 
in the GOV dataset’ (Fig. 2 and Extended Data Fig. 3).
Host prediction and diversity. Three different approaches were used to link viral 
contigs and putative host genomes: blastn similarity, CRISPR spacer similarity 
and tetranucleotide frequency similarities. An overview of the contig-generation 
process is provided in Supplementary Fig. 8, and an extended discussion about 
the efficiency and raw results of these host prediction methods is provided in 
Supplementary Information, Supplementary Table 4, and ref. 63. A list of all host 
predictions by viral sequence is available in Supplementary Table 5.
Generation of host database. A genome database of putative hosts for the 
 epipelagic and mesopelagic GOV viruses was generated, including all archaeal 
and bacterial genomes annotated as ‘marine’ from NCBI RefSeq and WGS (both 
times only sequences ≥ 5 kb, 184,663 sequences from 4,452 genomes,  downloaded 
in August 2015), and all contigs ≥ 5 kb from the 139 Tara Oceans microbial 
metagenomes corresponding to the bacterial and archaeal size fraction (791,373 
sequences)18. For these microbial metagenomic contigs, a first blastn alignment 
was computed to compare with all GOV contigs, and exclude from the putative 
host dataset all metagenomic contigs with a significant similarity to a viral GOV 
sequence (thresholds of 50 for bit score, 0.001 for E-value, and 70% for identity 
percentage) on ≥ 90% of their length, as these are likely to be sequences of viral 
origin sequenced in the bacteria and archaea size fraction (these represented 2.2% 
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of the contigs in the assembled microbial metagenomes). The taxonomic affiliation 
of NCBI genomes was taken from the NCBI taxonomy. For Tara Oceans contigs, 
a last common ancestor (LCA) affiliation was generated for each contig based on 
genes affiliation18, if three or more genes on the contig were affiliated.
BLAST-based identification of sequence similarity between viral contigs and 
host genome. All GOV viral contigs were compared to all archaeal and  bacterial 
genomes and genome fragments with a blastn (threshold of 50 for bit score and 
0.001 for E-value), to identify regions of similarity between a viral contig and 
a microbial genome, indicative of a prophage integration or horizontal gene 
 transfer63. A host prediction was made when: (i) a NCBI genomes displayed a 
region similar to a GOV viral contig ≥ 5 kb at ≥ 70% identity, or (ii) when a Tara 
Oceans microbial metagenomic contig (≥ 5 kb) displayed a region similar to a GOV 
viral contig ≥ 2.5 kb at ≥ 70% identity.
Matches between GOV viral contigs and CRISPR spacers. CRISPR arrays 
were predicted for all putative host genomes and genome fragments (NCBI 
microbial genomes and Tara Oceans microbial metagenomic contigs) with 
MetaCRT64,65. CRISPR spacers were extracted, and all spacers with ambiguous 
bases or low  complexity (that is, consisting of 4–6 bp repeat motifs) were removed. 
All  remaining spacers were matched to viral contigs with fuzznuc66, with no 
 mismatches allowed, which, although rarely, observed yields highly accurate host 
predictions63 (Supplementary Table 4).
Nucleotide composition similarity: comparison of tetranucleotide frequency. 
Bacterial and archaeal viruses tend to have a genome composition close to the 
genome composition of their host, a signal that can be used to predict viral–host 
pairs8,63,67. Here, canonical tetranucleotide frequencies were observed for all viral 
and host sequences using Jellyfish68 and mean absolute error (that is, the average 
