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Abstract

In this paper we give a short, direct proof that rank 2 toric vector bundles on n-dimensional projective
space split once n is at least 3. This result is originally due to Bertin and Elencwajg, and there is also
related work by Kaneyama, Klyachko, and Ilten-Süss. The idea is that, after possibly twisting the vector
bundle, there is a section which is a complete intersection.

Let k be an algebraically closed field and let Gm act on Pnk by scaling the last
n coordinates. In this paper we present a direct proof that Gm -equivariant rank 2
vector bundles on Pnk split when n ≥ 3.

A conjecture of Hartshorne ([3, Conj. 6.3]) states that every rank 2 vector bundle
E on Pnk splits as a sum of line bundles as soon as n ≥ 7. We know of two
interesting pieces of evidence for this conjecture. First, let Z ⊂ Pn

C
be a smooth

complex subvariety of codimension 2 which is the zero locus of a rank 2 vector
bundle. It is natural to try to show that E is not split by studying the topology
of Z , i.e. to show that it is not homeomorphic to a complete intersection, which
is the zero locus of a split bundle. For example, Horrocks and Mumford ([4])
constructed a rank 2 vector bundle on P4 with a section whose zero locus is an
abelian surface. It follows that their bundle is not split, as any smooth complete
intersection surface has trivial fundamental group. On the other hand, when n is
large then Barth proved that many of the cohomology groups of Z are isomorphic
to the cohomology groups of a complete intersection. More precisely, Barth proved
([1]) that for a nonsingular complex subvariety X ⊂ Pn

C
of codimension e , the

restriction maps H i (Pn
C
,Z)→H i (X ,Z) are isomorphisms for i ≤ n − 2e .

The second piece of evidence comes when one considers equivariant vector
bundles. Considering P = Pnk as a toric variety, then a toric vector bundle is a vector
bundle E on P such that the total space E is equipped with a (Gm)n -action which
commutes with the action on P. Bertin and Elencwajg ([2, Thm. 3.4]) first proved
that every rank 2 toric vector bundle on Pn is split once n ≥ 3. Kaneyama ([6, Cor.
3.5]) proved that every toric vector bundle on P of rank r < n splits. Klyachko ([7])
gave a description of the category of toric vector bundles and used this description
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to give a di�erent proof of Kaneyama’s result. Recently Ilten and Süss ([5]) studied
smaller dimensional tori (Gm)ℓ acting on P by scaling and gave a description of
the category of (Gm)ℓ -equivariant vector bundles. They proved that if E is a rank
r , (Gm)ℓ -vector bundle on P and r ≤ min{n,ℓ + 3} then E splits.

The goal of this note is to give a direct proof of the splitting of rank 2 Gm -bundles
on P for n ≥ 3. Consider the following scaling Gm -action:

Gm × P→P

t × [a0 : a1 : · · · : an] 7→ [a0 : ta1 : · · · : tan].
This acts by scaling on the a�ne space Ank = P \ (x0 = 0) and fixes the point
[1 : 0 : · · · : 0] as well as the hyperplane H = (x0 = 0) ⊂ P. In this setting we prove:

Theorem 0.1. Let n ≥ 3. If E is a rank 2, Gm -equivariant vector bundle on P,
then E splits as a direct sum of line bundles.

Remark 0.2. As the above action is the restriction of the standard (Gm)n -action
on P to a subgroup, this proves that every toric vector bundle on P splits.

Proof. Clearly E is split ⇐⇒ E(NH ) is split. The goal is to show that
some twist E(NH ) has a section s ∈ H 0(P, E(NH )) such that either the zero locus
Z = (s = 0) ⊂ P is empty, or it is a scheme-theoretic complete intersection of
codimension 2 in P. This is su�cient for the following reasons. First, if Z is empty
then there is a short exact sequence:

0→O→E(NH )→det(E(NH ))→0.