of absolute differences) between tetranucleotide-frequency vectors were computed 
with in-house Perl and Python scripts for each pair of viral and host sequence  
as previously reported8. A GOV viral contig was then assigned to the closest 
sequence (that is, lowest distance ‘d’) from the pool of NCBI genomes if d <  0.001 
(because both the tetranucleotide-frequency signal and the taxonomic affiliation 
of these complete genomes are more robust than for metagenomic contigs), and 
otherwise assigned to the closest (that is, lowest distance) Tara Oceans microbial 
contig if d <  0.001.
Summarizing host prediction at the viral-cluster level. Overall, 3,675 GOV 
contigs could be linked to a putative host group among the 24,353 GOV  contigs 
associated with an epipelagic or mesopelagic viral population. To summarize 
these affiliations at the viral cluster level, a Poisson distribution was used to 
 estimate the number of expected false-positive associations for each viral cluster–
host group combination based on: (i) the global probability of obtaining a host 
 prediction across all pairs of viral and host sequences tested and for all methods 
(5.8 ×  10−8), (ii) the number of potential predictions generated for the viral  cluster, 
 corresponding to 3 times the number of sequences in the viral cluster (to take 
into account the three methods) and (iii) the number of sequences from the host 
group in the database (Supplementary Fig. 2). By comparing the number of links 
observed between a viral cluster and a host group to this expected value, which 
takes into account the bias in database (that is, some host groups will be over- 
or under- represented in our set of archaeal and bacterial genomes and genome 
 fragments) and the bias linked to the variable number of sequences in viral clusters, 
we can determine if the number of associations observed for any combination of 
viral cluster and host group is likely to be due to chance alone (and calculate the 
associated P value).
Microbial community diversity and richness indexes. Diversity and richness 
indices for putative host populations were based on the OTU abundance matrix 
generated from the analysis of miTAGs in Tara Oceans microbial metagenomes18. 
These indexes were computed for each host group at the same taxonomic level as 
the host prediction (that is, the phylum level, except for Proteobacteria where the 
class level is used). The R package vegan69 was used to estimate for each group: 
(i) a global Chao index (that is, including all OTUs from all samples) through 
the function estaccumR, (ii) a sample-by-sample Chao index with the function 
 estimateR, and (iii) Sorensen indexes between all pairs of samples with the function 
betadiver. Diversity indices presented in Extended Data Fig. 4 are based solely 
on epipelagic samples as the 38 viral clusters identified as abundant were mostly 
retrieved in epipelagic samples. Candidate division OP1 was excluded from this 
analysis because no OTU affiliated to this phylum was identified.
Detection of AMGs. Predicted proteins from all GOV viral contigs were com-
pared to the PFAM domain database (hmmsearch51, threshold of 40 for bit score 
and 0.001 for E-value), and all PFAM domains detected were classified into  
8  categories: ‘structural’, ‘DNA replication, recombination, repair, nucleotide 
 metabolism’, ‘transcription, translation, protein synthesis’, ‘lysis’, ‘membrane 
transport,  membrane-associated’, ‘metabolism’, ‘other’, and ‘unknown’ (as in  
ref 20). Four AMGs (similar to a domain from the ‘metabolism’ category) were then 
selected for further study owing to their central role in sulfur (dsrC and soxYZ) 

or nitrogen (P-II, amoC) cycle, and the fact that these had never been detected  
in a surface ocean viral genome thus far (dsrC/tusE-like genes have been detected  
in deep water viruses11,21). To evaluate if an AMG was ‘known’, a list of PFAM 
domain detected in NCBI RefSeqVirus and Environmental Phages was computed 
based on a similar hmmsearch comparison (threshold of 40 for bit score and  
0.001 for E-value), and augmented by manual annotation of AMGs from  
refs 20, 70. These corresponded, for the most part, to photosynthesis and carbon 
metabolism AMGs previously described in cyanophages71–75. The complete list 
of PFAM domains detected in GOV viral contigs is available in Supplementary 
Table 6.
Phylogenetic tree generation and contigs map comparison. Sequences similar to 
the four AMGs described in the previous paragraph were recruited from the Tara 
Oceans microbial metagenomes18, based on a blastp of all predicted proteins from 
microbial metagenome to the viral AMGs identified (threshold of 100 for bit score, 
10−5 for E-value, except for P-II where a threshold of 170 for bit score was used 
because of the high number of sequences recruited). The viral AMG sequences 
were also compared to NCBI nr database (blastp, threshold of 50 for bit score and 
10−3 for E-value) to recruit relevant reference sequences (up to 20 for each viral 
AMG sequence). These sets of viral AMGs and related protein sequences were 
then aligned with Muscle76, the alignment manually curated to remove poorly 
aligned positions with Jalview77, and two trees were computed from the same 
curated alignment: a maximum-likelihood tree with FastTree (v2.7.1, model WAG, 
other parameters set to default78) and a bayesian tree with MrBayes (v3.2.5, mixed  
evolution models, other parameters set to default, 2 MCMC chains were run until 
the average standard deviation of split frequencies was < 0.015, relative burn-in of 
25% used to generate the consensus tree79). In all cases except for AmoC, the mixed 
model used by MrBayes was 100% WAG, confirming that this model was well 
suited for archaeal and bacterial virus protein trees. Manual inspection revealed 
only minor differences between each pair of trees, so a Shimodaira–Hasegawa (SH) 
test was used to determine which tree best fitted the sequence alignment, using 
the R library phangorn80. Itol60 was used to visualize and display these trees, in 
which branches with supports < 40% were collapsed. Annotated interactive trees 
are available online at http://itol.embl.de/shared/Siroux. Contigs map comparison 
were generated with Easyfig81, following the same method used for the viral clusters 
(see Supplementary Information).
Functional characterization of putative AMGs. Conserved motifs were 
 identified on the different AMGs based on the literature: dsrC-conserved motifs 
were obtained from ref. 24, soxYZ conserved residues were identified from the 
PFAM domains PF13501 and PF08770, and P-II conserved motifs identified from 
PROSITE documentation PDOC00439. A 3D structure could also be predicted for 
P-II AMGs by I-TASSER82 (default parameters), the quality of these  predictions 
being confirmed with ProSA web server83. To further confirm the  functionality 
of these genes, selective constraint on these AMGs was evaluated through  
pN/pS calculation, as previously84. In brief, synonymous (pS) and non- synonymous  
(pN) SNPs were observed in each AMG, and compared to expected ratio of 
 synonymous and non-synonymous SNPs under a neutral evolution model for 
these genes. The interpretation of pN/pS is similar as for dN/dS analyses, with 
the operation of  purifying selection leading to pN/pS values < 1. Finally, AMG 
transcripts were searched in metatranscriptomic datasets, generated by the Tara 
Oceans consortium (ENA Id ERS1092158, ERS488920, and ERS494518). To 
generate these  metatranscriptomes, bacterial rRNA depletion was carried out on 
240–500 ng total RNA using Ribo-Zero Magnetic Kit for Bacteria (Epicentre) for 
0.2–1.6 μ m and 0.22–3 μ m filters. The Ribo-Zero depletion protocol was modified 
to be adapted to low RNA input amounts85. Depleted RNA was used to synthetize 
cDNA with SMARTer Stranded RNA-Seq Kit (Clontech)85. Metatranscriptomic 
libraries were quantified by quantitive PCR using the KAPA Library Quantification 
Kit for Illumina Libraries (KapaBiosystems) and library profiles were assessed 
using the DNA High Sensitivity LabChip kit on an Agilent Bioanalyzer (Agilent 
Technologies). Libraries were sequenced on Illumina HiSeq2000 instrument 
(Illumina) using 100-base-length read chemistry in a paired-end mode. High-
quality reads were then mapped to viral contigs containing dsrC, soxYZ, P-II, or 
amoC genes with SOAPdenovo242 within MOCAT40 (options ‘screen’ and ‘filter’ 
with length and identity cutoffs of 45% and 95%, respectively, and paired-end 
filtering set to ‘yes’), and coverage was defined for each gene as the number of base 
pairs mapped divided by gene length (including only those reads mapped to the 
predicted coding strand).
Distribution of AMGs and association with geochemical metadata. The 
 distribution and relative abundance of AMGs was based on the readmapping 
and normalized coverage of the contig that included the AMG. To get a range of 
 temperature and nutrient concentrations for the widespread AMGs (those detected 
in > 5 stations) that takes into account both the samples in which these AMGs were 
detected and the differences in normalized coverage, a set of samples was selected 
through a weighted random selection with replacement, with the weight of each 