This sequence is necessarily split as Ext1
OP
(det(E(NH )),OP) = H 1(det(E(NH ))∨) =

0 (using dim(P) ≥ 3). Second, if Z , ∅, then it is cut out by equations of degree a
and b . In this case we have:

E(NH )∨ |Z � IZ /I 2Z � OZ (−a) ⊕ OZ (−b)

By taking first Chern classes and pushing forward to P we see that det(E(NH )∨) =
O(−a − b). Thus we have two Koszul resolutions:

0→OP(−a − b)→OP(−a) ⊕ OP(−b)→IZ→0, and
0→OP(−a − b)→E(NH )∨→IZ→0.

Applying Hom(−,OP(−a − b)) to the first Koszul resolution shows that

Hom(OP(−a − b),OP(−a − b)) � Ext1(IZ ,OP(−a − b)).

is 1-dimensional. Therefore, by the Yoneda interpretation of Ext1(IZ ,OP(−a − b))
it follows that E(NH )∨ � O(−a) ⊕ O(−b).

As in the introduction, let Ank = (x0 , 0) and let H denote the hyperplane
(x0 = 0). Then E|An is isomorphic to the trivial rank 2 bundle. (Note, this does
not require the Quillen-Suslin theorem as the equivariant structure makes E(Ank )
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a graded projective module on the graded local ring k [x1, · · · , xn], so it is free.)
Choose a section s ∈ E(Ank ) which does not vanish on Ank and is an eigenvector for
the Gm -action. This gives rise to a meromorphic section of E. After twisting by
some multiple of H (a Gm -invariant divisor) we can assume s extends to a global
section of E(NH ) (also denoted by s ) which does not vanish in codimension 1 and
which is a Gm -eigenvector. Let Z = (s = 0) be the scheme-theoretic vanishing locus
of s . If Z = ∅ we are done, so assume Z , ∅.

We want to understand the ideal IZ . The support of Z is contained in H .
Consider a point p ∈ Z and an a�ne Gm -neighborhood U containing p where E
is trivialized. Such a neighborhood U is an A1-bundle overW = U ∩H . Then we
have an isomorphism of Gm -algebras:

k [U ] � k [W ][x0],

where k [W ] is trivial as a Gm -representation and Gm acts on k · x0 with weight
1. The trivialization of E on U allows us to write IZ (U ) = (f , g ) ⊂ k [U ] where
f , g ∈ k [U ] are eigenvectors for the Gm -action (in particular, Z ∩U is a complete
intersection in U ). By the above isomorphism of Gm -algebras we have f = fW xα0
and g = gW x

β
0 where fW , gW ∈ k [W ]. Without loss of generality (using that Z has

codimension 2) we can assume α = 0. Because Z is supported on H , it follows
that gW is a unit in k [W ]/(fW ). Thus, we can write:

IZ (U ) = (fW , x
β
0 )

for some fW ∈ k [W ] and β > 0.
Now this local description can be extended to global homogeneous equations

for Z . First, the ideal (fW ) ⊂ k [W ] can be intrinsically defined by

(fW ) = IZ (U ) ∩ k [W ] ⊂ k [W ].

Geometrically this means the following: if we consider the map Z→H given by
linear projection from the point [1 : 0 : · · · : 0], the scheme-theoretic image of
the map is an e�ective Cartier divisor D ⊂ H . Let F ∈ H 0(H ,OH (a)) be the
homogeneous equation for D . Consider F as a section of H 0(P,OP(a)) (i.e. as a
homogeneous equation which does not depend on x0). Locally on U we have the
equality of ideals (F |U ) = (fW ). Second, it su�ces to show that the exponent β
does not depend on the choice of point p ∈ Z . This is clear for any two points in
an irreducible component of Z . Because n ≥ 3, any two irreducible components of
Z must intersect as they are set theoretically hypersurfaces in H . Therefore β is
independent of p ∈ Z , and Z is a complete intersection defined by the equations
(F = x β0 = 0) ⊂ P.
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