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://itol.embl.de/shared/Siroux


LETTER RESEARCH

sample corresponding to the normalized coverage of the AMG. This ensured that 
a range of temperature or nutrient concentration values associated with the dis-
tribution and abundance of the AMG could be generated for each AMG and each 
environmental parameter tested. The number of samples randomly selected for 
each AMG was the same as the total number of samples for which a value of this 
parameter was available.
Code availability. Scripts used in this manuscript are available on the Sullivan 
laboratory bitbucket under project GOV_Ecogenomics (http://bitbucket.org/
MAVERICLab/gov_ecogenomics/overview). Scripts used in the assessment of 
microbial diversity are gathered in the directory Host_diversity, the ones used for 
host predictions are in Host_prediction, and the scripts used to identify abundant 
viral clusters are in Virus_clusters_prevalence.
Data availability. All raw reads are available through ENA (Tara Oceans) or IMG  
(Malaspina) using the dataset identifiers listed in Supplementary Table 1. Processed 
data are available through iVirus (http://mirrors.iplantcollaborative.org/browse/
iplant/home/shared/iVirus/GOV/), including all sequences from assembled 
 contigs, lists of viral populations and associated annotated sequences as GenBank 
files, viral clusters composition and characteristics, map comparisons of genomes 
and contigs of the 38 abundant viral clusters and host predictions for viral contigs.
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Extended Data Figure 1 | Accumulation curves of populations and viral 
clusters and identification of abundant viral clusters in GOV samples. 
a, b, Accumulation curves for viral populations (a) and viral clusters (b) 
were computed from 50 randomly shuffled samples (blue dots) for all 
samples, epipelagic, mesopelagic, or bathypelagic subsets. For each curve, 
the average of 50 iterations is displayed with red dots. c, Schematic of the 

selection process of abundant viral clusters. For each sample, viral clusters 
accounting for (up to) 80% of the sample diversity (as assessed by their 
Simpson index) was considered as abundant. On the left is an example 
for sample 125_MIX. Viral clusters detected as abundant in at least two 
different stations were included in the 38 viral clusters described in Fig. 2 
and Extended Data Fig. 3.
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Extended Data Figure 2 | See next page for caption.
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Extended Data Figure 2 | Comparison of viral clusters with other 
classification methods (phage proteomic tree and percentage of shared 
genes). The phage proteomic tree includes the 756 GOV complete and 
near-complete genomes from epipelagic and mesopelagic samples  
and the closest reference genomes from RefSeq and environmental  
phages (d <  0.5 to a GOV sequence or found in the same viral cluster as a  
GOV sequence). Branches of monophyletic clades that include more than 
3 GOV and/or uncultivated marine sequences with no isolate reference 
are highlighted in blue. All viral clusters with more than 8 representatives 
in the tree or part of the 38 abundant viral clusters are indicated by 
the colours of the outer ring. The name and affiliation (if available) 
of the 38 abundant viral clusters are indicated next to the viral cluster 
on the coloured ring. Viral clusters in which members were gathered 
in single monophyletic clades are indicated with a solid black outline, 

while viral clusters for which all-but-one member were gathered in a 
single monophyletic clade are highlighted with a dashed black outline. 
Distribution of the percentage number of shared genes estimated based on 
the number of shared protein clusters for viral genome/contigs pairs either 
between different viral clusters or within viral clusters (bottom right). 
On average, 73% and 39% of sequences within a viral cluster shared more 
than 20% and 40% of their genes, respectively, which represent the current 
thresholds currently accepted for sub-family and genus designations. 
Similarly, 83% of sequences within a viral cluster were consistently 
affiliated in the phage proteomic tree as they formed a monophyletic  
group that included only members of the particular viral cluster. Thus all 
three classification methods are largely consistent for the GOV dataset  
(see Supplementary Information).
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Extended Data Figure 3 | Summary of 34 of the 38 abundant viral 
clusters. Summaries are given for the 34 abundant viral clusters not 
summarized in Fig. 2. Predicted genome size is based on the set of isolates 
and circular contigs in the viral cluster. NA (not applicable) corresponds to 
viral clusters either without any circular contigs, or for which the relative 
standard deviation of estimated genome size across the different isolate(s) 
and/or circular contigs is greater than 15%. Host association values are 
based on the number of cluster members associated with each host group. 
Statistical significance of this number of predictions was evaluated by 
comparison with an expected number of associations calculated using 

a Poisson distribution. Host associations based on known isolates are 
indicated with a star (for associations based on cultivated isolates) or a dot 
(for associations based on the detection of a cluster member in a microbial 
genome from the VirSorter Curated Dataset). The abundant epipelagic 
microbial groups (representing > 1% of the microbial OTUs in epipelagic 
samples) are highlighted in bold. Distribution and relative abundance of 
viral clusters are based on the cumulated coverage of viral cluster members 
among sample viral populations. The main oceanic basins are indicated for 
each set of sample.
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Extended Data Figure 4 | Association between abundant viral clusters 
and abundance and diversity of host groups. a, Abundance and diversity 
of bacterial and archaeal host groups associated with the 38 abundant viral 
clusters (see Fig. 2a). For each host group (at the phylum level, except for 
Proteobacteria where the class level is used), the different panels display, 
from top to bottom: (i) the number of viral clusters associated with this 
host group; (ii) the global relative abundance of this group estimated  
from the microbial metagenomic OTU counts; (iii) the global diversity of 
this group based on a Chao index computation including all Tara Oceans 

microbial metagenome samples (that is, including both alpha and beta 
diversity); (iv) the distribution of Chao indexes by sample for this group 
(the alpha diversity); and (v) the average Sorensen index between pairs of 
samples that include at least one OTU of this group (the beta diversity). 
OTU counts were derived from the 109 epipelagic microbial metagenomes 
described previously18. b, Pearson correlations between host-group 
relative abundance or diversity indices (global Chao index, average Chao 
index across samples and average Sorensen index across samples) and the 
number of viral clusters.
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Extended Data Figure 5 | Diversity, distribution, and genome context of 
dsrC genes in GOV contigs. a, Maximum-likelihood tree (from an amino-
acid alignment) including the 11 viral DsrC and microbial sequences from 
microbial metagenomes and NCBI nr database. The presence of conserved 
cysteine residues (termed CysA and CysB, as in ref. 24) is indicated with 
coloured circles next to each sequence or clade. The corresponding type 
of DsrC-like protein is indicated by the colouring of the branch or clade. 
The microbial metagenomic contigs affiliated to uncultivated, marine 
sulfur-oxidizing Gammaproteobacteria (as confirmed by complementary 
phylogenetic analysis of DsrAB; Supplementary Fig. 7) are indicated by 

stars. Viral AMG sequences are highlighted in blue, internal nodes and 
SH-like supports are represented by proportional circles (all nodes with 
support < 0.40 were collapsed). Each dsrC AMG is associated with an 
abundance profile (right) that displays the relative abundance of the contig 
across the 91 epipelagic and mesopelagic samples (based on normalized 
coverage—that is, contig coverage per Gb of metagenome). b, Comparison 
of dsrC-containing contigs maps. A T4-like marker gene (T4 baseplate) is 
indicated on the maps, alongside putative AMGs (Fe–S biosyn, iron–sulfur 
cluster biosynthesis; Amt, ammonia transporter).
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Extended Data Figure 6 | Diversity, distribution, and genome context 
of soxYZ genes in GOV contigs. a, Bayesian tree from an amino-acid 
alignment, including the four viral soxYZ and microbial sequences 
from microbial metagenomes and the NCBI nr database. The affiliation 
of microbial clades (either from the NCBI reference or from the LCA 
affiliation of metagenomic contigs) is indicated by the colouring of the 
grouped clades or by a coloured square next to the sequence. Viral AMG 
sequences are highlighted in blue, posterior probabilities are represented 
by proportional circles (all nodes with posterior probability < 0.40 were 

collapsed). Clades including sulfur-oxidizing proteobacteria are indicated 
on the tree. Each soxYZ AMG is associated with an abundance profile 
(on the right) displaying the relative abundance of the contig across the 
91 epipelagic and mesopelagic samples (based on normalized coverage; 
that is, contig coverage per Gb of metagenome). b, Comparison of soxYZ-
containing contigs maps. For contig GOV_bin_4310_contig-100_0, the 
second largest contig from the same bin (GOV_bin_4310_contig-100_1) 
is displayed. T4-like marker genes (gp23 and the gene encoding T4 
baseplate) are indicated on the maps alongside putative AMGs.
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Extended Data Figure 7 | Diversity, distribution, and genome context of 
P-II genes in GOV contigs. a, Maximum-likelihood tree from an amino-
acid alignment that includes the 10 viral P-II and microbial sequences 
from microbial metagenomes and the NCBI nr database. The affiliation 
of microbial clades (either from the NCBI reference or from the LCA 
affiliation of metagenomic contigs) is indicated by the colouring of the 
grouped clades or by a coloured square next to the sequence. Sequences 
lacking the conserved uridylation site of P-II (Supplementary Fig. 5) are 
highlighted with a star next to the sequence name or clade. Viral AMG 
sequences are highlighted in blue, internal nodes SH-like supports are 
represented by proportional circles (all nodes with support < 0.40 were 

collapsed). Each P-II AMG is associated with an abundance profile (right) 
displaying the relative abundance of the contig across the 91 epipelagic 
and mesopelagic samples (based on normalized coverage; that is, contig 
coverage per Gb of metagenome). b, Comparison of P-II-containing contig 
maps. Ammonia transporter genes linked to P-II are indicated on the map 
(dark red). When available, the viral-cluster affiliation of each contig is 
indicated next to the contig name. Contig GOV_bin_5834_contig-100_7 
is too short to be clustered based on a shared protein cluster network, 
however the seed contig of its population was clustered (in VC_12, 
Siphoviridae P12024virus), hence the indication of this seed contig 
affiliation.
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Extended Data Figure 8 | Diversity, distribution, and genome context 
of amoC gene in GOV contigs. a, Maximum-likelihood tree (from an 
amino-acid alignment) including the GOV amoC AMG and microbial 
sequences from microbial metagenomes and NCBI nr database. The 
affiliation of microbial clades (either from the NCBI reference or from 
the LCA affiliation of metagenomic contigs) is indicated by the colouring 
of the grouped clades or by a coloured square next to the sequence. Viral 

AMG sequence is highlighted in blue, internal nodes and SH-like supports 
are represented by proportional circles (all nodes with support < 0.40 
were collapsed). b, Abundance profile displaying the relative abundance 
of the contig across the 91 epipelagic and mesopelagic samples (based on 
normalized coverage; that is, contig coverage per Gb of metagenome).  
c, Map of the amoC-containing contig.
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Extended Data Figure 9 | Normalized coverage of contigs harbouring 
AMG as a function of the temperature and nutrient concentrations of 
the corresponding samples. AMGs are grouped by clade based on their 
phylogeny (see Extended Data Figs 5–7) and their coverages are cumulated 
if multiple contigs are included in a clade. Plots display the cumulated 
normalized coverage of a clade (y axis) as function of the temperature 
or nutrient concentration (x axis) across all epipelagic samples for 
geographically unrestricted clades (that is, clades found in > 5 samples, 

see Fig. 3c). Mesopelagic samples were excluded from the analysis since 
the AMG signal was detected in epipelagic samples. Samples are colour-
coded according to ocean and sea regions (Supplementary Table 1). The 
calculated preferential range of temperature or nutrient concentration is 
displayed below each plot for epipelagic AMGs (P-II-4 distribution could 
not be linked to specific environmental conditions, but this AMG is the 
only one consistently retrieved in mesopelagic samples).
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Extended Data Table 1 | Summary of genes and contigs characteristics for new viral dsrC, soxYZ, P-II, and amoC AMGs

Each gene is linked to its contig and, where available, to the corresponding viral cluster and predicted host (from BLAST hit, CRISPR spacer similarity, or nucleotide composition similarity). Widespread 
and abundant viral clusters are highlighted in bold. In addition, the calculated pN/pS of each gene is indicated (measuring the strength of selection pressure occurring for this gene, the gene with a 
pN/pS not representing a strong purifying selection is highlighted in red), as well as the coverage of these and other genes found in the contigs in 3 metatranscriptomic samples from 3 open-ocean 
Tara Ocean stations (cases where the AMG coverage is both > 0.5 and associated with the coverage of other genes from the same viral contig are highlighted in green). Alphaprot, Alphaproteobacteria; 
Gammaprot, Gammaproteobacteria.
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